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Abstract

We study multivariate conditional outlier detection, a special
type of the conditional outlier detection problem, where data
instances consist of continuous input (context) and binary
output (responses) vectors. We present a novel outlier detec-
tion framework that identifies abnormal input-output associ-
ations in data using a decomposable conditional probabilistic
model. Since the components of this model can vary in their
quality, we combine them with the help of weights reflect-
ing their reliability in assessment of outliers. We propose two
ways of calculating the component weights: global that relies
on all data and local that relies only on the instances simi-
lar to the target instance. Experimental results on data from
various domains demonstrate the ability of our framework to
successfully identify multivariate conditional outliers.

Introduction

Multivariate conditional outlier detection (MCOD) is an
outlier detection problem that analyzes instances in data
D = {x™, y(™1N_ where each instance consists of an
m-dimensional continuous input vector (context attributes)

.(n)

x(n) = (:v(ln), ..y Ty ) and a d-dimensional binary output

vector (responses attributes) y (™ = (yin)7 s y((i")). Its goal

is to precisely identify abnormal response patterns in Y
given context X; i.e., to detect the instances with unusual
input-output associations. MCOD fits well various practi-
cal outlier detection problems that require contextual under-
standing of data. For example, recent social media services
allow users to tag their content (e.g., online documents, pho-
tos, or videos) with keywords and thereby permit keyword-
based retrieval. These annotations sometimes include irrele-
vant tags (entered by mistake) that could be effectively pin-
pointed if the conditional relations between content and tags
are considered. Likewise, evidence-based expert decisions
(e.g., functional categorization of genes, medical diagnosis
and treatment decisions for patients) occasionally involve er-
rors that could lead to critical failures. Such erroneous deci-
sions would be adequately identified via contextual analysis
of evidence-decision pairs.

Despite its importance and usefulness, MCOD has re-
ceived much less attention in the literature than uncondi-
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tional outlier detection (Chandola, Banerjee, and Kumar
2009; Kriegel, Kroger, and Zimek 2010). Briefly, uncondi-
tional outliers are expressed in the joint space of all data
attributes and do not consider any context that may help to
differentiate the observed data and their unusualness. As a
result, the application of unconditional outlier methods to an
MCOD problem may lead to incorrect results. Take for ex-
ample the problem of identification of mistaken image tags
in a collection of annotated images. The application of un-
conditional outlier detection methods to the joint space of
both images and tags may return images with rare themes
instead of images with mistaken tags (false positives) due
to the scarcity of the themes in the dataset. Similarly, un-
usual annotations on images with frequent themes may not
be detected due to the abundance of the similar themes in
the dataset (false negative).

The MCOD problem is challenging because both the
contextual- and inter-dependences of data instances should
be taken into account when identifying outliers. We tackle
this by building a probabilistic model of P(Y|X). The
model is learned from all available data, hence summarizing
key dependences among data components and their strength.
Conditional outliers are then identified with the help of this
model: A conditional outlier corresponds to a data instance
that is assigned a low probability by the model. We note that
the meaning of ‘low probability’ should not be interpreted in
absolute terms, but relative to probabilities associated with
other outcomes. For example, the probability of 0.1 for a
binary outcome is low relative to its opposite outcome, 0.9.
However, if there are 10 possible outcomes and four of these
are assigned probability 0.02, 0.1 cannot be considered low.

To convert the above idea into a workable MCOD frame-
work, multiple issues need to be resolved. First, it is unclear
how the probabilistic model P(Y|X) should be represented
and parameterized. To address this issue, we use structured
probabilistic data models that provide an efficient represen-
tation of input-output relations by decomposing the model
into a product of univariate probabilistic components. Sec-
ond, the quality of the probabilistic models trained on finite
size data and inaccuracies in probability estimates may neg-
atively affect their outlier detection performance. To over-
come this, we propose new outlier scoring methods that
combine probability estimates with the help of weights, re-
flecting their reliability in assessment of outliers. In par-



ticular, we present two ways of calculating the component
weights: global that relies on all data, and local that relies
only on the instances similar to the target instance.

Conditional outliers in varied application contexts may
manifest themselves differently across the different output
dimensions — in some applications, outliers are manifested
in one or just a few output dimensions (e.g., mistaken image
tags or expert decisions); in others, abnormal output signals
may occur across many output dimensions simultaneously
(e.g., mass surveillance for disease outbreaks). We experi-
ment with our MCOD approach and demonstrate its useful-
ness across the different application contexts.

Our Approach!

