

Dynamic Action Selection in OpenAI Using Spiking Neural Networks

Chad Peters,1 Terrance Stewart,2 Robert West,3 Babak Esfandiari4

1,3,4 Carleton University, Ottawa ON, Canada
2 University of Waterloo, Waterloo ON, Canada

Abstract
Modelling biologically-plausible neural structures for intelli-
gent agents presents a unique challenge when operating in
real-time domains. Neurons in our brains have different re-
sponse properties, firing rates, and propagation lengths, cre-
ating noise that cannot be reliably decoded. This research ex-
plores the strengths and limitations of LIF spiking neuron en-
sembles for application in OpenAI virtual environments.
Topics discussed include how we represent arbitrary environ-
mental signals from multiple senses, choosing between
equally viable actions in a given scenario, and how one can
create a generic model that can learn and operate in a verity
of situations.

 Introduction
This paper describes research on modeling biologically-
plausible neural ensembles for action selection and initiation
in virtual environments, and viable approaches to the sup-
pression of competing impulses as one might find in our
own basal ganglia nuclei (Stewart, Choo, & Eliasmith,
2010) by constructing a biologically plausible agent to play
virtual games, such as Lunar Lander.

The main contributions of this research include the crea-
tion of a novel interface between the CTN1 Nengo simula-
tion environment and the OpenAI Gym API, an implemen-
tation of simulated annealing (a form of offline reinforce-
ment learning) to capture and encode each control/decision
system, and a world-first application of the Neural Engi-
neering Framework to the OpenAI research environment.

The first section discusses the background necessary to
understand and appreciate the Neural Engineering Frame-
work, as well as an overview of the OpenAI framework that
we used to test the neural models. Next, we present the re-
search questions that defined the test methodology, followed
by an overview of the test environment, approach to meas-
urement, and the results of each. Finally, we present our ob-
servations of both the successes and failures of this ap-
proach, lessons learned through the coupling of two very

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

different machine learning frameworks, and future research
that may add value to this domain.

Background
The research presented in this paper is an exploration of the
possibilities and challenges associated with coupling biolog-
ically-inspired neural architectures with real-time simula-
tion environments.

We realized that even though this approach was some-
what new for the Nengo community, development of an ex-
perimental approach and proper structuring of evaluation
should keep these potential challenges and limitations in
mind for future evaluation. After all, we wanted to know
how future agents built upon a similar foundation as our
minds may or may not perform as well as their optimized
counterparts (Jordan, Weidel, & Morrison, 2017), and if we
are truly fortunate, understand why. The following two sec-
tions provides a cursory review of the Nengo simulation en-
vironment, as well as an introduction to the OpenAI test
framework used by the Nengo simulator.

Neural Engineering Framework
The Neural Engineering Framework (NEF) originally pro-
posed by Eliasmith and Anderson (2003) provides a mecha-
nism for transforming high level functions (written in Py-
thon) into biologically-plausible spiking networks, based on
simulated Leaky Integrate-and-Fire (LIF) neurons. The NEF
provides a close approximation of the functions encoded in
the neural connections between neural clusters. This can be
thought of as analogous to how a compiler translates human-
readable code into machine code. This approach is useful to
implement biologically plausible functions in an intelligent
agent. However, it does not provide an explanation of how
these neural functions were generated in the first place.

Modeling biologically-plausible neural networks creates
a number of challenges, including heterogeneity, reliability,
non-linearity, and scaling (Eliasmith, 2007). First, the

1 Centre for Theoretical Neuroscience, University of Waterloo, Canada

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

318

neurons in our brains have different response properties and
many neurotransmitters, therefore we cannot use homoge-
neous neurons in our models; this may be contrasted with
networks using identical activation functions (such as ReLU
or Sigmoid functions) as one might find in a system such as
a Convolution Neural Network (CNN). Second, our brains
have a variety of synaptic responses, different firing rates,
and different propagation lengths. Third, spiking neurons
have different spikes (over time/voltage), with a Gaussian
distribution of synaptic firing based on Brownian Motion2;
thus, functions have non-linear properties. Last, our brains
have interconnected systems, with millions of neurons in en-
semble networks that are hard to model without reducing
entire clusters to a single function.

