The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Improving Costs and Robustness of Machine Learning Classifiers Against
Adversarial Attacks via Self Play of Repeated Bayesian Games

Prithviraj Dasgupta, Joseph B. Collins, Michael McCarrick
U. S. Naval Research Laboratory, Washington D.C.
{raj.dasgupta, joseph.collins, michael.mccarrick } @nrl.navy.mil

Abstract

We consider the problem of adversarial machine learning
where an adversary performs evasion attacks on a classifier-
based learner by sending queries with adversarial data of dif-
ferent attack strengths to it. The learner is unaware whether
a query sent to it is clean versus adversarial. The objective
of the learner is to mitigate the adversary’s attacks by reduc-
ing its classification errors of adversarial data. To address this
problem, we propose a technique where the learner main-
tains multiple classifiers that are trained with clean as well
as adversarial data of different attack strengths. We then de-
scribe a game theoretic framework based on a 2-player re-
peated Bayesian game called Repeated Bayesian Sequential
Game with self play, that enables the learner to determine
an appropriate classifier to deploy so that the likelihood of
correctly classifying the query and preventing the evasion at-
tack is not deteriorated, while reducing the costs to deploy
the classifiers. Experimental results of our proposed approach
with adversarial text data shows that our RBSG with self
play-based technique maintains classifier accuracies compa-
rable with that of an individual, powerful and costly classifier,
while strategically using multiple, lower cost but less power-
ful classifiers to reduce the overall classification costs.

Introduction

Adversarial machine learning (Vorobeychik and Kantar-
cioglu 2018) is an important problem in machine learning
based prediction systems such as email spam filters, online
recommender systems, text classifier and sentiment analysis
techniques used on social media, and, automatic video and
image classifiers. The main problem in adversarial learning
is to prevent an adversary from bypassing an ML-based pre-
dictive model such as a classifier by sending engineered, ma-
licious data instances called adversarial examples. These at-
tacks, called evasion attacks, could enable a malicious ad-
versary to subvert the learner’s ML model and possibly get
access to critical resources being protected by the learner.
Researchers have proposed techniques including adversar-
ial training (Yuan et al. 2019) and game theory based tech-
niques (Dasgupta and Collins 2019) to address the prob-
lem of adversarial learning. These techniques employ an

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

33

approach called classifier hardening on a single classifier
where the decision boundary of the classifier is refined over
time via re-training with adversarial data. However, improv-
ing the robustness of single classifier hardening techniques
is an open problem and these techniques are still been known
to be susceptible to adversarial attacks (Madry et al. 2017).
Moreover, classifier hardening techniques do not explicitly
align costs to harden the classifier (e.g., costs to acquire ad-
versarial training data, time and costs to recruit human ex-
perts for validating training and test data, and computational
time and costs to retrain the classifier with adversarial data)
with the data being classified. For instance, for classifying
clean data, a classifier hardened over several batches of ad-
versarial data might be excessive, as a classifier that is not
hardened might achieve similar performance. In this paper,
we posit that the costs of a classifier-based ML model to ad-
versarial attacks can be improved without deteriorating clas-
sification accuracy, if instead of using a single classifier, we
use multiple classifiers that are hardened separately against
attacks of different strengths. Our idea is based on the well-
known result of Wolpert’s theorem (Wolpert 2002) that there
is not a single classifier which can be optimal for all classi-
fication tasks and multiple, combined classifiers could out-
perform the best individual classifier. The main challenge
with using multiple classifiers is to determine the appropri-
ate pairing between a query sent to the classifier, with either
clean or adversarial data of different attacks strengths, and a
commensurate classifier from the collection of classifiers to
handle the query most effectively, e.g., with least likelihood
of classification errors and while aligning classifier harden-
ing costs with the query’s attack strength. A further wrinkle
to the problem is that the classifier is not aware whether the
query is with clean data from a legitimate client versus with
adversarial data from an attacker. To address this problem,
we propose a game theoretic framework called a Repeated
Bayesian Sequential Game with self play between a learner
and an adversary. The outcome of the game strategically se-
lects an appropriate classifier for the learner. Our proposed
formulation enables us to realize several practical aspects
of learner-attacker interactions including uncertainty of the
learner about the strengths of different attacks, costs to the
learner and attacker to train the classifier and generate ad-

