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Abstract

Our ability to learn accurate classification models from data
is often limited by the number of available data instances.
This limitation is of particular concern when data instances
need to be labeled by humans and when the labeling process
carries a significant cost. Recent years witnessed increased
research interest in developing methods capable of learning
models from a smaller number of examples. One such direc-
tion is active learning. Another, more recent direction show-
ing a great promise utilizes auxiliary probabilistic informa-
tion in addition to class labels. However, this direction has
been applied and tested only in binary classification settings.
In this work we first develop a multi-class variant of the aux-
iliary probabilistic approach, and after that embed it within an
active learning framework, effectively combining two strate-
gies for reducing the dependency of multi-class classification
learning on the number of labeled examples. We demonstrate
the effectiveness of our new approach on both simulated and
real-world datasets.

Introduction
Classification problems are ubiquitous in our everyday life.
Machine learning field provides an opportunity to further en-
rich the spectrum of classification problems one can tackle,
enhance their construction, as well as, automate their execu-
tion. However, the successful deployment of classification
models built by machine learning methods is often limited
by the amount of available training data. This is of partic-
ular concern when data for classification must be annotated
by humans and when annotation process carries a significant
time and economical cost. In such a case, the key challenge
is to reduce the sample dependency of learning methods as
much as possible.

The majority of classification learning methods are lim-
ited to only the class-label information. However, the class
label decisions the human annotators make are often not
straightforward and there may be some uncertainty associ-
ated with an instance belonging to one of the classes. This
uncertainty information could provide a valuable feedback
for training a better classification model. One way to rep-
resent such an information is to use probabilistic scores
(Nguyen, Valizadegan, and Hauskrecht 2011a; 2011b) ,
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where each data instance is associated with a soft prob-
abilistic label indicating the certainty of human annota-
tors in the given class label, such as, a probability of the
patient having a disease. However, it is also well docu-
mented that humans are unable to give consistent prob-
abilistic assessments (Juslin, Olsson, and Winman 1998;
Griffin and Tversky 1992), leading to noisy probabilistic
scores. To solve this problem, (Xue and Hauskrecht 2017)
proposed to convert the learning with soft labels to an or-
dinal regression problem using binning (Chu and Keerthi
2005) and solve it via ranking-SVM (Joachims 2002; Her-
brich, Graepel, and Obermayer 1999). The method, how-
ever, applies only to binary classification tasks. In this work,
we show how to improve and extend this approach to multi-
class classification settings. The new method is one of the
contributions of this paper.

Another technique to alleviate the annotation effort is ac-
tive learning (Lewis and Gale 1994; Settles 2010; Roy and
McCallum 2001). Briefly, active learning learns from a sub-
set of labeled instances. This set is gradually grown by se-
lecting an unlabeled instance that appears the most infor-
mative for refining the current model and by requesting its
label. Numerous active learning strategies have been devel-
oped. In this work, we develop a new active learning strat-
egy assuming the feedback also includes the auxiliary prob-
abilistic score in addition to class label. Our active learning
strategy implements a variant of the expected model change
approach. The expected model change approach requires
costly recalculation of models every time an instance is con-
sidered during the example selection process. We address it
by developing its efficient gradient-based approximation.

Through experiments, we show that our new multi-class
classification framework achieves improved classification
performance and, at the same time, it is able to speed up the
selection of instances to be queried next by its active learn-
ing component. These results are obtained on both simulated
data derived from data in UCI repository and real-world im-
age data. We demonstrate the ability of our active learning
and auxiliary label information solutions to reduce the data
labeling cost both individually and in combination.

Related Work
In this section, we briefly review the topics related to our
framework: soft-label information, multi-class support vec-
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tor machine, and active learning.

Probabilistic soft-label information The problem of
learning from probabilistic soft-label information is rela-
tively new and was initiated by (Nguyen, Valizadegan, and
Hauskrecht 2011a; 2011b; 2013). This series of work as-
sumes supplemental probabilistic information can be pro-
vided by annotator along with class labels at negligible
cost. Such probabilistic information indicates the confidence
with which the annotator believed the class label will oc-
cur and is expressed using a probabilistic score. To utilize
such information, the author first developed several meth-
ods to fit the probabilistic scores directly via regression and
showed that these methods are highly vulnerable to the noise
which is common in probabilistic scores (Juslin, Olsson, and
Winman 1998; Griffin and Tversky 1992; O’Hagan et al.
2007). To solve this problem, the authors developed a ro-
bust method based on the pairwise orderings among all data
examples. Basically, this method learns a parametric dis-
criminative model by attempting to satisfy pairwise score or-
derings among all data examples while ignoring their exact
probabilistic scores. The limitation of the approach is that
the number of constraints the orderings induce is quadratic
in the number of data examples.