Our approach works by analyzing data instances corre-
sponding to input-output pairs with a statistical model
representing the conditional joint distribution P(Y|X).
To build the model we first decompose the conditional
joint into a product of conditional univariate distributions
using the chain rule of probability: P(Y7,...,Yy|X) =
H?Il P(Y;|X, w(Y;)), where 7 (Y;) denotes the parents of
Yi; i.e., all the output variables preceding Y; (Read et al.
2009). That is, the decomposition lets us represent P(Y |X)
in terms of d univariate conditional factors, P(Y;|X, w(Y;)),
each factor representing one output dimension. Multiple
probabilistic models (e.g., logistic regression, naive Bayes,
or support vector machine with probabilistic output (Platt
1999)) can be used to represent these factors and learn
them from data. In this paper, we use a logistic regression
model to represent each of these factors. This choice of base
model allows us to effectively regularize and handle high-
dimensional feature spaces, defined by a mixture of contin-
uous and discrete variables (Ng 2004).

Once the model of P(Y|X) is learned from data, it can
be applied to estimate conditional probability for any data
instance <x,y >. Outliers are the instances that have a
low probability estimation P(y|x; M), where M denotes a
trained model. For computational convenience and to match
the definition of the outlier score (higher score implies
stronger outlier), we define our multivariate conditional out-
lier score as the negative logsum of d univariate probability
estimates, one per output dimension:

Scoremcop(y|x) = —log ﬁ(y\x;/\/l) (1
d

= Z —log P(y;|x, m(y:); M) 2
i=1

Decomposable Data Model with Circular Dependences
In theory, the decomposed conditional joint in the above
MCOD score (Equation 2) should be invariant regardless
of the chain order (order of Y;). Nevertheless, in prac-
tice, different chain orders produce different conditional
joint distributions as they draw in models learned from dif-
ferent data (Dembczynski, Cheng, and Hiillermeier 2010;

"Notation: For notational convenience, we will omit the index
superscript (") when it is not necessary. We may also omit variable
names when they are clear; e.g., P(Y1 =y1|X=x) = P(y1|x).
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Hong, Batal, and Hauskrecht 2015). For this reason, sev-
eral structure learning methods determining the optimal set
of parents have been proposed (Zhang and Zhang 2010;
Hong, Batal, and Hauskrecht 2015). However, such methods
require at least O(d?t,,,) of time, where t,,, denotes the time
of learning a base statistical model (e.g., logistic regression).
This may prohibit many MCOD applications whose output
dimensionality d is high.

We address the issue by relaxing the chain rule and by per-
mitting circular dependences among the output variables.
Specifically, we let 7(Y;), the parents of Y;, be all the re-
maining output variables and approximate Equation 2:

d
Z ~log P(yilx,y_i; M) (3

i=1

Scoremcop (y]x) ~

where y_; denotes the values of all other output variables
except y;. This approximation allows us to capture the in-
teractions among the output variables, as well as the input-
output relations, without expensive learning time. Although
the new conditioning set for each output dimension always
includes all other outputs, the outputs not contributing to the
prediction can be regularized out when learning the model
from data, and hence the complexity of the individual mod-
els can be controlled.

Outlier Scoring with Reliability Weights The above
MCOD score implicitly assumes that all our probability es-
timates and the models generating them are of high qual-
ity. However, in practice, the models that produce the prob-
ability estimates may not be all equally reliable as they are
trained from a finite number of samples (especially when the
number of input and output variables is high, and the sam-
ple size is small). Also, some dimensions of Y;|X, 7 (Y;)
may not fit well the base statistical assumption (which in
this work is a logistic curve) and result in miscalibrated es-
timations. Consequently, if we treat P(Y;|X, w(Y;)) for all
i = 1,...,d equally and merely search for the regions with
low probabilities, the resulting scores degenerate to a noisy
vector, which makes the detection of true irregularities hard.
To alleviate the issues, we propose to consider the relia-
bility of each estimated conditional probability and incorpo-
rate it into the outlier score. For notational convenience, let
p; denote a conditional probability estimate for a data point
<x,y> on output dimension 4, and let p = (p1,- -+ , pa)-
The MCOD score (either Equation 2 or 3) is rewritten as:

Z log pi

One way to incorporate the reliability of each probability
estimate and combine it with conditional probabilities is to
define a weighted score:

“4)

Scoremcop(y|x) =

Z w; log p;

where w; denotes the reliability weight of the model used to
score the i-th output dimension. Trivially, when w; = 1 for
alli=1, ..., d, the score becomes equivalent to Equation 4.

