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Abstract 
Modelling biologically-plausible neural structures for intelli-
gent agents presents a unique challenge when operating in 
real-time domains. Neurons in our brains have different re-
sponse properties, firing rates, and propagation lengths, cre-
ating noise that cannot be reliably decoded. This research ex-
plores the strengths and limitations of LIF spiking neuron en-
sembles for application in OpenAI virtual environments. 
Topics discussed include how we represent arbitrary environ-
mental signals from multiple senses, choosing between 
equally viable actions in a given scenario, and how one can 
create a generic model that can learn and operate in a verity 
of situations. 

 Introduction   
This paper describes research on modeling biologically-
plausible neural ensembles for action selection and initiation 
in virtual environments, and viable approaches to the sup-
pression of competing impulses as one might find in our 
own basal ganglia nuclei (Stewart, Choo, & Eliasmith, 
2010) by constructing a biologically plausible agent to play 
virtual games, such as Lunar Lander.  

The main contributions of this research include the crea-
tion of a novel interface between the CTN1 Nengo simula-
tion environment and the OpenAI Gym API, an implemen-
tation of simulated annealing (a form of offline reinforce-
ment learning) to capture and encode each control/decision 
system, and a world-first application of the Neural Engi-
neering Framework to the OpenAI research environment.  

The first section discusses the background necessary to 
understand and appreciate the Neural Engineering Frame-
work, as well as an overview of the OpenAI framework that 
we used to test the neural models. Next, we present the re-
search questions that defined the test methodology, followed 
by an overview of the test environment, approach to meas-
urement, and the results of each. Finally, we present our ob-
servations of both the successes and failures of this ap-
proach, lessons learned through the coupling of two very 
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different machine learning frameworks, and future research 
that may add value to this domain.  

Background 
The research presented in this paper is an exploration of the 
possibilities and challenges associated with coupling biolog-
ically-inspired neural architectures with real-time simula-
tion environments. 

We realized that even though this approach was some-
what new for the Nengo community, development of an ex-
perimental approach and proper structuring of evaluation 
should keep these potential challenges and limitations in 
mind for future evaluation. After all, we wanted to know 
how future agents built upon a similar foundation as our 
minds may or may not perform as well as their optimized 
counterparts (Jordan, Weidel, & Morrison, 2017), and if we 
are truly fortunate, understand why. The following two sec-
tions provides a cursory review of the Nengo simulation en-
vironment, as well as an introduction to the OpenAI test 
framework used by the Nengo simulator. 

Neural Engineering Framework  
The Neural Engineering Framework (NEF) originally pro-
posed by Eliasmith and Anderson (2003) provides a mecha-
nism for transforming high level functions (written in Py-
thon) into biologically-plausible spiking networks, based on 
simulated Leaky Integrate-and-Fire (LIF) neurons. The NEF 
provides a close approximation of the functions encoded in 
the neural connections between neural clusters. This can be 
thought of as analogous to how a compiler translates human-
readable code into machine code. This approach is useful to 
implement biologically plausible functions in an intelligent 
agent. However, it does not provide an explanation of how 
these neural functions were generated in the first place.  

Modeling biologically-plausible neural networks creates 
a number of challenges, including heterogeneity, reliability, 
non-linearity, and scaling (Eliasmith, 2007). First, the 
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neurons in our brains have different response properties and 
many neurotransmitters, therefore we cannot use homoge-
neous neurons in our models; this may be contrasted with 
networks using identical activation functions (such as ReLU 
or Sigmoid functions) as one might find in a system such as 
a Convolution Neural Network (CNN). Second, our brains 
have a variety of synaptic responses, different firing rates, 
and different propagation lengths. Third, spiking neurons 
have different spikes (over time/voltage), with a Gaussian 
distribution of synaptic firing based on Brownian Motion2; 
thus, functions have non-linear properties. Last, our brains 
have interconnected systems, with millions of neurons in en-
semble networks that are hard to model without reducing 
entire clusters to a single function. 