More recently, another robust method was proposed by
(Xue and Hauskrecht 2017). The method first splits the
range of probabilistic scores into multiple consequent and
non-overlapping bins, and after that, it learns an ordinal
regression model by attempting to satisfy the constraints
from pairwise orderings between each data example and
each bin boundary. Similarly to (Nguyen, Valizadegan, and
Hauskrecht 2011a), this method ignores exact probabilis-
tic scores to improve its robustness against soft-label noise.
However, the method is more efficient: it reduces the number
of constraints to be linear in the number of data examples.

All of the above references are focused on binary classifi-
cation models. However, the problem of learning multi-class
classification models from probabilistic soft-label informa-
tion remains open. In this paper, we attempt to fill this gap.
Building upon (Xue and Hauskrecht 2017), we propose a
multi-class classifier that learns from auxiliary probabilistic
(soft-label) information in addition to their class labels. That
is, each data example comes with a class label and a prob-
ability indicating the confidence with which the annotator
believes the class label indeed occurs. The annotation cost
of such a soft-label information is negligible since only one
soft label is associated with each data example. We show that
our soft-label multi-class classifier substantially reduces an-
notation effort by achieving higher performance compared
with multi-class classifiers based only on class labels.

Multi-class support vector machine Multi-class support
vector machine was proposed by (Vapnik 1998; Weston et al.
1999). For a K-classification problem, multi-class support
vector machine trains K one-vs-all binary classifiers in one
optimization problem. That is, the sum of the regularization
term and the penalty for slack variables of all the K one-
vs-all classifiers is minimized jointly. Compared with previ-
ous methods, one-vs-all, that trains K one-vs-all classifiers
and, one-vs-one, that trains K(K−1)

2 one-vs-one classifiers

independently, multi-class support vector machine achieves
higher performance especially when the amount of the la-
beled data is limited.

The work in this paper builds upon multi-class support
vector machine and enhances it to accept also probabilistic
score information. This will significantly reduce the annota-
tion effort. We further show how one can design an active
learning strategy compatible with such classifier.

Active learning In active learning frameworks, model
training and data instance annotation process are conducted
alternately. Basically, active learning first labels an initial set
of data and sequentially selects the data instances that are
most informative to be labeled next. There are numerous
criteria to measure the “informativeness” of an unlabeled
instance. Perhaps the most famous strategy is uncertainty
sampling (Lewis and Gale 1994). In multi-class scenarios,
three different standards are applied to measure the uncer-
tainty: (1) lowest confidence, that queries the unlabeled in-
stance with the lowest confidence in its highest class pre-
diction, and (2) marginal confidence, that queries the un-
labeled instance with the lowest discrepancy in its top-two
class predictions, and (3) information entropy, that queries
the unlabeled instance with the highest information entropy
among all of its class predictions. However, uncertainty sam-
pling is incompatible with soft labels, since such uncertainty
is already given in soft labels. Another popular strategy is
query-by-committee (Seung, Opper, and Sompolinsky 1992)
that trains a committee of models and selects an unlabeled
instance on which these models disagree the most. The mod-
els in the committee can be acquired bootstrapping (Breiman
1996) of the training set. The limitation of the above query-
by-committee is the bias since the models in the committee
are highly under-fit.

Other more sophisticated instance selection strategies are
based on expectation. The Expected model change (Tong
and Koller 2000) queries unlabeled instance that brings the
highest change to the model parameters when labeled. The
limitation of this strategy is the overestimate of informative-
ness. Expected error reduction (Roy and McCallum 2001)
seeks to minimize the generalization error of the model by
assuming an unlabeled instance is labeled.

The development of active learning strategies for multi-
class soft-label settings has not been explored in the litera-
ture. In this paper, we propose an effective active learning
approach for multi-class classifiers with probabilistic soft-
label information. It selects the unlabeled instance with the
highest expected projection change. To avoid the model re-
training, we approximate the projection change via gradi-
ents, which remarkably reduces its running times. We show
that our active learning strategy can substantially reduce the
number of examples it needs to query.