(&)

Scoremcoprw (y|x) =



Reliability Weights The Brier score (Brier 1950) measures
the quality of the model based on model’s probability out-
puts. It is defined as mean squared error between the pre-
dicted probabilities and observed outcomes. For our weight-
ing purpose (Equation 5), however, direct application of the
Brier score to the assessment of model quality would not be
appropriate as it imposes different penalties for different er-
rors and varies the distribution of errors (the mean squared
error penalizes larger errors more than smaller errors (Will-
mott and Matsuura 2005)). Therefore we compute the reli-
ability without squaring the error (i.e., mean estimation er-
ror), which lets us estimate the quality of each estimate di-
mension p; without distorting the distribution of errors. We
finally define the reliability weight w; by taking the inverse
of this reliability measure. More formally, let €™ = 1—p{™
be the estimation error in probability on the dimension ¢ for
the n-th data instance. The reliability weight w; (Equation
5) is defined as: w; = N/S°N_ €™ This effectively pri-
oritizes the components of the outlier score, such that the
contribution of outlier scores for more reliable partial mod-
els and their output dimensions increases, whereas that of
noisy (unreliable) models and their dimensions decreases.

Local Reliability Weights The above weighting scheme
assumes that the reliability of probability estimates (i.e.,
the quality of a model) is invariant across all data re-
gions. However, the assumption often does not hold because
in most practical problems, especially in high-dimensional
data spaces, data is not uniformly distributed in its at-
tribute space. As a result, modeling and estimation of
P(Y;|X, m(Y;)) cannot be achieved properly in the regions
where data are sparse. We tackle such a sparsity issue by
evaluating the reliability of each dimension of p("™) locally
in the region around the instance that we want to test:

d
Secoremcop-Lrw (p™) = — Z wl(”) log Pz('n) )
i=1

where w!™) = INK()]/ 2 e () ™ and Ni(n) denotes
k-nearest neighbors of the n-th instance in the input space.

Experiments

Through the empirical analysis below, we would like to
demonstrate the advantages of (1) adopting the conditional
outlier detection approach, (2) considering the dependence
relations among outputs, (3) applying reliability weights and
local reliability weights to outlier scores. Specifically, we
compare the performance of our proposed outlier scores
(MCOD, MCOD-RW, and MCOD-LRW; Equations 4-6),
computed with the models that permit circular dependences,
against two baseline methods:

e Local outlier factor (LOF) (Breunig et al. 2000) is one
of the most widely used unconditional outlier detection
method that identifies outliers using relative local densi-
ties. We apply LOF to the joint space of all data attributes.

e Conditional outlier detection with d independent models
(COD) solves the problem by considering d independent

178

Value Description

Dataset N/m/d Domain Input Output
Mediamill ~ 43,907/120/101 Video  Video frames Concepts
Yahoo 11,214/21,924/30 Text News articles Topics
Yeast 2,417/103/14 Biology Genes Functionalities
Birds 645/276/19 Sound Bird songs Species

Table 1: Dataset characteristics. (/N: number of instances,
m: input dimensionality, d: output dimensionality)

conditional probability models P(Y;|X) (hence, the de-
pendences among the output variables are not considered)
and by computing Equation 4 with these models.

To obtain data models in COD, MCOD, MCOD-RW, and
MCOD-LRW, we use Lo-penalized logistic regression as the
base statistical model and choose their regularization param-
eters by cross validation. In LOF and MCOD-LRW, we use
the Mahalanobis distance to find nearest neighbors and set
the number of neighbors k£ = 100.

Datasets We use four public datasets with multi-
dimensional input and output (Table 1).> These are col-
lected from various application domains, including seman-
tic video/image annotation (Mediamill), text categorization
(Yahoo), biology (Yeast), and sound recognition (Birds).

Simulating Outliers For the purpose of our comparative
evaluation, we simulate multivariate conditional outliers by
perturbing the output space of data. We take the follow-
ing steps to simulate outliers. (1) In each simulation, select
1% of instances uniformly at random. (2) For each of the
selected instances, perturb the values in {2.5,5,10,20}%
of the output dimensions uniformly at random (Youtier =
|yoriginal — 1|). The simulated outliers can be interpreted as
contextually abnormal (erroneous) output signals in each ap-
plication (see Table 1). For example, in Mediamill (video an-
notation), the outliers (perturbed output values) can be per-
ceived as video frames with inaccurate concept tags. One
important remark is that all methods (including both the
model learning and outlier scoring stages) are run on data
with simulated outliers. That is, we never learn a model
on the unperturbed original data and detect outliers on the
perturbed data. Such an experimental setting is impractical
since in real applications we do not a priori know what data
instances to remove to learn a model from outlier-free data.

Evaluation Metrics We evaluate the methods using the
Average Precision-Alert Rate (APAR). Precision at Alert
Rate » (P@r) measures precision at the top r-th percentile
of outlier score (Hauskrecht et al. 2016). We average P@r
over r = [0.00, 0.01], which coincides with the ratio of sim-
ulated outliers in our experiments. Note that, in many real
world applications, recall is considered no longer meaning-
ful metric, as it can be computed only when true outliers are
known as in our simulated study.