The NEF deals with these challenges through three fun-
damental design principles of representation, computa-
tion/transformation, and dynamical assumptions (Eliasmith,
2003). The first principle of Representation deals with how
information is represented in a neural network. For example,
neural spike trains are nonlinear encodings of vector spaces
that can be linearly decoded. The second principle of Trans-
formation allows for the possible alternate linear decodings
of those encodings such that they can compute arbitrary vec-
tor functions. This is the same as first principle, except in-
stead of getting a specific function back (like a velocity es-
timate), we can ask for a different computation (like the
square of the value provided). The third principle of Dynam-
ics combines elements of the first two, and assumes the neu-
ral representations (from 1) are control theoretic state varia-
bles in a nonlinear dynamical system (from 2); this is how
the NEF represents time-varying phenomenon.

OpenAI
The OpenAI research company3 has developed the open-
source Gym (Brockman et al., 2016) toolkit for community-
driven research in Reinforcement Learning, and provides a
standard interface for researchers to measure an agent’s abil-
ity to learn how to navigate a variety of environments. Gym
environments4 range from the extremely simple to highly
complex with graduating degrees of difficulty, and supports
both local and remote training and testing configurations.
Environments are also divided into a number of standard
classes depending on problem type, such as Algorithmic
(text processing problems), Classic Control (of agents in a
one-dimension plane), and Box2D (control of agents in a
two-dimension plane), and every environment provides a
standard interface for observation and action by the agent.
The Gym API supports Python 2.7 or 3.5, and allows re-
searchers to record and upload results to compare agent per-
formance.

2 The seemingly random drift of individual molecules over time.
3 https://openai.com/about/

Many virtual environments designed for testing intelli-
gent agents make certain assumptions around how the agent
will interface with that environment. The OpenAI frame-
work, in comparison, makes no assumptions about the agent
interface, and instead dictates a standard API by which
agents can interrogate, observe, and act on the environment;
the actual definition of the environment is left to each de-
signer, and does not assume the agent will read sprites from
a region of the screen.

Research Questions
The types of environments and tasks that we selected were
constrained by a set of relevant questions that may be an-
swered using the tools at hand. This exploration can be fac-
tored into the following questions:

1. How do we represent arbitrary environmental sig-
nals from multiple senses?

2. How do we choose between multiple and equally-
viable actions in a given scenario?

3. Can we create a generic architecture that can
learn and operate in a variety of situations?

The first question regarding arbitrary environment signals

is an important one; as real agents explore a new and some-
times unique environments, sensory data is received with no
prior information on how it should be represented.

Our second question regarding action selection presents a
unique challenge; as we will see, using spiking-neurons, and
more specifically the Leaky Integrate and Fire (LIF) variety
coupled with signal propagation delays as evidenced in the
human brain (Abbot, 1999), forces some measure of consid-
eration when training and testing such an agent.

The last question on generic architectures, is a reflection
of our desire to take a model that may work in a single en-
vironment or test suite, and judge a model’s generalizability
to previously unknown domains. We explored these ques-
tions through a coupling of Nengo neural ensembles capable
of observation and action, with a variety of games in Gym,
to see if we could find a reliable way of generating agents
capable of successfully playing different types of games.

Experimental Design and Development
This section discusses the practical application and integra-
tion between the Nengo framework and OpenAI. The nov-
elty of the application suggested an exploratory approach to
model design. In this section we review the lab environment
used for development, how a simulation can interface with

4 https://gym.openai.com/envs

319

Nengo, followed by ensemble learning, and finally an eval-
uation of the selected environments.

Lab Environment
Our test environment was developed in a Xubuntu 17.04 vir-
tual machine, running on a Windows 10 host with an Intel
Core i7 processor and 16GB of memory. This setup was
chosen since OpenAI is not officially supported in Win-
dows, and many of the online environments require different
Python packages best handled in a separate docker5 images
in Linux. We used Anaconda for Python package manage-
ment (v 3.5.3), and installed Nengo through the Python
Package Index and pip installer.

The Nengo Simulator
The simulation environment can be run from command line
or run locally inside of a browser-based GUI to provide di-
rect and dynamic access to various node/ensemble probes
and visualization tools for testing and debugging. This ap-
proach worked well, and only encountered performance is-
sues when dealing with more complicated environments.

Our test files relied on imported libraries from NumPy6 to
perform matrix multiplication between state-action maps,
and imported the supplied Gym wrappers so the entire Gym
environment passed to the Simulator could run inside a
Node object; this design permitted direct access for further
signal analysis and ensemble tuning without connecting ex-
tra Probe objects.