The NEF deals with these challenges through three fun-
damental design principles of representation, computa-
tion/transformation, and dynamical assumptions (Eliasmith, 
2003). The first principle of Representation deals with how 
information is represented in a neural network. For example, 
neural spike trains are nonlinear encodings of vector spaces 
that can be linearly decoded. The second principle of Trans-
formation allows for the possible alternate linear decodings 
of those encodings such that they can compute arbitrary vec-
tor functions. This is the same as first principle, except in-
stead of getting a specific function back (like a velocity es-
timate), we can ask for a different computation (like the 
square of the value provided). The third principle of Dynam-
ics combines elements of the first two, and assumes the neu-
ral representations (from 1) are control theoretic state varia-
bles in a nonlinear dynamical system (from 2); this is how 
the NEF represents time-varying phenomenon. 

OpenAI 
The OpenAI research company3 has developed the open-
source Gym (Brockman et al., 2016) toolkit for community-
driven research in Reinforcement Learning, and provides a 
standard interface for researchers to measure an agent’s abil-
ity to learn how to navigate a variety of environments. Gym 
environments4 range from the extremely simple to highly 
complex with graduating degrees of difficulty, and supports 
both local and remote training and testing configurations. 
Environments are also divided into a number of standard 
classes depending on problem type, such as Algorithmic 
(text processing problems), Classic Control (of agents in a 
one-dimension plane), and Box2D (control of agents in a 
two-dimension plane), and every environment provides a 
standard interface for observation and action by the agent. 
The Gym API supports Python 2.7 or 3.5, and allows re-
searchers to record and upload results to compare agent per-
formance. 
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Many virtual environments designed for testing intelli-
gent agents make certain assumptions around how the agent 
will interface with that environment. The OpenAI frame-
work, in comparison, makes no assumptions about the agent 
interface, and instead dictates a standard API by which 
agents can interrogate, observe, and act on the environment; 
the actual definition of the environment is left to each de-
signer, and does not assume the agent will read sprites from 
a region of the screen.  

Research Questions 
The types of environments and tasks that we selected were 
constrained by a set of relevant questions that may be an-
swered using the tools at hand. This exploration can be fac-
tored into the following questions: 
 

1. How do we represent arbitrary environmental sig-
nals from multiple senses? 

2. How do we choose between multiple and equally-
viable actions in a given scenario? 

3. Can we create a generic architecture that can 
learn and operate in a variety of situations? 

 
The first question regarding arbitrary environment signals 

is an important one; as real agents explore a new and some-
times unique environments, sensory data is received with no 
prior information on how it should be represented.  

Our second question regarding action selection presents a 
unique challenge; as we will see, using spiking-neurons, and 
more specifically the Leaky Integrate and Fire (LIF) variety 
coupled with signal propagation delays as evidenced in the 
human brain (Abbot, 1999), forces some measure of consid-
eration when training and testing such an agent.  

The last question on generic architectures, is a reflection 
of our desire to take a model that may work in a single en-
vironment or test suite, and judge a model’s generalizability 
to previously unknown domains. We explored these ques-
tions through a coupling of Nengo neural ensembles capable 
of observation and action, with a variety of games in Gym, 
to see if we could find a reliable way of generating agents 
capable of successfully playing different types of games.  

Experimental Design and Development 
This section discusses the practical application and integra-
tion between the Nengo framework and OpenAI. The nov-
elty of the application suggested an exploratory approach to 
model design. In this section we review the lab environment 
used for development, how a simulation can interface with 

4 https://gym.openai.com/envs 
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Nengo, followed by ensemble learning, and finally an eval-
uation of the selected environments.  

Lab Environment 
Our test environment was developed in a Xubuntu 17.04 vir-
tual machine, running on a Windows 10 host with an Intel 
Core i7 processor and 16GB of memory. This setup was 
chosen since OpenAI is not officially supported in Win-
dows, and many of the online environments require different 
Python packages best handled in a separate docker5 images 
in Linux. We used Anaconda for Python package manage-
ment (v 3.5.3), and installed Nengo through the Python 
Package Index and pip installer.  

The Nengo Simulator 
The simulation environment can be run from command line 
or run locally inside of a browser-based GUI to provide di-
rect and dynamic access to various node/ensemble probes 
and visualization tools for testing and debugging. This ap-
proach worked well, and only encountered performance is-
sues when dealing with more complicated environments.  