versarial examples respectively, rewards and penalties to at-
tacker and learner for successes in their attacks and defenses
respectively. Finally, a Bayesian game based representation
enables our approach to handle asymmetric interactions be-
tween the learner and its clients for both non-competitive
(legitimate clients, clean queries) and competitive (attack-
ers, adversarial queries) settings. To the best of our knowl-
edge, our work is one of the first attempts at using multi-
ple classifiers deployed strategically to tackle the adversar-
ial learning problem. We have validated our approach within
a learner-adversary setting where the adversary generates
queries with both clean and adversarial text data with differ-
ent attack strengths while the learner’s classifiers use deep
network models for classification. Our results show that the
learner can successfully converge to the distribution of dif-
ferent attacks types of the adversary and can strategically
select different classifiers to reduce the overall classification
cost without deteriorating the classification accuracy.

Related Work

Early work in adversarial learning modeled the interaction
between the learner and adversary as a competitive, 2-player
game (Dalvi et al. 2004) (Globerson and Roweis 2006).
Subsequently, researchers extended the adversarial learning
game using different formalisation including a sequential
game (Briickner, Kanzow, and Scheffer 2012), a Bayesian
game (Grosshans et al. 2013) where the learner has incom-
plete information about the attacker’s strategy, a bi-level
optimization problem (Mei and Zhu 2015) (Alfeld, Zhu,
and Barford 2017), and randomization over strategies of the
learner and the adversary (Bulo et al. 2017). In most of
these techniques, the learner’s strategy at each instance of
the game is to adjust its model parameters. While that might
be practical for smaller models with few parameters, as the
model size increases, e.g., for a deep network with thousands
of parameters, the strategy might become infeasible to real-
ize in practice. In contrast, in our work, we use the strategy
output of the game to select an appropriate classifier for the
learner from an existing, pre-trained set of classifiers.

With the popularity of deep neural networks as ML mod-
els, several adversarial learning techniques based on ad-
versarial training for deep networks have also been re-
searched (Goodfellow, Shlens, and Szegedy 2014) (Kurakin,
Goodfellow, and Bengio 2016). In adversarial training, the
learner’s ML model is trained with both clean and adversar-
ial data to improve its capability to correctly classify adver-
sarial data. Unlike game theory representations, adversarial
training techniques do not explicitly model costs, penalties
and rewards for learner and attacker. Most of these tech-
niques use adversarial training to harden a single classi-
fier. In contrast, instead of hardening one classifier, in our
work, the learner maintains multiple classifiers with differ-
ent degrees of hardening and strategically deploys one of
them. Generative Adversarial Nets (GANs) (Goodfellow et
al. 2014) also model interaction between an adversary (gen-
erator) and learner (discriminator) as a 2-player game. How-
ever, the objectives of GANs and adversarial learning are
different. GANs enable an adversary to refine its data gen-
eration process, starting from a random distribution, so that

34

the generated data is indistinguishable from legitimate data.
Adversarial learning, on the other hand, aims to enable the
learner to strategically defend against adversarial attacks.

Adversarial Learning as Bayesian Game

We consider a supervised learning setting for binary classi-
fication where learner, £, receives data instances as queries
from an attacker or adversary, 4. We represent this inter-
action between £ and A as a 2-player Bayesian game for
adversarial learning (Grosshans et al. 2013) while adapt-
ing GroBhans’ model to multiple classifiers, different attack
strengths and repeated interactions between £ and A. We
describe the different components of the game below:

Let X denote a set of queries. We refer to X" as the
clean query set. Let X = (x,y), X € X denote a query
data instance, where x = {x1,x2,...} is its set of attributes
or features and y € {0, 1} is its ground truth label.

