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Abstract

Abduction is a pattern of inference in which an agent
seeks an explanation for an observation or report. Iter-
ated abduction is a variety of abduction in which evi-
dence is acquired and explained over time. The long-
term goal is to maintain highly plausible consistent ex-
planations for as much of the evidence as possible.
Some reports, at the time of acquisition, may be incon-
sistent with the agent’s present beliefs, so some beliefs
must be contracted in order to find an explanation of
the new reports. Existing work in iterated belief revi-
sion only addresses how to maintain consistent beliefs
in light of inconsistent observations; whether or not ex-
isting beliefs serve as explanations is not considered.
What is needed to meet the goal of iterated abduction is
a means of seeking new explanations for old evidence
when previously-accepted explanations are contracted.
We develop a logical formalism for this process as well
as a computational implementation.

Abduction is a widely useful pattern of inference that rea-
sons from evidence to explanations. Common examples of
abduction include medical diagnosis, story understanding,
and plan recognition. Given an observation or report q, ab-
duction is the process of finding which p, among a set of
alternatives consistent with existing beliefs, would best ex-
plain the evidence q.

The present work addresses the problem of iterated ab-
duction, i.e., abducing explanations for a stream of evidence
over time. We take evidence, explanations, and beliefs to be
propositional statements. An explanation p can explain evi-
dence q if p and q have a specific formal relationship, defined
below, and p is consistent with prior beliefs. We assume that
a single agent is performing abduction. An abductive oper-
ation at time t would, if successful, produce an explanation
p for some received evidence q; this explanation p would
be added to the agent’s beliefs for future reasoning at times
t′ > t. Iterated abduction characterizes the way the agent
both keeps track of a changing world and integrates new ev-
idence about the current world. But new evidence may cast
doubt on previously abduced explanations or outright con-
tradict them. The agent must decide whether or not to con-
tract beliefs, and which ones, in order to make sense of new
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evidence, while continuing to explain as much of the accu-
mulated evidence as possible.

Iterated abduction is a combination of abduction and be-
lief revision. Given evidence q, abduction produces an ex-
planation p that is taken on as a belief. Upon learning new
evidence q′, an explanation is sought that is consistent with
q, p, and the agent’s other beliefs. Should no such explana-
tion be found because, for example, every possible expla-
nation p′ for q′ contradicts p, the agent must perform some
kind of belief revision: either contract q′ (disbelieve the re-
cent evidence, as it is inconsistent with previously held be-
liefs), find an alternative explanation for q that does not con-
tradict any p′, or contract belief in prior evidence q as well
as its explanation p.

As will be shown, related work on abduction, belief revi-
sion, and iterated belief revision miss a key feature of iter-
ated abduction. Whenever the agent is forced to give up an
explanation p for evidence q, the agent should seek an al-
ternative explanation for q, not simply leave it unexplained
upon contracting p. It is not always the case that such alter-
native explanations are available, in which case we require
that the belief q must also be contracted for having no expla-
nation.

In this report, we first describe the formal properties of
iterated abduction, as well as a desideratum for belief revi-
sions that occur during iterated abduction. We next describe
a computational implementation that satisfies the desidera-
tum, followed by a discussion. Next we review prior work
and finish with concluding remarks.

Formal Properties

Our treatment of iterated abduction avoids restricting the
language of beliefs. Let L be a propositional language and
p ∈ L identify a statement in that language. Let �⊂
P(L) × (L ∪ {⊥}) be a relation between statements such
that P � q, where P = {p1, . . . , pn} ⊂ L, means “the
conjunction ∩P can, if true, explain q.” We write p� q as a
notational shorthand for {p}� q. A statement q may be as-
sumable, i.e., requiring no explanation, which we denote as
�→ q as a shorthand for ∅� q. A set P of inconsistent state-
ments may be denoted P � ⊥; in this case, not all state-
ments in P may be consistently simultaneously believed by
the agent.

