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Abstract

Poker is a large complex game of imperfect information,
which has been singled out as a major AI challenge prob-
lem. Recently there has been a series of breakthroughs culmi-
nating in agents that have successfully defeated the strongest
human players in two-player no-limit Texas hold ’em. The
strongest agents are based on algorithms for approximating
Nash equilibrium strategies, which are stored in massive bi-
nary files and unintelligible to humans. A recent line of re-
search has explored approaches for extrapolating knowledge
from strong game-theoretic strategies that can be understood
by humans. This would be useful when humans are the ulti-
mate decision maker and allow humans to make better deci-
sions from massive algorithmically-generated strategies. Us-
ing techniques from machine learning we have uncovered a
new simple, fundamental rule of poker strategy that leads to
a significant improvement in performance over the best prior
rule and can also easily be applied by human players.

Introduction
Poker is an extremely challenging game, both for computer
AI programs and for humans, due to the large state spaces
and imperfect information. Poker has been very popular with
humans for centuries, with the most common variant in re-
cent years being no-limit Texas hold ’em. There are two pri-
mary reasons for the popularity of poker in comparison to
other games. First is that, while being predominantly a game
of skill (which allows professional players to achieve long-
term success), there is still a significant degree of luck and
variance. In a game like chess, a grandmaster player will
beat a recreational club-level player 100% of the time; how-
ever in poker, even an amateur or novice player can still win
a single hand or session even against a strong professional
player (in fact the Main Event at the World Series of Poker in
Las Vegas has been won several times by amateur players).
The second reason is that the rules are very simple (allowing
easy accessibility to novice players), yet perfect mastery is
extremely complex. As a famous professional player Mike
Sexton stated, “The name of the game is No Limit Texas
hold ’em, the game that takes a minute to learn but a life-
time to master.” While anyone can understand the rules and
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start playing very quickly, even the best experts spend many
years (for some an entire lifetime) learning and improving.

Humans learn and improve in a variety of ways. The most
obvious are reading books, hiring coaches, poker forums and
discussions, and simply playing a lot to practice. Recently
several popular software tools have been developed, most
notably PioSolver,1 where players solve for certain situa-
tions, given assumptions for the hands the player and oppo-
nent can have. This is based on the new concept of endgame
solving (Ganzfried and Sandholm 2015), where strategies
are computed for the latter portion of the game given fixed
strategies for the trunk (which are input by the user). While
it has been pointed out that theoretically this approach is
flawed in the worst case in imperfect-information games
(such as poker) (Ganzfried and Sandholm 2015), nonethe-
less it has played a pivotal role in producing superhuman
agents for two-player no-limit Texas hold ’em (Brown and
Sandholm 2017; Moravčı́k et al. 2017). Human players can
improve from training with such software tools by studying
solutions to many different scenarios, but this requires a lot
of time and effort, ability to correctly gauge the trunk strate-
gies, and a significant amount of technical savvy.

Learning to improve as a human is complicated further as
there are many different variants of poker commonly played,
and concepts learned from one may not transfer over to the
other. However, certain theoretical concepts are fundamen-
tal to poker and can extend throughout different variants, in-
dependent of the specific situation (and in some cases even
the opponent). For example, the concept of pot odds dictates
how good one’s equity needs to be to make a call worth-
while. For example, suppose the opponent bets $10 into a
pot that initially has $30. If we call and win then we will
profit $10 + $30 = $40, and if we call and lose then we profit
-$10. By contrast, note that if we fold to the bet then we will
profit $0. Suppose we think that we have the best hand with
probability p: then we are indifferent between calling and
folding if 40p−10(1−p) = 0 ↔ p = 1

5 . So calling is more
profitable than folding if we think that we win over 20% of
the time, and folding is more profitable if we think that we
win less than 20% of the time. This is a clear simple princi-
ple that is applicable to all variants of poker and can be easily
applied by human players. (Note however that this concept

1https://piosolver.com/
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is not a rule that specifies what action the player should take
on an absolute level; a range of hands must be specified for
the opponent in order to apply the concept.) While master-
ing poker is clearly much more challenging than learning a
few general concepts such as pot odds, nonetheless certain
fundamental rules grounded in math and game theory can be
very important, particularly at earlier phases of study.

Pot odds does not dictate a full rule for how one should
play against opponents with potentially unknown strategy.
The most widespread rule for this is based on the concept
of the Minimum Defense Frequency (MDF). This concept,
which is often denoted by α (Ankenman and Chen 2006),
specifies the probability needed to call when facing a bet of
a certain size in order to ensure that the opponent cannot
profitably bluff us with his weakest hands. (It also simulta-
neously specifies the optimal ratio that a player should use
of value bets (bets with a strong hand) to bluffs (bets with a
weak hand) that a player should use.) The minimum defense
frequency is derived from the Nash equilibrium of a sim-
plified game, and has been singled out as one of the most
important concepts of poker. When facing a bet by a player
with an unknown strategy, many strong players will base
their strategy off of MDF. This is a simple effective rule that
is easily understood by humans and applies to many differ-
ent variations of poker. In this paper we will develop a new
rule that is also simple and can easily be understood by hu-
mans that improves performance significantly beyond MDF.
This rule integrates MDF with another popular and easily
understandable poker concept called Range Advantage, and
is derived by applying machine learning algorithms to a
database of solutions to simplified games. We believe that
this is the most important single rule for strong poker play.