Results Table 2 shows the APAR of the five compared
methods. All results are obtained from ten repeats. The num-

Datasets are available at http://mulan.sourceforge.net/datasets-
mlc.html (Tsoumakas, Katakis, and Vlahavas 2010).



APAR Baselines Ours Baselines Ours
(0.00,0.01) LOF COD MCOD MCOD-RW  MCOD-LRW LOF COD MCOD MCOD-RW  MCOD-LRW
Outlier dimensionality = 2.5% Outlier dimensionality = 5.0%

Mediamill 0.14£0.16 0.I7+0.09 026 £0.17  0.61 £0.12 0.69 = 0.09 020 £0.17 0.06 £0.05 057+£0.14  0.85 £0.05 0.90 £+ 0.04
Yahoo 0.01 £0.02 0.134+0.06 021 +0.10 0.36 + 0.09 0.38 = 0.07 0.01 £0.03 0.25+0.08 043 +0.11  0.56 + 0.08 0.58 + 0.07
Yeast - - - - - 0.08 £0.07 0.04 +£0.06 0.45+0.12  0.65 + 0.06 0.65 + 0.05
Birds - - 0.04 £0.08 0.34 +0.22 039 +£0.25 045+0.21 0.46 + 0.22

Outlier dimensionality = 10.0% Outlier dimensionality = 20.0%

Mediamill 027 £0.16 0.92+0.03 091 £0.04 097 £0.03 0.98 = 0.03 030£0.12 0.99 £0.02 0.99 £0.0 1.00 £0.01 1.00 £ 0.00
Yahoo 0.01 £0.01 0.3240.10 042 +0.13 0.57 +0.06 0.57 = 0.07 0.01 £0.02 0.36 +0.13 0.25+0.09 0.39 +0.05 0.41 £ 0.04
Yeast 0.08 £0.07 0.04 &+ 0.06 045+0.11  0.64 £ 0.06 0.64 = 0.05 0.13+£0.09 0.17£0.11 0.52+£0.08 0.56 + 0.07 0.55 + 0.08
Birds 0.07£0.11 0.42 4+ 0.31 0.56 +=0.14 0.66 + 0.18 0.66 = 0.19 0.32+£0.22 0.67 £0.25 0.78 £0.19  0.85 +0.12 0.84 +0.13

Table 2: Average precision-alert rate (over alert rate = [0.00, 0.01]). Numbers shown in bold indicate the best results on each
experiment set (by paired t-test at « =0.05). Dashes (-) indicate the sets that we cannot create due to low-dimensional output.

bers shown in boldface indicate the best results (by paired t-
test at « = 0.05) on each experiment set. In general, APAR
increases as the outlier dimensionality gets larger, because
larger perturbations are easier to detect.

Comparing the conditional outlier detection approaches
(COD, MCOD, MCOD-RW, and MCOD-LRW) to the un-
conditional approach (LOF), the conditional approaches are
the clear winners. MCOD, MCOD-RW, and MCOD-LRW
always produce better APAR than LOF. Although COD
sometimes underperforms LOF (Mediamill and Yeast), more
frequently COD outperforms LOF. On the other hand, as ex-
pected, LOF hardly detects conditional outliers, because it
seeks unusual data patterns in the joint space of all attributes.

Between MCOD and COD, our MCOD method outper-
forms COD in most cases across all datasets. Recalling that
the key difference between two methods is in the type of data
model they adopt, this verifies the advantages of considering
the dependence relations among the output variables.

To validate our outlier scores with reliability weighting,
we compare the performance of MCOD-RW and MCOD-
LRW to that of MCOD. Recall that all three methods use
the same data representation, and the only difference is in
how they compute the outlier scores. The results show that
MCOD-RW and MCOD-LRW always improve APAR over
MCOD. We also point out that MCOD-RW and MCOD-
LRW are not only capable of improving APAR, but are also
able to make the performance more consistent (the standard
deviations often decrease after reliability weighting). Lastly,
although it is not statistically significant, our local approach,
MCOD-LRW, seems capable to further improve the perfor-
mance of MCOD-RW (see Mediamill and Yahoo).

Conclusions

We presented a probabilistic framework for the multivari-
ate conditional outlier detection (MCOD) problem that re-
lies on a decomposable model of conditional joint probabil-
ity, where data instances that are assigned a low probability
by the model are considered to be outliers. To efficiently ob-
tain data representations, we proposed to use a collection
of individually trained probabilistic functions with a relaxed
conditional independence assumption. To cope with poten-
tially different model qualities, we introduced new MCOD
scores that incorporate with our global and local reliability
weighting schemes. We presented experimental results on
real world datasets with simulated outliers that support our
proposed MCOD methods.
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