Our test files relied on imported libraries from NumPy6 to 
perform matrix multiplication between state-action maps, 
and imported the supplied Gym wrappers so the entire Gym 
environment passed to the Simulator could run inside a 
Node object; this design permitted direct access for further 
signal analysis and ensemble tuning without connecting ex-
tra Probe objects. 

The Gym Environment 
The Gym environment is supported in Python7 2 and 3, 
works in both Linux and Windows (the first author has suc-
cessfully used Gym on both platforms), and provides a 
standardized interface for each environment. A simple envi-
ronment is instantiated in a python script (as shown8 in Fig-
ure 1), and runs on the local machine of the Gym host.  
 

 
Figure 1: Example Gym Script 

 
The Gym framework uses a standard agent-environment 

loop that steps through a new frame whenever the 
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environment’s step function is called, and returns a vector 
of four values: 
Observation (object): the state of the environment, repre-

sented as an array of double values. These values can repre-
sent any number of features, from the position or angle of an 
object, to a pixel on the screen. This representation is left up 
to the environment creator. 
Reward (float): the reinforcement value used for to learn 

in order to maximize the utility of each action. This value 
can take different ranges for the completion of each envi-
ronment, as well as signal major events, such as entering a 
failed state, or achieving a checkpoint required for later suc-
cess. 
Done (Boolean): returns true if the environment has fin-

ished one round, otherwise always false. 
Info (dictionary): a key-value collection that provides ad-

ditional information about the state of the game. The 
OpenAI Gym standards do not allow agents to use this in-
formation in order to gain an advantage; rather it can be used 
by the researcher for development and debugging. 

Problem Classes 
The Gym platform divides the environments into problems 
subtypes, depending on a number of factors such as the com-
plexity of the representation, the possible feature-action 
space, and the increasing degree of overall difficulty to put 
the agent into a “solved” state. Example problem classes in-
clude Search & Optimization for text-based board games, 
Classic Control using a joystick or control pad, and Box2D 
environments for more complex physical representations.  

Action and Observation Spaces 
The Gym API also defines the concept of a space9, that al-
lows the calling agent to briefly interrogate the allowable 
actions for that environment, as well as the expected range 
for each feature in an observation. For example, the Lunar 
Lander environment will report a total of four allowable ac-
tions for each thruster, and the expected number range for 
features that describe the position, angle, and velocity of 
various dimensions. Feature spaces can be a standard unit 
vector represented as [-1, +1], or an infinite boundary rep-
resented as [-inf, +inf]. 

The Gym test cases included problems from the Classic 
Control and Box2D categories as previously described. The 
Classical Control environments were Cartpole-v010, and 
MountainCar-v011. The Box2D environment was Lu-
narLander-v212.  

8 From https://gym.openai.com/docs/ 
9 https://github.com/openai/gym/blob/master/gym/core.py 
10 https://gym.openai.com/envs/CartPole-v0 
11 https://gym.openai.com/envs/MountainCar-v0 
12 https://gym.openai.com/envs/LunarLander-v2 
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Learning Algorithm 
Our first approach to function encoding was based on expert 
knowledge for each domain; for each test case, we provided 
a general heuristic to deal with typical PID13 control prob-
lems such as angle, velocity, momentum, and thrust. This 
approach worked okay for the Classical Control domain, 
however, was not a scalable solution for high-dimensional 
vector spaces such as 2D Lunar Lander environment. We 
tried to overcome this limitation using a PID controller sup-
plied by the OpenAI codebase, however the given mappings 
did not translate well to signals based on spiking neurons.  
 

 
Figure 2. Simulated Annealing14 

 
Given the reward value provided by each environment 

observation, we resorted to using a simulated annealing al-
gorithm to try to find closer approximation to state-action 
mapping by both converging on the local minimum, as well 
as a random reset to look for the global minimum. For ex-
ample (Figure 2), although the local optimal (left) has been 
found (as with Hill Climbing), a random reset (middle) may 
find an even better optimum (right). We ran each environ-
ment on a maximum of 10,000 epochs, settling the noise 
every 20 steps, and resetting the base parameters every 200 
steps. This approach to learning within the standard Nengo 
simulation environment run inside the browser GUI would 
have been time prohibitive, so we ran it in an offline (CLI) 
simulation model without graphic rendering to find the de-
sired weights. 

