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Abstract

This paper presents a method for developing case-based rea-
soning (CBR) application for discovering similar patients
with non-specific musculoskeletal disorders (MSDs) and
recommending treatment plans using previous experiences.
From a medical perspective, MSD is a complex disorder as
its cause is often bounded to a combination of physiological
and psychological factors. Likewise, the features describing
the condition and outcome measures vary throughout stud-
ies. However, healthcare professionals in the field work in an
experience-based way, therefore we chose CBR as the core
methodology for developing a decision support system for
physiotherapists which would assist them in the process of
their co-decision making and treatment planning. In this pa-
per, we focus on case representation and similarity model-
ing for the non-specific MSD patient data as well as we con-
ducted initial experiments on comparing patient profiles.

Introduction
The term “musculoskeletal disorder”1 (MSD) denotes health
problems of the human musculoskeletal system including all
forms of ill-health ranging from light, transitory disorders
to irreversible, disabling injuries. MSDs and their resulting
disability are common within the workforce worldwide, a
major cause of sickness absence and often leading to long-
term absence (Black 2012). MSDs are classified as specific
(having evident pathology, and symptoms), and non-specific
that are not attributable to a recognizable, known specific
pathology, also the symptoms tend to be diffuse and non-
anatomical. Symptoms generally involve pain, discomfort,
and numbness without evidence of discrete pathology.

The decision making for optimal interventions in primary
care for non-specific MSDs is challenging as there is of-
ten no specific cause for the patient’s condition (Malmgren-
Olsson and Armelius 2003).

Case-based reasoning (CBR) is a problem-solving
paradigm (Aamodt and Plaza 1994) in the field of artificial
intelligence (AI). It has an intrinsic commonality, the way
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1http://www.who.int/occupational health/publications/
oehmsd3.pdf

a physiotherapist suggests and adapts a treatment plan for a
new patient (Bach and Althoff 2012).

Co-decision making in our view is bringing together the
clinician’s view with the formal knowledge and the patient’s
view who needs to implement recommendations and incor-
porate them in their daily life.

We believe CBR being an easy-to-understand and ex-
plainable methodology is a promising basis for a co-decision
making tool. In this paper, we present an approach on how
to develop a CBR system for non-specific MSD patient data,
that would assist physiotherapists in their process of co-
decision making and treatment planning in primary care.
While we are focusing on non-specific MSD, we believe the
general concept is applicable to a broad range of diseases
and conditions.

Related Work
There has been steady interests in developing CBR sys-
tems for healthcare domain with many successful prototypes
throughout the years (Bichindaritz 2008; Bichindaritz and
Montani 2011). However, there are still challenges in bring-
ing the results of the research developments and applications
into practice (Begum et al. 2011). With the recent focus on
explainable AI, medical applications will certainly benefit
from this movement (Holzinger et al. 2017). CBR being
an explainable AI technique (Leake 1995; Roth-Berghofer
2004), can facilitate these efforts.

Furthermore, CBR provides the freedom of incremental
development and rapid prototyping thus being highly pre-
ferred in healthcare domain (Gonzalez, Lopez, and Blobel
2013), it also presents an approach for decision support mak-
ing based on patient’s electronic health records. The paper
(Karpov and Yudin 2010) presents a decision support sys-
tem based on CBR for providing information to physicians
while they attempt to diagnose and choose treatments.

In comparison with many CBR applications introduced
before, we present our work targeting clinical practice in
primary care such as the selfBACK project (Mork and
Bach 2018). Our approach has a similar application do-
main, musculoskeletal disorders. However, the selfBACK
focuses on patient-specific advice for non-specific low back
pain whereas, we focus on comparing patient profiles from

The Thirty-Second International Florida 
Artificial Intelligence Research Society Conference (FLAIRS-32)

359



a physiotherapist’s view, covering a broader range of disor-
ders. However, both projects share considerable similarities
in the case representation and similarity modeling.

Application Domain
The research presented is based on the FYSIOPRIM2 dataset
that captures data from patients treated by physiothera-
pists. The domain experts, closely involved in our research,
extracted non-specific MSD patients from FYSIOPRIM
dataset. This dataset additionally contains follow-up infor-
mation, and prescribed treatments that lead to a decrease in
pain, increase in functionality, or an improvement in the per-
ceived quality of life of a patient.

The dataset consists of 506 patient profiles. Each patient
profile is a collection of 286 features which include problem
description, questionnaire responses, treatment variables, re-
gion of pain, etc. The dataset is uniformly distributed over
four categories based on the region of pain: neck, shoulder,
back, and widespread (multiple pain regions). Further, the
feature set is also grouped into multiple categories such as
demographics, disability and function, pain variables, psy-
chological factors, treatments, and follow-ups among others.