Methodology
Soft-label multi-class support vector machine
Problem settings Our goal is to learn a multi-class clas-
sifier f : X → Y , where X is the feature space and Y ∈
{1, 2, . . . , k} represents class labels of a data instance. We
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assume that in addition to class labels {1, 2, . . . , k} defin-
ing yi we also obtain soft-label information: a probability pi
reflecting annotator’s confidence the example xi belongs to
class yi. Hence each labeled data entry Di consists of three
components: Di = (xi, yi, pi), an input, a class label and an
estimate of the probability of the class label.

Learning soft-label multi-class classifier To elaborate
our soft-label multi-class classifier, we start by modifying
multi-class support vector machine, which we build our
model upon. Basically, in multi-class support vector ma-
chine, we learn k binary support vector machine jointly, one
for each class. For each data instance, the projection from
the binary classifier of the class label should be higher than
the projection from other classes. Formally, we would like to
get k projection mappings f1(·), f2(·), . . . , fk(·), such that
for each data instance xi, the projection fyi

(xi) is greater
than fl(xi) for l ∈ {1, 2, . . . , k} \ yi. To permit some flex-
ibility, we allow violations of the constraints but penalize
them through the loss function. Therefore, multi-class sup-
port vector machine is formulated as follows:

min
W,w0,ξ

G =
1

2

k∑
j=1

wT
j wj + C

N∑
i=1

∑
j �=yi

ξi,j

(wyi
− wj)

T xi + (w0,yi
− w0,j) ≥ 1− ξi,j (ξi,j ≥ 0),

where yi is the class label of xi; w1,w2, . . . ,wk and
w0,1, w0,2, . . . , w0,k are the parameters and biases for the k
binary classifiers. For prediction, the class with the highest
projection value is selected as the predicted class.

Now we need to incorporate the soft labels into the model.
Perhaps the most straightforward intuition is to incorpo-
rate the exact soft-label values. For example, we may re-
formulate the k binary classifiers into k regression models
based on the soft labels. However, it is well known that hu-
mans are often unable to give consistent probabilistic assess-
ments (Juslin, Olsson, and Winman 1998; Griffin and Tver-
sky 1992). In other words, soft labels from human annota-
tors are usually noisy which may backfire if we dwell too
strongly on their exact values. To handle this, we incorpo-
rate the soft labels via constraints derived from ordinal re-
gression (Chu and Keerthi 2005), which was first proposed
by (Xue and Hauskrecht 2017) for binary classifiers. Briefly,
we first split the soft-label space into multiple consequent
and non-overlapping bins for each one-vs-all classifier. Then
we try to enforce the pairwise orderings between each bin
boundary and each soft label in this class. Formally, for each
one-vs-all classifier fj(·) and each data instance 〈xi, yi, pi〉
such that yi = j, we try to enforce its projection fj(xi) will
fall into the bin consistent with its soft label yi. Meanwhile,
we still try to enforce that fj(xi) is the highest among all
one-vs-all classifiers. For example, if a data instance x be-
longs to class 3 and soft label 0.4, we want to enforce that the
projection f3 distinguishing class 3 will not only put x into
the bin consistent with its soft label 0.4, but also is greater
than any other projection fl(x) where l ∈ {1, 2, . . . , k} \ 3
to guarantee that x will still be predicted as class 3. Also, we
allow violations of both kinds of constraints by penalizing
the loss function. By combining two kinds of constraints,
we can formulate the following optimization problem:

min
W,w0,η,ξ,b

G =
1

2

k∑

l=1

wT
l wl + B

N∑

i=1

∑

l �=yi

ηi,l + C

N∑

i=1

m−1∑

j=1

ξi,j

(wyi
− wl)

T xi + (w0,yi
− w0,l) ≥ 1− ηi,l (ηi,l ≥ 0)

zi,j(wT
yi

xi + w0,yi
− bj) ≥ 1− ξi,j (ξi,j ≥ 0), (1)

where yi is the class label of xi, zi,j is an indicator whether
the projection of wT

yi
xi is supposed to be greater or less

than the jth bin boundary bj (-1 for less and 1 for greater);
w1,w2, . . . ,wk and w0,1, w0,2, . . . , w0,k are the parameters
and biases for the k binary classifiers.

Active learning
In this part, we develop an active learning framework that
builds a multi-class classifier by actively querying a human
annotator for assessing the instances using both the class and
associated soft labels. We show how this algorithm can be
included in the active learning framework that aims to im-
prove the model by wisely selecting the examples to be as-
sessed next. The criterion used to choose from among unla-
beled candidate instances is based on the highest expected
approximate projection change.