We assume the set of explanatory relations believed by
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the agent is exhaustive. This is a closed-world assumption
in terms of the agent’s beliefs about explanations and evi-
dence. This closed-world assumption allows us to say that
an agent must have an explanation for every belief q that
requires explanation, otherwise it believes ¬q. Let B be the
set of explanatory relations (including assumables) and other
beliefs that the agent holds at any time. We restrict B such
that for every atomic statement q ∈ L that cannot be as-
sumed (�→ q /∈ B) but is nevertheless believed (q ∈ B), then
q has a believed explanation P ⊂ B where P � q ∈ B.
For every statement q ∈ L that participates in an explana-
tory relation (either �→ q ∈ B or ∃P ⊂ L : P � q ∈ B),
we say q is atomic, identified by the predicate A(q), and that
the agent either believes q (i.e., q ∈ B) or disbelieves q (i.e.,
¬q ∈ B).

We say B is a belief system if it meets the following crite-
ria:

1. ∀p : �→ p ∈ B → A(p).

2. ∀P, q : P � q ∈ B → (∀p ∈ P : A(p)) ∧A(q).

3. ∀p : A(p) → (p ∈ B ∨ ¬p ∈ B).

4. ∀P, q : P � q ∈ B → q /∈ P , i.e., atoms cannot directly
participate in explaining themselves.

5. ∀P, q : P � q ∈ B ∧ P ⊂ B → q ∈ B, i.e., explanations
imply what they explain.

6. ¬⊥ ∈ B, thus ensuring B is internally consistent. It is as-
sumed, but not written for brevity’s sake, that {p,¬p} �
⊥ for all atomic statements p.

7. ∀q : (A(q) ∧ (q ∈ B)) → ( �→ q ∈ B ∨ (∃P : P � q ∈
B∧ (P ⊂ B))), i.e., every belief that requires explanation
is explained by some other belief(s).

The definition of a belief system forms the basis for iterated
abduction. The crucial last property (7), that every belief re-
quiring explanation has a believed explanation, constrains
what counts as a valid abduction and ensures that belief re-
visions always result in an explanation for all beliefs that
require an explanation.

Contraction and Abduction

During the course of reasoning about a stream of evidence,
an agent may engage in two distinct kinds of reasoning ac-
tivity:

• Contraction, or incorporating ¬q into B for some q ∈ L,
denoted B− q;

• Abduction, or incorporating q into B for some q ∈ L,
denoted B+ q.

In both cases, in order to ensure that the result is a belief
system, explanations for prior beliefs may need to be con-
tracted, and new explanations for prior and new beliefs may
need to be established. These operations differ from contrac-
tion and expansion found in prior work in belief revision.
Our contraction and abduction operations seek explanations
for all believed evidence. Beliefs that require explanation
(are not assumable) but cannot be explained must be con-
tracted.

Desideratum for Iterated Abduction

Suppose that upon learning evidence q, p is picked out as the
best explanation among a set of alternatives include the next-
best alternative p′. Then, in order to consistently explain new
reports, suppose p must be contracted. If q is thereafter left
unexplained, then the long-term goal of iterated abduction
may not be met. Rather, p′ should be examined again and
possibly accepted as the new best-explanation of earlier ev-
idence q. Thus, the desired feature of any inference system
that engages in iterated abduction is that the system seeks
alternative explanations for prior evidence whenever prior
explanations are contracted.

Most work on belief revision takes the reasonable stance
that the optimal revision to an agent’s beliefs is the revision
that results in the fewest changes (acquisition of new be-
liefs, loss of existing beliefs). Finding minimal abductions
is NP-complete (Bylander et al. 1991), as is minimal con-
traction (Tennant 2012). Thus, any practical iterated abduc-
tion system must employ heuristics for finding best expla-
nations and contractions. The implementation we describe
below supports such heuristics but we do not investigate spe-
cific heuristics in the present work.