Adversary. A sends either clean or adversarial data as
queries; the latter is generated by perturbing clean data using
a perturbation function ¢ : x — x. We assume that A uses
different perturbation functions 6, ¢ = 0,1, 2, ..., where 4
denotes the strength of the perturbation. For example, per-
turbation strength could correspond to the number of fea-
tures of x that are modified to convert it into an adversarial
instance (Globerson and Roweis 2006). ¢;(x) denotes the
adversarial data generated with perturbation strength ¢ and
0;+1 1s a stronger perturbation than ¢;. Perturbing x does not
change its ground truth label, y. For notational convenience,
we refer to clean data, x = do(x). An action for A is to se-
lect a d;, use it to convert clean instance x into adversarial
instance 0;(x), and send the adversarial instance to L.

Learner. L receives a query data instance X and its task
is to correctly predict its category. £ is neither aware of
the perturbation strength i of 0;(x) inside the data, nor is
it aware of g, the ground truth label of X. £ uses a set of
classifiers, L;, 7 = 0,1, 2... for its prediction task. L; im-
plements a classification, L; : x — {0,1}, that outputs a
category given the features of the query data. Classifier L;
is adversarially trained using training data X*™% ¢ X®v,
where 0; denotes the perturbation strength of the training
data. We assume that L; is a stronger classifier than L;:
for a query x, L ;4 has a higher confidence in its output than
Lj, or, mathematcally, P(L;,1(x) = y) > P(L;(x) = y).
An action for £ is to select a classifier L; and use it to clas-
sify the data instance sent by A. We denote the action set
of £ as Acy = {Lo, L1, La...}. Let TI(Ac,) be the set of
probability distributions over Ac,. s, € II(Ac,) denotes
a strategy for £ and s, (L;)the probability of selecting L;
under strategy s.. Finally, recall that £ is not aware of the
perturbation ¢; that has been used by A on the query data
instance, X that it receives. To model this uncertainty about
its opponent, £ uses epistemic types for A (Harsanyi 1967).
A’s type 0; denotes that A uses perturbation strength i to
create X, i.e., X = Xp, = 0;(x). O 4 = {6;} is A’s set of
typesand p : © 4 — [0, 1]/l denotes a probability distribu-
tion over these types. © 4 is known to £, p() is calculated by
L. But 6;, the exact realization of A’s type (in other words,
the perturbation strength used to create X) is not known to £

when it receives X from A.

Utilities. Utilities are numeric values assigned by each
player to the outcomes from the players’ joint actions in a
game. Each player could then preferentially rank its joint
outcomes and select a suitable action such as a utility maxi-
mizing action. For our game, recall that £ is not able to ob-
serve A’s type 6; (amount of perturbation in X). Therefore,
L calculates an expected utility over A’s possible types, © 4,
using A’s type distribution p(). £L’s expected utility for strat-
egy s, with query data X and ground truth label ¥ is given
by:

EUg(Sﬁ,)_(,H_A,p()): Z p<9i)U£(Lj’i70i)7

0,€0 4
U ZSL (

Lij((%) = 9)l0i)v. (L, 0:)

—er,)s (D

where P((L;(X) = 7)|0;) is the probability that £
makes a correct prediction given X was generated using 6;,
vz (Lj, 6;) is the value for £ from classifying X using L; and
cr; is the cost of using classifier L;.

In adversarial settings, it is usually assumed that the ad-
versary is aware of the learner’s prediction model, e.g.,
model parameters of the learner’s classifier (Alfeld, Zhu, and
Barford 2017). In the context of our game, this can be inter-
preted as A knowing L’s strategy, s.. A’s utility for query
data X with ground truth label g, for £’s strategy s, and its
own type 6; is given by:

Ua(se,%.6) ZsL) (PL;(R) # 9o, (L, 60)
—a), @
where P(L;(X) # y) represents the probability that £

makes a mlstake in prediction (in other words, .A’s adversar-
ial perturbation of clean data was successful) and v.4(L;, 6;)
is the value that A derives from sending the query data xy,
when L’s action is L; and ¢y, is A’s cost for generating ad-
versarial data with type (perturbation strength) 6;.