Cartpole Game Simulation 
The cartpole game involves moving a cart back and forth to 
prevent a pole from falling over. It is represented by a pole 
on a cart (Fig. 3) and it accepts two inputs (left, right). The 
game ends when the pole is greater than 15 degrees from the 
vertical. This game is incredibly difficult when played with 
manual controls since the player must always choose a di-
rection (no input is not an option). 
 

                                                
13 A proportional-integral-derivative control motor control loop provides 
self-correction by calculating the delta between current and desired angular 
velocity, and compensates accordingly. 

 
Figure 3. Nengo playing Cartpole 

 
The Nengo model used two ensembles to represent the 

stimulus and action controls. The stimulus ensemble used 
500 neurons, and four dimensions to represent the environ-
ment; notice the spiking pattern (top right) as represented by 
the sensor ensemble output. The controls ensemble used 500 
Leaky Integrate-and-Fire (LIF) neurons and two dimensions 
to represent the action space, with a direct neuron interface 
to the control signal.  

Mountain Car Game Simulation 
The Mountain Car problem is represented by an underpow-
ered car trying to get out of a valley. The environment ac-
cepts three inputs (left, right, brake), and provides a reward 
function based on the distance from the goal. This game is 
fairly easy when played with manual controls, however, is 
different from the previous Cartpole environment; it tests an 
agent’s ability to learn that driving away from the goal is 
advantageous for future success (delayed gratification) and 
building the necessary momentum to escape before “run-
ning out of gas”.  

The Nengo model used two ensembles to represent the 
stimulus and action controls. Note the sensors here (Fig. 4, 
top right) can be represented as a two-dimensional plane. 
The stimulus ensemble used 500 LIF neurons, with two di-
mensions representing the momentum and distance from the 
goal.  
 

14Example from http://www.mathematik.tu-clausthal.de 
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Figure 4. Nengo playing MountainCar 

 
The controls ensemble used 500 LIF neurons, with three 

dimensions to represent the action space; output signals cor-
responded to left/right motor control, and braking to slow 
down.  

Lunar Lander Game Simulation 
The Lunar Lander game involves a space vessel falling to-
wards a planetary surface, and requires the use of thruster 
engines to safely land within a designated area. The envi-
ronment accepts four inputs (being left thruster, right 
thruster, bottom booster, or no action), which represents an 
observation through eight dimensions (vertical and horizon-
tal position, angular velocity and trajectory, and touchdown) 
and provides a reward function based on how much fuel was 
consumed in the process. This game is somewhat challeng-
ing when played with manual controls, and provides a scale 
of difficulty since the starting situation is randomly gener-
ated, including the terrain profile, and lander trajectory. This 
environment (Fig. 5) allowed us to test the agent’s ability to 
land from a spectrum of spawn points; we also found this 
aspect exposed a flaw in our training methodology as dis-
cussed later in this paper. 
 

 
Figure 5. Nengo playing Lunar Lander 

                                                
15 This type adds signals to track the voltage, refractory time, and adaptation 
term for each neuron. 

 
The stimulus ensemble used 2000 LIF neurons, with eight 

dimensions representing various aspects of position, angle, 
momentum, and distance from the point of origin. This en-
semble was also modified to use the LIFRate15 neuron type, 
an increased unit vector radius from one to two, and to re-
duce the default synapse delay from 50 milliseconds to zero. 
The controls ensemble used 500 LIF neurons, with four di-
mensions to represent the action space. The control signal 
used a direct neuron interface to the environment, and was 
modified to reduce the default synapse delay of 50 millisec-
onds to zero. 

Observations and Results 
Here we restate the original research questions, and attempt 
to answer them using the results of the experiments de-
scribed, and observations around issues that could have been 
avoided.  
 
Question 1: How do we represent arbitrary environmental 
signals from multiple senses? 
 

Most of the OpenAI environments considered for this ex-
periment provide a definition for each vector that is bounded 
by some upper and lower limit, however, this is not always 
the case. Some elements returned an INF (infinite) value, 
that makes normalization extremely difficult. In these cases, 
we had to run a series of trials with pseudorandom seeds to 
capture a sample distribution of each environment, and use 
each dimension’s distribution to normalize the possible fea-
ture space into the standard unit vector. This approach may 
be considered similar to how we are able to acclimate and 
sensitize to a range of visual or haptic sensory input. 