Expected approximate projection change The expected
approximate projection change (EAPC) is inspired by the
expected model change (Tong and Koller 2000). Breifly, ex-
pected approximate projection change selects the unlabeled
instance that brings the greatest expected projection change
when it is assumed labeled. Such strategy consists of two
key quantities: projection change and expectation. When an
unlabeled instance is assigned an assumed label, all the k
one-vs-all classifiers will change, leading to changes in pro-
jections of all unlabeled instances. The projection change
measures the absolute change of all unlabeled instances on
all the k one-vs-all classifiers. Since in soft-label multi-
class scenario, an assumed label contains a discrete class
label and a continuous soft label, given the probability of
each class label and conditional distribution of soft label, we
can calculate the expectation of projection change over the
space of assumed label for the unlabeled instance. Formally,
when an unlabeled instance x+ is assigned an assumed label
〈y+, p+〉, the current models fi,L(·) built on labeled data L
will change to fi,L∪〈x+,y+,p+〉(·) for all i. Given the proba-
bility P (y+|x+) and conditional density p(p+|x+, y+), we
can calculate the expected projection change Δ(x+) as:

Δ(x+) =
∑
y+

(y+|x+)
∫ 1

0

p(p+|x+, y+)
k∑

i=1

∑
j∈U

|fi,L∪〈x+,y+,p+〉(xj)− fi,L(xj)|dp+

We select the unlabeled instance with highest expected pro-
jection change to be labeled next.

Approximating expectation One critical problem is the
expectation. Unfortunately, since the soft-label space is con-
tinuous, it is typically unfeasible to obtain the soft-label
distribution of an unlabeled instance directly. To solve this
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problem, we propose an approximation which splits the soft-
label range into multiple consequent and non-overlapping
segments, then calculate the conditional probability that the
unlabeled instance falls into each segment. Since such ap-
proximation is similar to the binning strategy in (1), we can
directly adopt the bins for the conditional probabilities. For-
mally, instead of conditional density, we split the soft-label
range into m bins {q1, q2, . . . , qm} and calculate the con-
ditional probability P (p+ ∈ q+|x+, y+) for all i and q+.
Therefore, the expectation Δ(x+) can now be estimated as:

Δ(x+) =
∑
y+

(y+|x+)
∑
q+

P (p+ ∈ q+|x+, y+)
k∑

i=1

∑
j∈U

|fi,L∪〈x+,y+,p+∈q+〉(xj)− fi,L(xj)|

Another problem is measurement of P (y+|x+) and P (p+ ∈
q+|x+, y+). In this work, we adopt the idea of density
weight (Settles, Craven, and Friedland 2008). Briefly, if an
unlabeled instance is closed to a labeled instance, they are
of high probability with the identical label. Formally, for an
unlabeled instance x+ and each labeled instance 〈xi, yi, pi〉,
the probability they are with identical label is proportional to
the inverse of their Euclidean distance ||xi − x+||2. There-
fore, the joint probability P (y+|x+)P (p+ ∈ q+|x+, y+) =
P (y+, p+ ∈ q+|x+) can be estimated as:

P (y
+|x+

)P (p
+ ∈ q

+|x+
, y

+
) =

1

Z

yi=y+,pi=p+∑

i∈L

1

||xi − x+||2
,

where Z =
∑

i∈L
1

||xi−x+||2 is the normalization factor.

Approximating projection change Another concern is
the projection change over the unlabeled data. When adding
an unlabeled instance with an assumed label, the new “add-
one” model should be retrained. Given U unlabeled in-
stances, k classes, m bins (in (1), soft labels in the same
bin give the identical optimization), we need to retrain kmU
“add-one” models. To avoid retraining, we propose an ap-
proximation via gradient inspired by stochastic gradient de-
scent (Bottou and Bousquet 2008). Briefly, when adding an
unlabeled instance with an assumed label, we can treat the
other (labeled) instances as constants, calculate the differ-
ence compared with the current model and take the gradi-
ent to approximate the projection change over the unlabeled
data. Formally, when adding 〈x+, y+, p+ ∈ qj〉 into (1), the
new “add-one” model G+ can be written via rectified func-
tion [·]+ (we omit the bias w0,l for convenience) as:

min
W,w0,η,ξ,b

G
+

=
wT w
2

+ B
∑

l �=y+

[1− (wy+ − wl)
T x+]++

B
N∑

i=1

∑

l �=yi

[1− (wyi
− wl)