Bayesian Sequential Game. Using the above actions and
utility functions, we can represent a Bayesian sequential
game between £ and A as T’ = [N, Ac, U, © 4, p()], where
N = {L, A} is the set of players, Ac = Ac, x O 4 is the set
of joint action-types of £ and A, U = (EU,, U 4) denotes
the utilities received by £ and A (given in Eqns. 1 and 2),
O 4 and p() are the set of A’s types and probability distribu-
tion over those types, as defined before.

The computational problem facing £ and A is to calcu-
late a suitable strategy s7- and suitable type 0 respectively.
To do this calculation using Eqn. 1, £ also needs to know
the value of p(), the probability distribution over .A’s types.
To address these issues, we propose an approach using a
technique called self play with repeated plays of the above
Bayesian Sequential game called a Repeated Bayesian Se-
quential Game (RBSG), as described below.

35

Repeated Bayesian Sequential Game and Self-Play

The objective of L is to determine a suitable strategy s} to
play against A that would improve its expected utility by
deploying an appropriate classifier that has been hardened
commensurate to the strength of the perturbation used by .A.
To achieve this, £ uses self play, where £ and A play the
Bayesian Sequential game, I', repeatedly. The repeated in-
teractions between £ and A can be represented as a game
tree with sequential moves between them. A node in the
game tree denotes a player’s turn to make a move. In a move,
a player selects an action from its action set. £ and .4 make
alternate moves with £ moving first. A pair of moves by £
and A corresponds to an instance of the Bayesian Sequential
game, [, realized as below.

Algorithm 1: game-play()

1 Select s} using current belief of p, and 0; (Eqn. 3 or
4)

2 Calculate utils. recd.: i, and 14 with observed
values of s7. and 67 resp. (using Eqns. 1 and 2)

3 return (tg,)

Game Play. As shown in Algo. 1, £’s moves by select-
ing a strategy s7.. A then selects type (perturbation strength)
0F ~ p() while observing s%. With the selected 6, A then
generates ¢ adversarial queries by perturbing ¢ clean data
instances from XV, and sends each adversarial query, X, to
L. After L processes the queries, both £ and A receive utili-
ties given by Eqns. 1 and 2 respectively. The problem facing
L is to calculate s7. without observing 6 and p() from A’s
moves. We solve this problem using a modified Monte Carlo
Tree Search (MCTS) algorithm, as described below.

Calculating strategy s7. To calculate s}, £ generates
different paths in the game tree to discover utilities re-
ceived from different sequences of moves. To systemati-
cally explore the game tree, £ uses an MCTS-like algo-
rithm (Browne et al. 2012), called TreeTraverse. shown in
Algos. 2 and 3. TreeTraverse works by generating a se-
quences of moves or game plays corresponding to a path in
the game tree up to a finite cutoff depth h. £ and A’s utilities
from their moves are recorded along the path and once the
bottommost level is reached, the utilities are updated along
the path upwards toward the root. In this way, moves that
could lead to high utility can be identified by each player.

The key aspects of MCTS are to balance exploration and
exploitation while traversing the game tree by using a heuris-
tic function called selectBestChild (Algo. 2, line 4), and, do-
ing an operation called rollout to rapidly traverse unexplored
parts of the game tree by selecting actions for each player up
to the game tree’s cutoff depth i (Algo. 3). In our TreeTra-
verse algorithm, we have used two heuristic functions for
selectBestChild, as described below:

Bayes Nash Equilibrium (BNE). In BNE, each player
selects a best reponse strategy that maximizes its utili-
ties, given the possible strategies of its opponent (Harsanyi
1967). The strategies for £ and A calculated using BNE are

given by:
EU,C(S[n)_(7 @A7p())7

max

*
Sp = arg
£ SgGH(ACL)

3

where u 4 is given by Eqn. 2 and EU is given by Eqn. 1
with A’s actual type distribution p(6;) replaced by L’s belief
distribution p(6;).