Example

Consider the common example of wet grass w that can be
explained by either rain r or sprinkler s. An agent has the
following belief system: B = E∪{¬r,¬s,¬w}, where E =
{�→ r, �→ s, r � w, s� w}. Upon learning that the grass is
wet, suppose the agent abduces rain: B+w = E∪{r, w,¬s}.
Then, upon learning that there was no rain, the agent alterna-
tively abduces sprinkler: (B+w)−r = E∪{s, w,¬r}. Upon
learning further that sprinkler is impossible, the agent has no
remaining possible explanation for the grass being wet, so it
contracts that belief as well: ((B+ w)− r)− s = B.

Implementation

We now describe a computational implementation of con-
traction and abduction operations that satisfy the postulates.
Our implementation is based off Tennant’s finite dependency
networks (FDNs), which are capable of representing depen-
dencies or justifications among statements (Tennant 2012).
We reify justification as explanation. Tennant defined con-
traction and expansion operations for beliefs represented in
FDNs. Tennant’s expansion operation is only capable of de-
termining consequences of beliefs and does not perform ab-
duction. The present work adds the ability to perform abduc-
tion on FDNs and generalizes the contraction and abduction
operations to a single priority-based consistency-restoration
operation, described in detail later.

An FDN consists of nodes, strokes, and directed ar-
rows connecting nodes and strokes. Every node represents
a unique atomic statement. Strokes represent conjunctions
of atomic statements. Notationally, Nx means x is a node,
Sx means x is a stroke, and Axy means there is an arrow
from x to y. Note that strokes may only point to nodes, and
nodes may only point to strokes. In other words, for each
arrow Axy, either Sx ∧ Ny or Nx ∧ Sy. Furthermore, a
stroke must point to exactly one node. We borrow Tennant’s
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Figure 1: An example finite dependency network (FDN).
Nodes a, b, d, f are believed while c, e, g,⊥ are disbelieved.
Because b and c share a stroke that points to ⊥, it is inconsis-
tent for both b and c to be believed. The equivalent belief sys-
tem is {{a, b} � d, c � d, c � e, d � f, {d, e} � g,
{b, c} � ⊥, a, b,¬c, d,¬e, f,¬g,¬⊥}.

convention and color every node and stroke either black (be-
lieved) or white (disbelieved). Notationally, Wx means x is
white and Bx means x is black.

A belief system is isomorphic to an FDN in the following
way.
• Atomic statements are nodes in the FDN: (A(q)∧( �→ q ∈
B ∨ (∃P : P � q ∈ B)) ↔ Nq.

• Believed atomic statements are black nodes in the FDN:
(A(q) ∧ q ∈ B) ↔ Bq.

• The � relation is represented by a stroke in the FDN:
P � q ∈ B ↔ (∃s : Ss ∧ (∀p ∈ P : Aps) ∧Asq).

• An assumable atomic statement p is represented by a
stroke with no incoming arrows: �→ p ∈ B ↔ (∃s :
Ss ∧Asp ∧ ¬(∃p′ : Ap′s)).

Figure 1 shows an example FDN and the equivalent belief
system.

Axioms of Coloration

Tennant defined axioms of coloration that must be satisfied
in order for the FDN to be consistent. Equivalently, these ax-
ioms codify the requirements for a consistent belief system.
(C1) Every black node receives an arrow from some black

inference stroke, i.e., ∀x((Bx∧Nx) → ∃y(By∧Sy∧
Ayx)).

(C2) Every white node receives arrows (if any) only from
white inference strokes, i.e., ∀x((Wx ∧ Nx) →
∀y(Ayx → (Wy ∧ Sy))).

(C3) Every black inference stroke receives arrows (if any)
only from black nodes, i.e., ∀x((Bx ∧ Sx) →
∀y(Ayx → (By ∧Ny))).

�

�

�

�

�

�

�

Deterministic bad strokes
and nodes in contraction. In
each case, the black node
or stroke should be white.

�

�

�

Nondeterministic bad
nodes in contraction. At
least one black node should
be white.