Assuming a model of the environment can be learned and 
evaluated within a reasonable amount of time, Nengo can 
instantiate and represent the observation and action space 
supplied by OpenAI at runtime; however, this approach re-
quires bootstrapping. Learning a novel environment, on the 
other hand, would require an online approach to sampling 
the limits of each dimension such that the tuning curves used 
to approximate the learned function relies on the environ-
ment to be acted upon. 

The question of representation can be answered by a 
proper sampling and understanding of the observation 
space, creation of an ensemble that subsumes (or perhaps 
grows) to handle the expected dimensionality, and regular 
online learning to handle changing conditions. 
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Question 2: How do we choose between multiple and 
equally-viable actions in a given scenario? 
 

The Lunar Lander configuration required several modifi-
cations away from the default synaptic delay settings in or-
der to deal with issues of signal strength, and timing, or more 
precisely, the lack of delay presented during offline training. 
First, a default ensemble uses a standard unit vector to rep-
resent the non-linear function as a linearly activation. This 
approach works as long as the observation vector represen-
tation is sampled and normalized ahead of learning a condi-
tioned response, and provides plausible support for our own 
pre-processing of sensor inputs. Second, the problems asso-
ciated with time delay phenomenon can be caused from un-
realistically instantaneous feedback provided during the of-
fline learning process. The combination of integration and 
spike propagation delay during online simulation (being 
50ms for humans) was enough to severely impact agent per-
formance in higher order representations. We discovered 
that this can be mitigated by artificially introducing the same 
delay into offline simulation trials so the ensemble tuning 
curves account for the time delay. This approach to mapping 
the time-delay between offline learning and online simula-
tion introduces an interesting assumption; the physical lim-
itations imposed by synaptic delay is inherently overcome 
through learning to operate within an internal model that is, 
on average, 50ms behind reality! 

The question of choice selection between multiple 
equally-viable actions based on unknown sensory phenom-
enon, then, can be confirmed through a proper representa-
tion of the normalized signal strength, normalized signal 
range, and accounting for time delay propagation during 
both training and testing phases of an ensemble that uses 
spiking neural networks. 
 
Question 3: Can we create a generic architecture that can 
learn and operate in a variety of situations? 
 

The NEF, as earlier described, assumes a human-level un-
derstanding of the problem domain prior to approximating 
the desired function. This can be achieved through either hu-
man-programmed heuristics, or through human-in-the-loop 
reinforcement learning; something the Nengo library also 
supports. Our first attempts at providing a transformation 
function did not scale, and we had to resort to machine learn-
ing to brute force a viable function.  Our representation of a 
state-action space, albeit simplistic, worked well for small 
environments limited to 32 possible weights, but what about 
larger models?  

Nengo provides a number of interesting learning meth-
ods, however, most of them rely on developing a heuristic 
before online/offline learning of the transformation func-
tion. Answering our questions about generalizing a learned 
Nengo ensemble to multiple OpenAI environments would 

require both a mechanism to poll the environment for this 
action space ahead of time, and a method to differentiate be-
tween goals, achievements, and rewards. Approaching an 
arbitrary (and costly) environment would likely require a 
construct to represent higher-order reasoning, and is beyond 
the scope of the current paper.  

Conclusions 
Our original research questions were positioned to deal with 
the common issues surrounding representation, goal-di-
rected action selection, and the creation of a learned model 
without over- or under-fitting the observation, such that the 
model can properly generalize to new yet similar problem 
domains.  

The Nengo suite is extremely powerful in customizability 
and affording the user the ability to fine-tune almost every 
aspect of large-scale models to fit many (sometimes oppos-
ing) neuro-theoretic assumptions.  

Our results demonstrate that even biologically-plausible 
models must make some assumptions about the operating 
environment in order to normalize incoming signals and 
produce an ensemble tuning curve capable of optimal action 
selection. Smaller models are capable of replicating the re-
quirements for signal processing and action selection in 
multi-dimensional environments, and point towards the ne-
cessity for higher-order representation to deal with the chal-
lenges of complexity imposed by operating in richer envi-
ronments, as humans are apt to do.  
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