Upper Confidence Bound (UCB). UCB is a bandit-based
technique (Browne et al. 2012) that weighs the expected util-
ity of a move with the number of times it has been visited,
so that previously unexplored or less-explored actions at a
move are also tried. UCB uses the following equation to cal-
culate s} and ;'

0F =arg max Uy(s},X,0;
4 99166,4 .A(L2 z)a

21n Pary; gt
Lj visit
ZuPerut) @)

Here, C'is a constant, Par,;s;; is the number of times the
parent node of the current node was visited and L ,s:+ and
0;.visit are the number of times the current node has been
visited for £ and A respectively.

sy =arg maxp(r ;) Zo,; (p(ei) Yrex Ur(L;,%,0,)+C

0f =argmaxg, X1, <z’_(€)—(SE(LjUA(Lj,%,0,)+C

Algorithm 2: TreeTraverse(v)

Input: v: start node for traversal
Output: v,,,;: value from tree traversal (via
backtracking) starting from v up to depth h
1 if vgepty, = h then
2 | return

3 else if v is fully expanded then

4 Cyal < TreeTraverse(selectBestChild(v)) // go
down game tree along best action (Eqns. 3 or 4)
5 Update vyq; ¢ Uyal + Cpqls INCrEMENt vy;q¢

6 return ¢, q;

else if v is visited but not expanded then

7
8 ¢ + generated AllChildren(v) // all actions
9 ¢ < select random child (action) from ¢
10 Cyal < rollout(c)

11 Update vy, ¢ Uyal + Cpal, iNCrement vy, and

Cuisit

12 return Cyq;

13 else if v is not visited then

14 Vyal $— rollout(v)

15 Increment vyt

16 return vyq)

Updating belief of A’s type distribution. The TreeTra-
verse algorithm explores a sequence of moves along any sin-
gle path from the root of the game tree up to the cutoff depth
h. We call this a trial for the RBSG. To update its belief dis-
tribution p, £ uses multiple trials and, at the end of each trial,
L uses an update strategy to update p(). We consider two
probability update strategies that can be used by L (Algo. 4,
line 4) for updating P, 1) Fictitious Play (FP): In ficti-
tious play (Shoham and Leyton-Brown 2009), the probabil-
ity of type 6; is the fraction of times it was played following

36

Algorithm 3: Rollout(v)

Input: v: start node for rollout

Output: v,,;: value from rollout (via backtracking)
starting from v up to depth h

1 if v is terminal then

2 Ur, Uy < game-play()

3 return (G, U.a)

4

5

else

¢ < select child of v prop. to u, (for £L’s move)
or prop. to p() (for A’s move)

Cypal < rollout(c)

return c,q;

N &

action L, as given by the following update rule:

No. of times 0; selected after L ;
P(0;|L;) = .

5
Total no. of times L selected ®)
2) Bayesian Update (BU): Bayesian update of 6; calculates
the conditional probability of selecting 6; when it followed
L; using Bayes rule, given by the following equation:

P(L;|0:)P(0:) _ P(L;10:)P(6:)
P(L;) 34, P(L;|0:)P(6:)

where P(L;|0;) is the fraction of times L; was played fol-
lowing ¢;, P(Lj;) is known to £ and the denominator is a
normalization term. The updated probability estimate is then
used by L to calculate the expected utilities in Eqns. 3 and
4 for its actions more accurately against A’s in future trials.