Figure 2: Patterns of bad strokes and nodes in a contraction
operation. Note that a pair of nodes or strokes pointing to the
same object represents any number of nodes or strokes, all
sharing the same color and bearing similar arrows.

(C4) Every white inference stroke that receives an arrow re-
ceives an arrow from some white node, i.e., ∀x((Wx∧
Sx ∧ ∃zAzx) → ∃y(Wy ∧Ny ∧Ayx)).

(C5) The node ⊥ is white, i.e., W⊥.

Contraction by p in an FDN begins by turning the node p
to white (if the node is already white and the axioms of col-
oration are met, there is nothing to do). Once p has changed
from black to white, the axioms of coloration may be bro-
ken, and consistency must be restored by appropriate color
changes. Likewise, abduction by p begins by turning the
node p to black (if the node is already black and the ax-
ioms of coloration are met, there is nothing to do), and then
finding which other nodes and strokes must be black. The
axioms of coloration identify which nodes and strokes have
invalid local patterns of coloration. We address these pat-
terns below.

Patterns of Invalid Coloration

After a contraction, nodes and strokes may be in any of four
patterns of invalid coloration. These are shown in Figure 2.
We call black nodes and strokes that should be white in order
to meet the axioms of coloration by the names “bad nodes”
and “bad strokes.” As shown in the figure, three cases are de-
terministic. In those cases, there is no ambiguity about which
nodes and strokes must be turned white in order to satisfy the
axioms of coloration. However, in one pattern (right side of
the figure), the choice is nondeterministic. At least one of
the black incoming nodes must be turned white, but it is not
certain which one (or more) should be white.

After an abduction (turning one or more nodes black),
nodes and strokes may exhibit those patterns shown in Fig-
ure 3. These closely but not identically match the patterns
related to contraction. Again, there is a single nondetermin-
istic pattern in which a choice must be made which incoming
white stroke must turn black in order to satisfy the axioms
of coloration.

The patterns of invalid coloration for contraction are suf-
ficient to define a contraction algorithm that restores consis-
tency, according to the axioms of coloration, after contract-
ing (turning white) a particular node. The procedure could
simply identify all bad nodes and strokes in terms of con-
traction (Figure 2), color them white, and then repeat until
the axioms of coloration are met. However, such a contrac-
tion algorithm behaves like those in prior work on belief re-
vision: it is not capable of finding alternative explanations
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and nodes in abduction. In
each case, the white node
or stroke should be black.
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Nondeterministic bad
strokes in abduction. At
least one white stroke
should be black.

Figure 3: Patterns of bad strokes and nodes in an abduction
operation. The figure should be interpreted in the same man-
ner as Figure 2.
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Figure 4: Upon learning grass-wet, the agent abduces rain
(suppose) and moves from the left-most FDN to the middle
FDN. But upon contracting rain, the axioms of coloration
require that grass-wet be contracted as well. This does not
meet our desideratum of iterated abduction that states sprin-
kler should be abduced to explain grass-wet when rain is
contracted.

for previously explained evidence when it contracts those
explanations.

For example, consider the wet grass scenario again. Upon
learning that the grass is wet, the agent comes to believe (by
abduction) that rain explains the wet grass. This is shown in
the middle FDN of Figure 4. Then, rain is contracted, leav-
ing the wet grass with no incoming black strokes. According
to axiom (C1), the node representing the wet grass must turn
white, as shown in the right-most FDN of the figure; in other
words, belief in the wet grass must be contracted. However,
according to our desideratum for iterated abduction, sprin-
kler should be automatically abduced instead as the alterna-
tive explanation for the wet grass. In other words, it should
be the case that the node grass-wet is not a “bad node” and
thus is able to remain black.

Priorities

Iterated abduction requires that at the agent know the order
of abductions and contractions, specifically that grass-wet
was abduced before rain was contracted, and that sprinkler
was not (recently) abduced or contracted. This order of node
and stroke color changes means that sprinkler remains a pos-
sible explanation for grass-wet but rain does not (after rain
is contracted).