The Gym Environment
The Gym environment is supported in Python7 2 and 3,
works in both Linux and Windows (the first author has suc-
cessfully used Gym on both platforms), and provides a
standardized interface for each environment. A simple envi-
ronment is instantiated in a python script (as shown8 in Fig-
ure 1), and runs on the local machine of the Gym host.

Figure 1: Example Gym Script

The Gym framework uses a standard agent-environment

loop that steps through a new frame whenever the

5 Docker images are application images that include all required dependen-
cies independent of the host Operating System, and tend to run faster than
a separate virtual machine.
6 http://www.numpy.org/
7 At the time of this writing, Python 2.7 and 3.6 was used.

environment’s step function is called, and returns a vector
of four values:
Observation (object): the state of the environment, repre-

sented as an array of double values. These values can repre-
sent any number of features, from the position or angle of an
object, to a pixel on the screen. This representation is left up
to the environment creator.
Reward (float): the reinforcement value used for to learn

in order to maximize the utility of each action. This value
can take different ranges for the completion of each envi-
ronment, as well as signal major events, such as entering a
failed state, or achieving a checkpoint required for later suc-
cess.
Done (Boolean): returns true if the environment has fin-

ished one round, otherwise always false.
Info (dictionary): a key-value collection that provides ad-

ditional information about the state of the game. The
OpenAI Gym standards do not allow agents to use this in-
formation in order to gain an advantage; rather it can be used
by the researcher for development and debugging.

Problem Classes
The Gym platform divides the environments into problems
subtypes, depending on a number of factors such as the com-
plexity of the representation, the possible feature-action
space, and the increasing degree of overall difficulty to put
the agent into a “solved” state. Example problem classes in-
clude Search & Optimization for text-based board games,
Classic Control using a joystick or control pad, and Box2D
environments for more complex physical representations.

Action and Observation Spaces
The Gym API also defines the concept of a space9, that al-
lows the calling agent to briefly interrogate the allowable
actions for that environment, as well as the expected range
for each feature in an observation. For example, the Lunar
Lander environment will report a total of four allowable ac-
tions for each thruster, and the expected number range for
features that describe the position, angle, and velocity of
various dimensions. Feature spaces can be a standard unit
vector represented as [-1, +1], or an infinite boundary rep-
resented as [-inf, +inf].

The Gym test cases included problems from the Classic
Control and Box2D categories as previously described. The
Classical Control environments were Cartpole-v010, and
MountainCar-v011. The Box2D environment was Lu-
narLander-v212.

8 From https://gym.openai.com/docs/
9 https://github.com/openai/gym/blob/master/gym/core.py
10 https://gym.openai.com/envs/CartPole-v0
11 https://gym.openai.com/envs/MountainCar-v0
12 https://gym.openai.com/envs/LunarLander-v2

320

Learning Algorithm
Our first approach to function encoding was based on expert
knowledge for each domain; for each test case, we provided
a general heuristic to deal with typical PID13 control prob-
lems such as angle, velocity, momentum, and thrust. This
approach worked okay for the Classical Control domain,
however, was not a scalable solution for high-dimensional
vector spaces such as 2D Lunar Lander environment. We
tried to overcome this limitation using a PID controller sup-
plied by the OpenAI codebase, however the given mappings
did not translate well to signals based on spiking neurons.

Figure 2. Simulated Annealing14

Given the reward value provided by each environment

observation, we resorted to using a simulated annealing al-
gorithm to try to find closer approximation to state-action
mapping by both converging on the local minimum, as well
as a random reset to look for the global minimum. For ex-
ample (Figure 2), although the local optimal (left) has been
found (as with Hill Climbing), a random reset (middle) may
find an even better optimum (right). We ran each environ-
ment on a maximum of 10,000 epochs, settling the noise
every 20 steps, and resetting the base parameters every 200
steps. This approach to learning within the standard Nengo
simulation environment run inside the browser GUI would
have been time prohibitive, so we ran it in an offline (CLI)
simulation model without graphic rendering to find the de-
sired weights.

Cartpole Game Simulation
The cartpole game involves moving a cart back and forth to
prevent a pole from falling over. It is represented by a pole
on a cart (Fig. 3) and it accepts two inputs (left, right). The
game ends when the pole is greater than 15 degrees from the
vertical. This game is incredibly difficult when played with
manual controls since the player must always choose a di-
rection (no input is not an option).