P(0;|L;) =

; (6)

Algorithm 4: Self-Play()

1 for 7 = 1...n44015 dO

2 root <— L’s first move with randomly sel. action

3 TreeTraverse(root)

4 Update p using prob. update strategy (fic. play,
Eqn. 5 or Bayes update, Eqn. 6)

Experimental Results

We have evaluated the performance our proposed RBSG
with self play-based adversarial learning technique for a bi-
nary classification task with text data using the Yelp review
polarity data set. (dat). Each data instance has either of
two labels, 1 (negative) and 2 (positive). The clean train-
ing and test sets have 560, 000 and 38, 000 samples respec-
tively. We used the Character Convolutional Neural Net-
work (CharCNN) (Zhang, Zhao, and LeCun 2015) model
that consists of 5 convolution layers followed by 3 fully con-
nected layers. It uses convolution layers to identify charac-
ter level features to classify text. For generating adversarial
text, we used the single character gradient based replace-
ment technique (Liang et al. 2018). Given a data instance in
the form of a text character string as input to an ML model,
the method works by classifying the text using the model
and calculating the gradient of the loss function for each

character in the input text. It then replaces the character with
the most negative gradient (most influential on the classifier
output) in the text with the character that has the least pos-
itive gradient (least influential on the classifier output). The
technique can be used iteratively on a data instance to re-
place multiple characters in the text and create adversarial
text with different attack strengths, e.g., two iterations of the
technique yields adversarial text with perturbation strength
2. The CharCNN was first trained with clean data, and then
hardened separately with two adversarial training data sets
with 200,000 adversarial training samples of perturbation
strengths 1 and 2 respectively. This gave three classifiers for
L with increasing hardening levels, denoted by L¢, L1 and
L. The accuracies of these classifiers were then evaluated
with 50, 000 instances of test data of perturbation strengths
1, 2 and 3 each, as reported in Table 1.

LO L1 L2
Clean | 0.9392 | 0.9426 0.94
Adv1 | 0.8684 0.88 0.8782
Adv2 | 0.7706 | 0.7922 | 0.8152
Adv 3 | 0.6814 | 0.7056 | 0.7502

Table 1: Testing accuracy of individual classifiers with dif-
ferent hardening levels (columns) on adversarial test data
with different perturbation strengths (rows).

Adversary A generates queries with either clean data or
adversarial data with perturbation strengths 1,2 and 3, giv-
ing ©4 = {00,01,02,05}. L uses three classifiers, so,
Acp = {Lgy, L1, Lo }. The different parameters used for our
experiments are: cutoff depth in self play, o = 20; number
of trials in self play, n¢;q1s = 10; batch size for queries
sent by A to £, ¢ = 10; and constant in UCB calculation
(Eqn. 4), C = 2.

UCB LO L1 L2 Acc.

Clean | 43.75% | 29.46% | 26.79% | 0.9321
Adv1 | 39.65% | 24.13% | 36.21 | 0.8716
Adv 2 | 24.11% 25% 50.89% | 0.8062
Adv 3 | 39.81% | 20.37% | 39.81% | 0.7222
BNE Lo L1 L2 Acc.

Clean | 57.56% | 10.37% | 32.07% | 0.9302
Adv1 | 33.91% | 46.96% | 19.13 0.867
Adv 2 [29.46% | 27.68% | 42.86% | 0.808
Adv 3 | 31.53% | 32.43% | 36.04% | 0.709

Table 2: Percentage of different classifiers used and accu-
racies (columns) obtained for clean and adversarial data of
different perturbation strengths (rows). Data in the top and
bottom tables are with Upper Confidence Bound (UCB) and
Bayes Nash Equilibrium (BNE), respectively, for action se-
lection during self play.