T xi]++

C

m−1∑

j=1

[1− z
+
j (wT

y+x+ − bj)]+ + C

m−1∑

j=1

N∑

i=1

[1− zi,j(wT
yi

xi − bj)]+,

where z+j is determined from p+ for all j. Comparing with
(1), we get:

ΔG
+

= B
∑

l �=y+

[1−(wy+−wl)
T x+

]++C

m−1∑

j=1

[1−z
+
j (wT

y+x+−bj)]+

Therefore, the gradient for each one-vs-all classifier can be
calculated as:

∂ΔG+

∂wl
= Bx+�(wy+−wl)T x+<1 (l �= y+)

∂ΔG+

∂wy+

= −Bx+
∑
l �=y+

�(wy+−wl)T x+<1

− Cx+
m−1∑
j=1

z+j �z+
j (wT

y+x+−bj)<1

In the stochastic gradient descent, the negative gradient de-
termines the step length for learning. Therefore, we claim
the gradient is approximately proportional to the change of
the parameter of each one-vs-all classifier:

Δw+
l

∝∼
∂ΔG+

∂wl
l = 1, 2, . . . , k

Given an arbitrary unlabeled instance xj , we can approxi-
mate the absolute projection change on wi before and after
〈x+, y+, p+ ∈ q+〉 as:

|fi,L∪〈x+,y+,p+∈q+〉(xj) − fi,L(xj)| = |∂ΔG+

∂wi

T

xj |

Experiments and Results
We test our framework on both synthetic and real-world
data. The first experiment adapts data from two UCI multi-
class data sets which we transform to soft-label multi-class
classification tasks. The second experiment works with a
real-world image data with human assessed labels from mul-
tiple annotators.

Experiments on simulated data
Data simulation We adapted two UCI multi-class datasets
(see Table 1 for details) as follows: We take half of the
data to train a multi-class support vector machine and ob-
tain probabilistic scores on the other half via soft-max func-
tion on their predictions. In the experiments we use only the
second half of the data, retain the class labels and keep the
corresponding probabilistic scores as soft labels.

Experimental settings To demonstrate the benefits of
our soft-label model and expected approximate projection
change strategy, we compare it with multi-class classifiers
trained only on class labels, soft-label multi-class logistic
regression and active learning that retrains to calculate the
exact projection change when adding an unlabeled instance.
Our experiments compare the following classifiers (we use
random sampling by default):
MSVM: multi-class support vector machine (Vapnik 1998; Weston
et al. 1999) where K one-vs-all classifiers are trained jointly;
MSVMUnc: multi-class support vector machine (Vapnik 1998;
Weston et al. 1999) where K one-vs-all classifiers are trained
jointly with uncertainty sampling;
MSVMAct: multi-class support vector machine (Vapnik 1998;
Weston et al. 1999) where K one-vs-all classifiers are trained
jointly with expected approximate projection change strategy;
SMLogReg: soft-label multi-class logistic regression where K
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Figure 1: Performance (EMR) on UCI data with no (top),
weak (middle) and strong (bottom) noise.

one-vs-all classifiers are trained independently on exact soft labels;
SMSVM: soft-label multi-class support vector machine where K
one-vs-all classifiers are trained jointly with soft-label constraints;
SMSVMRe: soft-label multi-class support vector machine where
K one-vs-all classifiers are trained jointly with soft-label con-
straints and retraining the model to calculate the exact projection
change when an unlabeled instance is added;
SMSVMAct: soft-label multi-class support vector machine where
K one-vs-all classifiers are trained jointly with soft-label con-
straints and expected approximate projection change strategy.
We evaluate the performance of the different methods in the
exact match rates (EMR) on the test data. All data sets be-
fore learning are split into the training and test set (using 2

3

and 1
3 of all data instances). The learning considered train-

ing data only; the EMR is always measured in the test set.
We also repeat the splitting and learning 24 times. The av-
erage EMRs of different classifiers on UCI data regarding
increasing sizes of N are reported in Figure 1.