13 A proportional-integral-derivative control motor control loop provides
self-correction by calculating the delta between current and desired angular
velocity, and compensates accordingly.

Figure 3. Nengo playing Cartpole

The Nengo model used two ensembles to represent the

stimulus and action controls. The stimulus ensemble used
500 neurons, and four dimensions to represent the environ-
ment; notice the spiking pattern (top right) as represented by
the sensor ensemble output. The controls ensemble used 500
Leaky Integrate-and-Fire (LIF) neurons and two dimensions
to represent the action space, with a direct neuron interface
to the control signal.

Mountain Car Game Simulation
The Mountain Car problem is represented by an underpow-
ered car trying to get out of a valley. The environment ac-
cepts three inputs (left, right, brake), and provides a reward
function based on the distance from the goal. This game is
fairly easy when played with manual controls, however, is
different from the previous Cartpole environment; it tests an
agent’s ability to learn that driving away from the goal is
advantageous for future success (delayed gratification) and
building the necessary momentum to escape before “run-
ning out of gas”.

The Nengo model used two ensembles to represent the
stimulus and action controls. Note the sensors here (Fig. 4,
top right) can be represented as a two-dimensional plane.
The stimulus ensemble used 500 LIF neurons, with two di-
mensions representing the momentum and distance from the
goal.

14Example from http://www.mathematik.tu-clausthal.de

321

Figure 4. Nengo playing MountainCar

The controls ensemble used 500 LIF neurons, with three

dimensions to represent the action space; output signals cor-
responded to left/right motor control, and braking to slow
down.

Lunar Lander Game Simulation
The Lunar Lander game involves a space vessel falling to-
wards a planetary surface, and requires the use of thruster
engines to safely land within a designated area. The envi-
ronment accepts four inputs (being left thruster, right
thruster, bottom booster, or no action), which represents an
observation through eight dimensions (vertical and horizon-
tal position, angular velocity and trajectory, and touchdown)
and provides a reward function based on how much fuel was
consumed in the process. This game is somewhat challeng-
ing when played with manual controls, and provides a scale
of difficulty since the starting situation is randomly gener-
ated, including the terrain profile, and lander trajectory. This
environment (Fig. 5) allowed us to test the agent’s ability to
land from a spectrum of spawn points; we also found this
aspect exposed a flaw in our training methodology as dis-
cussed later in this paper.

Figure 5. Nengo playing Lunar Lander

15 This type adds signals to track the voltage, refractory time, and adaptation
term for each neuron.

The stimulus ensemble used 2000 LIF neurons, with eight

dimensions representing various aspects of position, angle,
momentum, and distance from the point of origin. This en-
semble was also modified to use the LIFRate15 neuron type,
an increased unit vector radius from one to two, and to re-
duce the default synapse delay from 50 milliseconds to zero.
The controls ensemble used 500 LIF neurons, with four di-
mensions to represent the action space. The control signal
used a direct neuron interface to the environment, and was
modified to reduce the default synapse delay of 50 millisec-
onds to zero.

Observations and Results
Here we restate the original research questions, and attempt
to answer them using the results of the experiments de-
scribed, and observations around issues that could have been
avoided.

Question 1: How do we represent arbitrary environmental
signals from multiple senses?

Most of the OpenAI environments considered for this ex-
periment provide a definition for each vector that is bounded
by some upper and lower limit, however, this is not always
the case. Some elements returned an INF (infinite) value,
that makes normalization extremely difficult. In these cases,
we had to run a series of trials with pseudorandom seeds to
capture a sample distribution of each environment, and use
each dimension’s distribution to normalize the possible fea-
ture space into the standard unit vector. This approach may
be considered similar to how we are able to acclimate and
sensitize to a range of visual or haptic sensory input.

Assuming a model of the environment can be learned and
evaluated within a reasonable amount of time, Nengo can
instantiate and represent the observation and action space
supplied by OpenAI at runtime; however, this approach re-
quires bootstrapping. Learning a novel environment, on the
other hand, would require an online approach to sampling
the limits of each dimension such that the tuning curves used
to approximate the learned function relies on the environ-
ment to be acted upon.

The question of representation can be answered by a
proper sampling and understanding of the observation
space, creation of an ensemble that subsumes (or perhaps
grows) to handle the expected dimensionality, and regular
online learning to handle changing conditions.

322

Question 2: How do we choose between multiple and
equally-viable actions in a given scenario?