For our first set of experiments, we validated if £, using
the self play algorithm, could effectively deploy appropri-
ate classifiers for data of different perturbation strengths.
We created four different type distributions for data gen-
erated by A, each distribution having 98% of one of the

37

0.6 - % Indiv L2
HRBSG-UCB
= 0.5 - RBSG-BNE
5
TE 0.4 -
2os3 -
Zz
£ 02 -
=2] %
01 - % 7, % W
0 T T
Clean Adv 1 Adv 2 Adv 3

Figure 1: Relative utilities obtained by individual classifier
Lo, and RBSG with self play-based techniques with UCB
and BNE action selection for data reported in Table 2

four types{fo, 01, 02,05}. L used either Upper Confidence
Bound (UCB) or Bayes Nash Equilibrium (Eqn. 3 or Eqn. 4)
to select actions in the game tree during self play. Our re-
sults are shown in Table 2. The results show that both
UCB and BNE metric for action selection perform compara-
bly. The accuracy obtained using our RBSG-based self play
technique on clean and adversarial data perturbed with dif-
ferent perturbation strengths (last column of Table 2 is not
degraded and comparable to the best accuracies obtained
with the most hardened classifier, Ly, when used individ-
ually (column 4 of Table 1). The RBSG with self play tech-
nique is also able to align adversarial data of different per-
turbation strengths with the commensurately hardened clas-
sifier, as shown by the maximum percentage of each row
in Table 1 corresponding to the classifier hardened with ad-
versarial data of that perturbation strength. Note that with
adversarial data of perturbation strength 3, Adv 3, the clas-
sifiers are selected almost uniformly. This is because none
of the classifiers, Lo, L1 or Lo were trained with adversarial
data of perturbation strength 3. Ly, which had the highest
individual accuracy for Adv 3 data, is used most frequently,
albeit marginally, for Adv 3 data in Table 2. Our Self-play
technique also strategically also uses Ly and L; that incur
lower costs to deploy than Lo. Consequently, the utility ob-
tained by £ with self play is better than its utility while us-
ing individual classifier Lo only. Fig. 1 shows the compar-
ison of the relative utilities obtained by £ while using the
proposed RBSG with self play technique versus the utilities
obtained while using the most hardened individual classifier
Ls. As illustrated, the RBSG with self play technique is able
to improve utilities as it deploys lower cost classifiers L
and L, along with Lo while aligning the expected pertur-
bation strength of the query data, estimated via p, with the
commensurately hardened classifier.

For our next experiments, we evaluated the convergence
of L’s belief distribution p() to A’s actual type distribu-
tion p() using the fictitious play and Bayesian update proba-
bility update strategies (Eqns. 5 and 6). Results were av-
eraged over 10 runs. For each run, p() was selected as a
random distribution. We report the Kullback-Liebler(KL)

KL Divergence
o e e
2 N 2 W
[5,] N (%3] w (%]

e
s

o
=]
a

o

Figure 2: KL divergence between A’s actual type distri-
bution and L’s belief distribution using fictitious play and
Bayesian update for 74,47 = 10, h = 20. Results are aver-
aged over 10 runs.

divergence between p() and p(), given by Dxr(pllp) =
> 6.co4 ﬁ(&i)lnzgzzg. As shown in Fig. 2, with both strate-
gies p is able to converge to within 5% of p() within about
6 trials. Fictitious play converges faster with higher KL di-

vergence values while Bayesian update takes a longer time
to converge owing to its more complex calculations.

Conclusion

We proposed a technique for improving the costs of a
classifier-based ML model against adversarial attacks of dif-
ferent strengths without deteriorating its performance by us-
ing repeated game-like interactions between a learner and
an adversary. There are several important directions that are
worthy of further investigation. First, the assumption in ex-
isting research which assumes that the learner reveals its
classifier to the adversary is rather limiting. A more realistic
situation would be that the adversary is able to reverse en-
gineer the learner’s classifiers, but it is not aware of the fre-
quency with which the learner deploys them. The adversary
could then also build a model of the learner via repeated in-
teractions to determine its perturbation strength strategically.
Secondly, although used as a popular solution technique in
games, Nash equilibrium (NE) strategy calculation is known
to have certain shortcomings such as assuming that play-
ers always behave rationally. In reality, an adversary could
behave myopically, select a greedy outcome, or, adopt sub-
optimal, low and slow strategies to misguide the learner. To
handle these situations, a direction we are interested in ex-
ploring is to use recent techniques such as regret-based tech-
niques, safety value and exploitability of opponents, instead
of Bayes Nash equilibrium-based strategy selection. Finally,
integrating reinforcement learning for our adversarial learn-
ing setting promises to be another direction worthy of further
investigation.