We can record the priority (or timing) of color changes
by defining a function T (·) that maps nodes and strokes to
the set of natural numbers. T (x) = t means that node or
stroke x acquired its current color (for the FDN in question)
at time t. T (x) = 0 initially for all nodes and strokes. When-

ever the agent acquires a new observation, the time counter
increments. Suppose an observation induces an abduction
or contraction at time t. Then every node and stroke x that
changes color as a result of that abduction or contraction
will be recorded as T (x) = t. Nodes and strokes retain their
priority value until they change color again.

Consistency-Restoration

After observing p or ¬p and coloring p black or white (re-
spectively), consistency of the FDN may need to be restored
according to the axioms of coloration. Previous work (Ten-
nant 2012) distinguished between contraction and expansion
operations. Contraction involves changing black nodes and
strokes to white, and never changing a white node or stroke
to black. Expansion (or abduction) only changes colors from
white to black. Iterated abduction complicates this story and
requires that nodes and strokes sometimes change white to
black and back again as beliefs are contracted and alternative
explanations are sought.

Contraction and abduction coloring behavior can be gen-
eralized to a consistency-restoration process that makes use
of node and stroke priorities. The process is iterative. At
each step, one or more nodes and/or strokes change color
until the axioms of coloration are met. Which nodes and
strokes may require a change of color are identified by the
“bad” node and stroke criteria. The patterns of bad nodes
and strokes from Figures 2 and 3 may be refined to take
account of priority. In the formulas below, sets labeled B
indicate bad black nodes and strokes (which should turn
white to restore consistency), and sets labeled W indicate
bad white nodes and strokes. Subscript SD indicates de-
terministic bad strokes, SN indicates nondeterministic bad
strokes, and similarly for ND and NN . Later, we also use
the notation B∗ and W∗ to refer to any of BSD,BND,BNN
and WSD,WSN ,WND, respectively.

BSD = {s|Ss ∧Bs ∧
([∃n : Asn ∧Wn ∧ T (s) ≤ T (n)] ∨
[∃n′ : An′s ∧Wn′ ∧ T (s) ≤ T (n′)])}

BND = {n|Nn ∧Bn ∧ (∀s : Asn → Ws) ∧
(∀s : Asn → T (n) ≤ T (s))}

BNN = {n|Nn ∧Bn ∧
(∃s : Ans ∧Ws ∧
(∀n′ : An′s → Bn′) ∧ T (n) ≤ T (s))}

WSD = {s|Ss ∧Ws ∧ (∀n : Ans → Bn) ∧
(∃n : Ans ∧ T (s) < T (n))}

WSN = {s|Ss ∧Ws ∧
(∃n : Asn ∧Bn ∧
(∀s′ : As′n → Ws′) ∧ T (s) < T (n))}

WND = {n|Nn ∧Wn ∧
([∃s : Asn ∧Bs ∧ T (n) < T (s)] ∨
[∃s : Ans ∧Bs ∧ T (n) < T (s)])}

Notice that in order for a white node or stroke to be con-
sidered bad (a candidate for turning black), its priority must
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be strictly less than its neighbors’ priorities. Black nodes and
strokes, on the other hand, are only required to be less than or
equal in priority to their neighbors. This means that our sys-
tem is more cautious about abducing beliefs (white to black)
than it is about contracting beliefs (black to white).

Consistency-Restoration Algorithm

Restoring consistency after changing the color of a node is a
straightforward iterative process.

1. If the FDN satisfies the axioms of coloration, we are done.
2. Otherwise, let D = BSD ∪BND ∪WSD ∪WND, i.e., all

deterministic bad nodes and strokes. Change the color of
all of these (black to white or white to black), and repeat
at step (1).

3. If no deterministic bad nodes or strokes exist, then let
N = BNN ∪ WSN , i.e., all nondeterministic bad nodes
and strokes. Select one of these according to a heuristic
and change its color. Repeat at step (1).