Application Scenario: Co-decision Making
Figure 1 presents our application from a user’s perspective.
The primary use case is subdivided into multiple stages.
The first stage is data acquisition, where patients with non-
specific MSD capture their data through a tablet. This data
acquisition happens while the patient is waiting for the
first encounter with the physiotherapist. The second stage
is query, where captured patient data is sent as a query to the
CBR system. While the patient is waiting, the query results
will be queued for the physiotherapist to be viewed, when
the patient is with him/her. The third stage co-decision mak-
ing, where physiotherapist examines the patient and reviews
the queried result. The result contains treatment recommen-
dations and outcomes of similar patients. Subsequently, the
patient and the physiotherapist together create an informed
treatment goal, followed by a treatment plan.

The core focus of our research is on the second and third
stage in which the CBR system provides treatment recom-
mendations. The second stage is initiated by the patient fill-
ing out data that is sent as a query to a CBR system. As a re-
sult, the most similar patient profiles (symptoms, treatments,
and outcomes) will be available for the physiotherapist when
he/she meets the patient. The willingness of the patient is a
critical factor in deciding the treatment goal and treatment
planning which is part of co-decision making.

Once the treatment goal and treatments are finalized, the
patient is asked to visit the physiotherapist again after a de-
fined follow-up time period. The reported symptoms and
prescribed treatments, in the first encounter, are labeled as
baseline data. On follow-up encounters the patients need
to capture their follow-up data. These include few repeated
(from the baseline with an intention to record the respective
change), and few new questionnaires.

2https://www.med.uio.no/helsam/english/research/groups/
fysioprim/

Figure 1: The CBR system to assisting physiotherapist in
treatment planning for non-specific MSD patient.

Once the agreed treatment goal is achieved, the patient
profile will be preserved as a new case/experience. In con-
trary, if the treatment goal is not achieved, then the result of
the current query (baseline and follow-up data) would assist
physiotherapist to modify or create a new treatment goal or
treatment plan. This would be an iterative process.

The CBR system is build in the core of this process as a
learning system that captures new cases (experiences) and
are retained into the case base. Eventually, the recommen-
dations improve over the time with new experiences, which
might be missing in the initial case base. The CBR system
should be viewed as assistance for physiotherapists and not
as a replacement for their decision making. The system also
helps to educate the patients for the current challenges in
their treatment process and enables them to take informed
decisions.

The CBR System Definition
As the goal of our proposed system is to assist physiothera-
pist by recommending treatment plans, the problem descrip-
tion of a case must be the care-seeking patient and we use
a subset of the FYSIOPRIM variables to do so. The case
representation is based on the features selected by domain
experts.

In order to test how well the selected attributes differenti-
ate the dataset, we applied few clustering techniques such as
agglomerative clustering, k-Means, and latent class analysis
(Vermunt and Magidson 2002). As a result, we observed 6
to 10 different classes in the dataset.

Furthermore, when comparing the clusters to outcomes,
treatment plans, and other success factors, we could not see
an obvious relationship. Therefore, we believe that using
CBR will provide us with a dynamic system that would re-
turn the most similar cases for a new patient. In general, we
found that a preliminary data analysis such as clustering is
extremely helpful for understanding the dataset as well as
undermining the relevant features. Based on this knowledge,
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we started to implement the components of the CBR system
using the myCBR (Stahl and Roth-Berghofer 2008) tool.

The core of a CBR system consists of 3 parts: (I) vocabu-
lary (the knowledge representation in terms of the definition
of the domain and concept along with attribute names, value
ranges, data-types, etc.), (II) similarity measures (the func-
tions used for determining the sense of closeness between
two cases), and (III) case base (collection of cases in a CBR
system). We populate our case base with the cases derived
from our dataset and implemented the prototype using the
myCBR tool and its extension3 for easier prototyping.

Case Representation
A case is a tuple representation of a problem and its solu-
tion observed in the past. As the FYSIOPRIM dataset was
initially collected to gain insight and understanding of the
effectiveness of the treatment of MSDs, some of the features
are used for measuring the effect of the treatment, but do
not have an influence on the selection of the treatments. Fur-
ther, to measure an effect, questions have been repeated over
time and should (initially) not be included in the case repre-
sentation as this apriori information will not be available in
the first encounter. There are already evaluated measures to
combine questions to scores and therewith encode knowl-
edge. Thus, selecting the current case representation we fo-
cus only on information that is available at the time of the
first encounter, and relevant for the treatment.

We chose attribute-value representation for the case mod-
eling. The current cases only contains the problem descrip-
tion while the solution (treatments) is kept empty. As this is
an ongoing research, the relevant treatment information will
be consolidated once available.

Similarity Modeling
Our similarity model is based on the local-global principle
(Richter 1995). The local similarities are the attribute level
similarity functions that are modeled primarily based on
their data types. For example, nominal attributes such as sex,
marital status, etc. are modeled as tabular similarity func-
tion. For numeric attributes, we use the polynomial similar-
ity function. The degree of respective polynomial function is
determined by a data-driven approach, based on the distribu-
tion of its value in the case base as described in (Hüllermeier
and Schlegel 2011). Figure 2 shows an example similarity
function and its respective value distribution as a box plot,
as introduced in (Verma, Bach, and Mork 2018). The Inter
Quartile Range (IQR) is used as an indicator of the degree
for the polynomial similarity function. The degree is chosen
such that the similarity score for a distance more than the
IQR value approaches to zero, as shown in figure 2.