The Lunar Lander configuration required several modifi-
cations away from the default synaptic delay settings in or-
der to deal with issues of signal strength, and timing, or more
precisely, the lack of delay presented during offline training.
First, a default ensemble uses a standard unit vector to rep-
resent the non-linear function as a linearly activation. This
approach works as long as the observation vector represen-
tation is sampled and normalized ahead of learning a condi-
tioned response, and provides plausible support for our own
pre-processing of sensor inputs. Second, the problems asso-
ciated with time delay phenomenon can be caused from un-
realistically instantaneous feedback provided during the of-
fline learning process. The combination of integration and
spike propagation delay during online simulation (being
50ms for humans) was enough to severely impact agent per-
formance in higher order representations. We discovered
that this can be mitigated by artificially introducing the same
delay into offline simulation trials so the ensemble tuning
curves account for the time delay. This approach to mapping
the time-delay between offline learning and online simula-
tion introduces an interesting assumption; the physical lim-
itations imposed by synaptic delay is inherently overcome
through learning to operate within an internal model that is,
on average, 50ms behind reality!

The question of choice selection between multiple
equally-viable actions based on unknown sensory phenom-
enon, then, can be confirmed through a proper representa-
tion of the normalized signal strength, normalized signal
range, and accounting for time delay propagation during
both training and testing phases of an ensemble that uses
spiking neural networks.

Question 3: Can we create a generic architecture that can
learn and operate in a variety of situations?

The NEF, as earlier described, assumes a human-level un-
derstanding of the problem domain prior to approximating
the desired function. This can be achieved through either hu-
man-programmed heuristics, or through human-in-the-loop
reinforcement learning; something the Nengo library also
supports. Our first attempts at providing a transformation
function did not scale, and we had to resort to machine learn-
ing to brute force a viable function. Our representation of a
state-action space, albeit simplistic, worked well for small
environments limited to 32 possible weights, but what about
larger models?

Nengo provides a number of interesting learning meth-
ods, however, most of them rely on developing a heuristic
before online/offline learning of the transformation func-
tion. Answering our questions about generalizing a learned
Nengo ensemble to multiple OpenAI environments would

require both a mechanism to poll the environment for this
action space ahead of time, and a method to differentiate be-
tween goals, achievements, and rewards. Approaching an
arbitrary (and costly) environment would likely require a
construct to represent higher-order reasoning, and is beyond
the scope of the current paper.

Conclusions
Our original research questions were positioned to deal with
the common issues surrounding representation, goal-di-
rected action selection, and the creation of a learned model
without over- or under-fitting the observation, such that the
model can properly generalize to new yet similar problem
domains.

The Nengo suite is extremely powerful in customizability
and affording the user the ability to fine-tune almost every
aspect of large-scale models to fit many (sometimes oppos-
ing) neuro-theoretic assumptions.

Our results demonstrate that even biologically-plausible
models must make some assumptions about the operating
environment in order to normalize incoming signals and
produce an ensemble tuning curve capable of optimal action
selection. Smaller models are capable of replicating the re-
quirements for signal processing and action selection in
multi-dimensional environments, and point towards the ne-
cessity for higher-order representation to deal with the chal-
lenges of complexity imposed by operating in richer envi-
ronments, as humans are apt to do.

References
Abbott, L. F. 1999. Lapicque’s introduction of the integrate-and-
fire model neuron (1907). Brain Research Bulletin, 50(5–6), 303–
304.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schul-
man, J., Tang, J., & Zaremba, W. 2016. OpenAI Gym.
arXiv:1606.01540
Eliasmith, C. 2007. How to build a brain: From function to imple-
mentation. Synthese, 159(3), 373–388.
Eliasmith, C., & Anderson, C. H. 2003. Neural Engineering: Com-
putation Representation and Dyamics in Neurobiological Systems.
Cambridge, Mass. MIT Press.
Jordan, J., Weidel, P., & Morrison, A. 2017. Closing the loop be-
tween neural network simulators and the OpenAI Gym.
arXiv:1709.05650.
Stewart, T. C., Choo, X., & Eliasmith, C. 2010. Dynamic behav-
iour of a spiking model of action selection in the basal ganglia.
Proceedings of the 10th International Conference on Cognitive
Modeling, 235–240.
Stewart, T. C., & Eliasmith, C. 2014. Large-scale synthesis of
functional spiking neural circuits. Proceedings of the IEEE.

323