Because the algorithm is iterative, it is necessary to show
that it always terminates. The following lemma assists in
proving termination.
Lemma 1. The consistency-restoration algorithm will never
color a node or stroke from black to white and then back to
black.

Proof. Notice that once node or stroke x is changed from
black to white, ∀y : (Ny ∨ Sy) → T (x) ≥ T (y). Thus, x
cannot be a member of any W∗ since each such set requires
that T (x) < T (y) for certain strokes or nodes y. Hence, x
will not turn black again after turning white while the algo-
rithm is looping.

Theorem 1. The consistency-restoration algorithm always
terminates.

Proof. Notice that the algorithm terminates only when X =
BSD ∪BND ∪BNN ∪WSD ∪WSN ∪WND = ∅. At every
step, at least one node or stroke in X changes color. Nodes
and strokes in W∗ (may) transition to B∗ and vice versa.
Since FDNs are finite, in order to get infinite looping, at least
one node or stroke would have to cycle between W∗ and
B∗ infinitely (not necessarily at every step in the algorithm).
But that is not possible, since any node or stroke in W∗ that
changes color (to black) will never again appear in W∗ due
to the lemma. Thus, no node or stroke can infinitely cycle
among W∗ and B∗. Therefore, eventually X = ∅ and the
algorithm terminates.

Example

Our wet grass example in Figure 4 failed to exhibit the
right properties for iterated abduction. Now utilizing pri-
orities and the consistency-restoration algorithm, we have
the behavior shown in Figure 5. The agent starts with
the following belief system: B = {�→ r, �→ s, r �
w, s � w,¬r,¬s,¬w}, and priorities T (¬r) = T (¬s) =
T (¬w) = 0. Upon learning that the grass is wet, sup-
pose the agent abduces rain: B + w = B ∪ {r, w,¬s} and
T (w) = T (r) = 1, T (¬s) = 0. Then, upon learning that

there was no rain, consistency restoration automatically ab-
duces sprinkler: (B + w) − r = B ∪ {s, w,¬r}, T (¬r) =
2, T (s) = 2, T (w) = 1. Upon learning further that sprinkler
is impossible (not shown in the figure), there is no remain-
ing possible explanation for the grass being wet, so con-
sistency restoration results in the contraction of w as well:
((B+ w)− r)− s = B, T (¬r) = 2, T (¬s) = T (¬w) = 3.

Discussion

The consistency-restoration algorithm makes use of priori-
ties in order to determine which nodes and strokes are eli-
gible for retraction. Whenever an explanation of a believed
statement (black node) is contracted, an alternative explana-
tion is abduced (colored black) if the statement was acquired
more recently than at least one of its possible explanations.
In this way, newer evidence takes priority but prior evidence
remains explained, perhaps with alternative explanations, as
long as possible. Note that we do not guarantee that all evi-
dence remains explained no matter what kind of evidence is
acquired. This, in general, is not possible to guarantee as the
explanations for new evidence may be inconsistent with ex-
planations for old evidence, and new evidence takes priority.
Likewise, we cannot reasonably ensure that the fewest nodes
are abduced or contracted, as doing so is computationally in-
tractable.

Our procedures rely on the closed-world assumption:
once all possible explanations for a belief are contracted,
the belief itself must be contracted (if it requires explana-
tion, i.e., it is not assumable). However, this closed-world
assumption may be useful in practice even though on the
face of it the assumption is constrictive. Whenever a belief
loses all of its explanations, an alarm can be presented to a
knowledge engineer, who can then decide how to improve
the knowledge base by providing more alternative explana-
tions.

We suspect that priorities need not be discrete as we have
done in this work, nor monotonically increasing as evidence
is acquired. It may be possible to meet the desideratum of
iterated abduction while allowing priorities to be continuous
values and/or otherwise represent confidence in the evidence
rather than a marker of time.