References

Alfeld, S.; Zhu, X.; and Barford, P. 2017. Explicit defense ac-
tions against test-set attacks. In Proc. 31st AAAI Conf. Artificial
Intelligence, AAAI'17, 1274-1280.

38

Browne, C. B.; Powley, E.; Whitehouse, D.; and et al. 2012. A
survey of monte carlo tree search methods. /IEEE Trans. on Comp.
Intelligence and Al in games 4(1):1-43.

Briickner, M.; Kanzow, C.; and Scheffer, T. 2012. Static predic-
tion games for adversarial learning problems. J. Mach. Learn. Res.
13(1):2617-2654.

Bulo, S. R.; Biggio, B.; Pillai, I.; Pelillo, M.; and Roli, F. 2017.
Randomized prediction games for adversarial machine learning.
IEEE Trans. Neural Netw. Learning Syst. 28(11):2466-2478.

Dalvi, N.; Domingos, P.; Sanghai, S.; Verma, D.; et al. 2004. Ad-
versarial classification. In Proc. 10th ACM SIGKDD Intl. Conf.
Knowledge Discovery and Data mining, 99-108. ACM.

Dasgupta, P., and Collins, J. 2019. A survey of game theoretic
approaches for adversarial machine learning in cybersecurity tasks.
Al Magazine 40(2):31-43.

Yelp reviews polarity data set. http://goo.gl/JyCnZq. 2019-07-15.

Globerson, A., and Roweis, S. 2006. Nightmare at test time: robust
learning by feature deletion. In Proceedings of the 23rd interna-
tional conference on Machine learning, 353-360. ACM.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Genera-
tive adversarial nets. In Advances in neural information processing
systems, 2672-2680.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Grosshans, M.; Sawade, C.; Bruckner, M.; and Scheffer, T. 2013.
Bayesian games for adversarial regression problems. In Proc. 30th
Intl. Conf. Machine Learning, ICML’13, III-55-111-63.

Harsanyi, J. C. 1967. Games with incomplete information played
by “bayesian” players, i—iii part i. the basic model. Management
science 14(3):159-182.

Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Adversarial
machine learning at scale. arXiv preprint arXiv:1611.01236.
Liang, B.; Li, H.; Su, M.; Bian, P.; Li, X.; and Shi, W. 2018. Deep
text classification can be fooled. In Proc. 22nd Intl. Joint Conf on
Al IJCAI, 4208-4215.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu, A.
2017. Towards deep learning models resistant to adversarial at-
tacks. arXiv preprint arXiv:1706.06083.

Mei, S., and Zhu, X. 2015. Using machine teaching to identify op-
timal training-set attacks on machine learners. In Proc. 29th AAAI
Conf, Artificial Intelligence, AAAT’ 15, 2871-2877. AAAI Press.

Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Systems - Al-
gorithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press.

Vorobeychik, Y., and Kantarcioglu, M. 2018. Adversarial machine
learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 12(3):1-169.

Wolpert, D. H. 2002. The supervised learning no-free-lunch theo-
rems. In Soft computing and industry. Springer. 25-42.

Yuan, X.; He, P;; Zhu, Q.; and Li, X. 2019. Adversarial exam-
ples: Attacks and defenses for deep learning. IEEE Transactions
on Neural Networks and Learning Systems 30(9):2805-2824.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level con-
volutional networks for text classification. In Advances in neural
information processing systems, 649-657.