Experimental results Figure 1 (top) shows the benefit
of our framework SMSVMAct with a combination of prob-
abilistic soft labels and expected approximate projection
change strategy. Both SMSVMAct and SMSVMRe outper-
form MSVMAct and MSVMUnc; both SMSVM and SMLo-
gReg outperform MSVM. These two comparisons show soft
labels will achieve better performance than original class la-
bel models with the same training sizes. Meanwhile, both
SMSVMAct and SMSVMRe outperform SMSVM; MSVMAct
outperforms MSVMUnc and MSVM. These two compar-
isons show the effectiveness of our expected approximate
projection change strategy. Overall, both SMSVMAct and
SMSVMRe are always of highest performance, showing that
our framework remarkably raises the performance on the
same sizes of training data.

Noise simulation In order to generate soft-label noise,
each soft label p derived from the UCI data was modified

Dataset # Instances # Features # Classes
Steel Plates Faults 1941 27 7
Vehicle Silhouettes 946 18 4

Table 1: Properties of UCI data in synthetic experiments.

Figure 2: Time consumption (minutes) on UCI data with no
noise.

into p′ by injecting a Gaussian noise of different strength:
Weak noise: p′ = p× (1 + 0.1×N(0, 1));
Strong noise: p′ = p× (1 + 0.3×N(0, 1)).
Briefly, the noise injection levels above indicate the average
proportion of noise to no, weak (10%) and strong (30%) lev-
els respectively. Also, we truncated the illegal probabilistic
scores (e.g. probabilistic scores that are less than 1

k or greater
than 1) to the interval of [ 1k , 1].

Experimental results with noise When soft-label noise
is added, the performance of soft-label models may deteri-
orate. Figure 1 (middle) and (bottom) shows the robustness
of our framework SMSVMAct. The regression based model
SMLogReg, which is trained on exact soft labels, is vulner-
able to noise and deteriorates remarkably. While other soft-
label models are more robust and do not suffer from much
performance drop. Our framework SMSVMAct are still of
top two performance comparable with SMSVMRe, showing
the robustness of our framework.

Experiments on time consumption The reason we use
gradient to approximate projection change is to reduce time
consumption. Figure 2 shows the time consumption of three
soft-label multi-class classifiers in experiments on UCI data
sets for increasing sizes of training data.

We evaluated the time consumption of the different learn-
ing methods by the total minutes elapsed on the training
data. Because of the calculation of projection change, both
SMSVMAct and SMSVMRe spend more time than SMSVM.
However, the time consumption of SMSVMAct is tolerable,
while the time consumption of SMSVMRe is seven times as
SMSVMAct and ten times as SMSVM. Overall, our frame-
work SMSVMAct, which combines soft labels and active
learning, is of both higher performance than other models
that utilize at most one of the two methods, and far more
satisfactory time consumption since it prevents retraining.

Experiments on real-world data
We also run experiments on Face Sentiment data, a real-
world crowd-sourced dataset from Tsinghua University.

Experimental settings Face Sentiment data contains 584
data instances, where each instance is a 128 × 120 gray-
scale photo of the facial expression. The class label is one
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Figure 3: Performance (EMR) of Fact Sentiment.

of the four moods indicating the mood in the photo. Each
data instance is annotated by nine annotators. The true label
of each data instance is also given. We use a convolutional
neural network to extract 256 features for each data instance.
For probabilistic soft-label models, we take the vote ratio of
the true class among nine annotators as the soft label. We
split all data instances into 2

3 training and 1
3 testing data, and

measure average exact match rate over 24 trials.

Experimental results Figure 3 shows the benefit of our
framework SMSVMAct with a combination of probabilis-
tic soft labels and expected approximate projection change
strategy on real-world face sentiment data. Both SMSV-
MAct and SMSVMRe outperform MSVMAct and MSVMUnc;
both SMSVM and SMLogReg outperform MSVM. These two
comparisons show soft labels will achieve better perfor-
mance than original class label models with the same train-
ing sizes. Meanwhile, both SMSVMAct and SMSVMRe out-
perform SMSVM; MSVMAct outperforms MSVMUnc and
MSVM. These two comparisons show the effectiveness of
our expected approximate projection change strategy. Over-
all, both SMSVMAct and SMSVMRe are always of highest
performance, showing that our framework remarkably raises
the performance on both simulated and real-world data.

Conclusion
In this work, we proposed a new framework for multi-class
classification models incorporating probabilistic soft-label
information and a novel active learning strategy with effi-
cient approximation that: (1) can learn more efficiently and
from a smaller number of examples than existing methods,
(2) is of higher performance than models that rely on only
soft labels or active learning individually, and (3) can highly
reduce time consumption than active learning strategy that
requires retraining when adding new data instances.
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