Related Work

Much of the work in belief revision is grounded in the AGM
model, which defines a set of postulates for contraction and
revision operations. Iterated abduction breaks the contrac-
tion postulate known as “inclusion,” among others. The in-
clusion postulate states that the resulting beliefs after con-
traction should be a subset of the starting beliefs. Suppose
p is abduced by our system to explain q. Then, upon con-
tracting p, suppose p′ is abduced instead to explain q. The
resulting beliefs are not a subset of the beliefs prior to con-
traction.

Abduction has been cast as belief revision (Aliseda 2006).
In these approaches, a set of beliefs undergoes expansion
by q when an explanation p may be found that implies q.
Only p is explicitly added to the beliefs but q is a member
of the logical closure of the set of beliefs. Revision involves
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grass-wet (1)

sprinkler (0)

 (0)

 (0)

rain (0)

 (0)

 (1)

grass-wet (1)

sprinkler (0)

 (0)

 (1)

rain (1)

 (0)

 (2)

grass-wet (1)

sprinkler (0)

 (0)

 (2)

rain (2)

 (0)

 (2)

grass-wet (1)

sprinkler (2)

 (2)

 (2)

rain (2)

 (2)

Time 1, observed grass-wet.
Both strokes pointing to
grass-wet are bad strokes
(in WSN ), so a choice must
be made.

Suppose the stroke from
rain is chosen to turn black.
The rain node and its in-
coming stroke are likewise
turned black. The axioms of
coloration are now satisfied.

Time 2, contracted rain;
whitening spreads to nearby
strokes. The grass-wet node
does not meet the criteria
for a bad node, since an
incoming stroke has lower
priority than grass-wet.

The only bad stroke or node
is the stroke coming from
sprinkler (the single mem-
ber of WSN ), so it is turned
black. Ultimately, consis-
tency is restored again.

Figure 5: The wet grass example from Figure 4 but enhanced with priorities (shown in parentheses on the nodes and strokes).
Only times 1–2 are shown. The resulting belief changes over time match our desideratum for iterated abduction.

contracting first and then expanding, in the usual way de-
scribed by Levi’s identity. In these approaches, however, fu-
ture abductions are entirely novel problems and there is no
explicit support for finding alternative explanations for prior
evidence whose explanations are contracted.

Nayak and Foo developed a method of iterated abduction
that left open alternative explanations as long as possible
(Nayak and Foo 1999). They did so by only eliminating the
worst explanations at each step in the stream of evidence
rather than selecting the best explanation up to that point.
Eventually, the best explanation that survived all the elim-
inations would be found. Thus, they reject that abductions
should be minimal. However, their technique does not han-
dle inconsistent evidence, as the gradual narrowing of pos-
sible explanations cannot be reversed.

Eckroth and Josephson developed an abductive reason-
ing system capable of reconsidering and revising prior ab-
ductions (Eckroth and Josephson 2014). Whenever evidence
could not be plausibly explained, a metareasoning compo-
nent attempted to identify which prior explanations should
be retracted in order to allow an explanation for the current
evidence. The metareasoning component’s operational char-
acteristics were not formally detailed, thus limiting a careful
analysis of its behavior.

Finally, Beirlaen and Aliseda recently described a condi-
tional logic for abduction that supports defeasible explana-
tions that need not entail what they explain (Beirlaen and
Aliseda 2014). For our purposes, the defeasible aspect is in-
teresting because an explanation is therefore able to encode
the conditions in which the explanation will no longer hold.
Their approach properly identifies the explanations that are
still viable (still consistent) after other alternative explana-
tions have been defeated. However, they do not address the
possibility of contradictory evidence or other belief dynam-
ics beyond defeaters.

Conclusion

This work defined iterated abduction and presented a formal
model and computational implementation of a system that
meets the desideratum of iterated abduction. Upon acquir-
ing new evidence or contracting existing beliefs, the system
restores consistency while seeking alternative explanations
for any prior evidence that has lost its support in the process.
This is the first system that explicitly handles maintenance
and recovery of prior abductions across iterated inferences.
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