The global similarity function is the weighted sum of all
local similarity scores. The similarity function for our appli-
cation is shown in equation 1. Where sim(Q,C) describes
the global similarity function between a query Q and a case
C. For each attribute i a local similarity function is defined
as sim(q, c), where q is the attribute value of the query and
c is the respective attribute value of the case.

3https://github.com/ntnu-ai-lab/mycbr-rest

Figure 2: Polynomial similarity function of work ability,
based on its IQR. (Y-axis is for similarity scores and X-axis
is for distance between a query and case attribute value.)

sim(Q,C) =
1∑
wi

.
n∑

i=1

wi.simi(q, c) (1)

The amalgamation function is a weighted sum where w is
the weight of each attribute i. The result of the global simi-
larity function is a value in the range [0,1].

Experiments
We conducted experiments to test the developed CBR sys-
tem using the FYSIOPRIM dataset with the main goal to
showcase that the developed case representation and simi-
larity measures are able to distinguish semantically similar
cases.

We use a Leave-one-out cross-validation with 20 queries
to the case base. These queries are grouped in 4 subsets rep-
resenting the different pain sites in the FYSIOPRIM dataset.
The query cases have been provided by domain experts and
represent characteristic profiles that the CBR system should
be able to distinguish. The execution of a query against the
CBR system is facilitated via RestAPI calls. As a result we
retrieve the ten most similar cases ranked by similarity. For
each of the four subsets we then compute the mean similar-
ity score per rank.

Figure 3: Mean similarity score versus k most similar
cases from the case base. q back, q neck, q shoulder, and
q widespread are query subsets selected by domain experts
based on pain sites.
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Figure 3 presents the retrieval results with the mean sim-
ilarity scores for a query with respect to the k most similar
cases. As it is shown in the figure, the highest mean simi-
larity score ranges between 0.77 and 0.84 with widespread
pain having higher similarity scores than the others. Overall
the decline of similarity follows the same trend for all four
subsets.

Discussion
The retrieved similar patients were found to be deemed
ground-truth relevant by the domain experts. Additionally,
the decrease in mean similarity scores, shown in figure 3,
with increasing number of retrieved patients demonstrates
that the similarity measure distinguishes similar patients
well.

The result shows that the CBR system is able to discover
relevant similar patients from the case base, based on the se-
lected attributes, case representation, and modeled similarity
measures. However, we have also seen in discussion with
domain experts that the features used to evaluate whether a
patient was relevant varies.

Currently we hold all the cases in the same case base
and have only one global similarity measure for the distinc-
tion. As the pain site clearly distinguishes the treatment sug-
gested, the CBR system might perform better with multiple
case bases. We believe that with the availability of correct
and relevant solutions (treatments) the performance of the
CBR system could be improved and evaluated objectively.

Overall we have seen that the features provided in the FY-
SIOPRIM dataset are sufficient to develop a CBR system
and the data-driven approach for creating local similarity
measures is suitable for the application domain at hand.

Conclusion and Future Work
This paper presents the initial implementation of a CBR sys-
tem for investigating co-decision making in primary care.
Our application domain MSD shows the complexity of the
domain and hence provides challenges for a decision support
system.

In this paper, we have focused on the incremental and iter-
ative development of the CBR system. We have presented an
approach of case representation and similarity modeling for
non-specific MSD dataset. To conclude, our developed sys-
tem was able to discover the relevant similar patient profiles
for a queried patient data.

In future work we aim at refining the CBR system and
evaluating the approach with clinicians where the main chal-
lenge will be to include explanations and treatment varia-
tions that allow co-decision making using CBR.
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specific musculoskeletal disorders in patients in primary
care: subgroups with different outcome patterns. Physio-
therapy Theory and Practice 19(3):161–173.
Mork, P. J., and Bach, K. 2018. A decision support system
to enhance self-management of low back pain: Protocol for
the selfback project. JMIR Res Protoc 7(7):e167.
Richter, M. M. 1995. The knowledge contained in similarity
measures. In Proceedings of the 1st International Confer-
ence on Case-Based Reasoning, Lecture Notes in Computer
Science. Springer.
Roth-Berghofer, T. R. 2004. Explanations and case-based
reasoning: Foundational issues. In Advances in Case-Based
Reasoning, 389–403. Berlin: Springer Berlin Heidelberg.
Stahl, A., and Roth-Berghofer, T. R. 2008. Rapid prototyp-
ing of cbr applications with the open source tool mycbr. In
Proceedings of the 9th European conference on Advances in
Case-Based Reasoning, 615–629. Springer-Verlag.
Verma, D.; Bach, K.; and Mork, P. J. 2018. Modelling sim-
ilarity for comparing physical activity profiles-a data-driven
approach. In International Conference on Case-Based Rea-
soning, 415–430. Springer.
Vermunt, J. K., and Magidson, J. 2002. Latent class cluster
analysis. Applied latent class analysis 11:89–106.

362