Poker is large game of imperfect-information and has
been singled out as being a major AI challenge problem.
Recently programs for two-player no-limit Texas hold ’em
have competed against the strongest human players in a se-
quence of high-profile “Brains vs. Artificial Intelligence”
competitions (Brown and Sandholm 2017) culminating in
the agent Libratus that won decisively in 2017. Indepen-
dently a second agent DeepStack was also created that de-
feated human players in 2017, though the humans were not
experts in the specific game format (Moravčı́k et al. 2017).
Despite these successes, there have been relatively few take-
aways from the research that aspiring human players can
readily apply to improve their poker game. In a separate
new line of research, a new approach has been developed
using decision trees to compute strategic rules that are eas-
ily understood by humans (Ganzfried and Yusuf 2017). This
has led to deduction of new rules concerning when a player
should make an extremely small bet and an extremely large
bet. We continue this avenue of research by exploring for
the first time the connection between two key poker strat-
egy concepts, producing a single understandable rule that
applies to a variety of bet sizes and different game varia-
tions and significantly improves performance over the popu-
lar MDF concept. Large-scale computation of strong game-
theoretic strategies is also important in many domains other
than poker; for example, it has been applied recently to ran-
domized security check systems for airports (Paruchuri et

al. 2008). Approaches for computing human-understandable
rules are critical for situations such as national security
where humans will be making important real-time decisions.

No-limit poker
We will be studying the following simplified poker game.
First player 1 is dealt a card from a n-card deck (cards are the
numbers 1–n), according to a probability distribution p (e.g.,
p2 is the probability that player 1 is dealt a 2). We assume
similarly that player 2 is dealt a card from 1–n according
to q. We assume the cards are independent, and that it is
possible for both players to be dealt the same card (so that
our experiments will not be confounded by the additional
issue of card removal). Players initially start with a stack S
and there is a pot of size P , with a deck size equal to n = 10.
Then player 1 can either check or bet a size in {b1i}. Facing
a bet from player 1, player 2 can then call or fold (forfeit
the pot). Facing a check, player 2 can check or bet a size in
{b2i}. Then player 1 can call or fold facing a bet. If neither
player folds, the player with higher card wins the pot.

For our initial experiments we will assume the pot and
stack sizes P and S both equal 1 (if they differed we could
divide by the size of the pot to normalize). For both play-
ers we only allow a bet size equal to pot (1) for b1i, b2i. We
will also consider settings where the bet size is equal to 0.5
times the pot and 0.75 times the pot (which are popular hu-
man betting sizes). Of course this setting can allow arbitrary
values for these parameters and multiple bet sizes, but for
concreteness we decided to start with these values.

It is clear that the optimal strategies (according to Nash
equilibrium) for the two players will vary significantly de-
pending on the distributions p and q. For example, if both
players are dealt cards uniformly (Figure 1), then a Nash
equilibrium strategy for player 1’s first action is:

• Card 1: Check pr. 1

• Card 2: Check pr. 0.5, bet 1 pr. 0.5

• Card 3-8: Check pr. 1

• Card 9: Bet 1 pr. 1

• Card 10: Check pr. 1

This can be computed quickly using known techniques. Note
that the equilibrium strategy includes bluffing (i.e., betting
with weak hands such as 2), as well as slowplaying, aka trap-
ping (checking with a strong hand such as 10).

However, suppose the cards are dealt according to a dif-
ferent distribution: player 1 is either dealt a very strong hand
(10) or a very weak hand (1) with probability 0.5 while
player 2 is always dealt a medium-strength hand (Figure 2).
Then the equilibrium strategy for player 1 is:

• Card 1: Bet 0 pr. 0.5, 1 pr. 0.5

• Card 10: Bet 1 pr. 1

If player 1 is always dealt a medium-strength hand (5) while
player 2 is dealt a very strong or very weak hand with prob-
ability 0.5 then the equilibrium strategy is:

• Card 5: Bet 0 pr. 1
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Figure 1: Both players are dealt hands
uniformly at random over all hands.

Figure 2: Player 1 is dealt either a very
strong or weak hand and player 2 is al-
ways dealt a mediocre hand.

Qualitative models and endgame solving
There has been some prior study of human understand-
able strategies in imperfect-information games, and in poker
specifically. Ankenman and Chen compute analytical solu-
tions of several simplified poker variants by first assum-
ing a given qualitative structure on the equilibrium strate-
gies, and then computing strategies given this presumed
structure (Ankenman and Chen 2006). While the computed
strategies are generally interpretable by humans, the models
were typically constructed from a combination of trial and
error and expert intuition, not algorithmically. More recent
work has shown that leveraging such qualitative models can
lead to new equilibrium-finding algorithms that outperform
existing approaches (Ganzfried and Sandholm 2010). That
work proposed three different qualitative models for the fi-
nal round of two-player limit Texas hold ’em (Figure 3), and
showed empirically that equilibrium strategies conformed to
one of the models for all input information distributions (and
that all three were needed). Again here the models were con-

Figure 3: Three qualitative models for two-player limit
Texas hold ’em river endgame play.

structed by manual trial and error, not algorithmically.
We note that while the problem we are considering in this

paper is a “toy game,” it captures important aspects of real
poker games and we expect our approaches to have appli-
cation to larger more realistic variants (our game general-
izes many common testbed variants; if the deck had only 3
cards and only one bet size is allowed, this would be the
commonly-studied variant “Kuhn poker” (Kuhn 1950)). In
the recent Brains vs. Artificial Intelligence two-player no-
limit Texas hold ’em competition, the agent Claudico com-
puted the strategy for the final betting round in real time,
and a top human player has commented that the “endgame
solver” was the strongest component of the agent (Ganzfried
2017); endgame solving was also a crucial component of
subsequent success of the improved agent Libratus (Brown
and Sandholm 2017). Another recent superhuman agent
DeepStack can also be viewed as applying endgame solv-
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ing, as it works by viewing different rounds of the game
as separate endgames which are solved independently, us-
ing deep learning to estimate the values of the endgames
terminal states (Moravčı́k et al. 2017). Endgame solving as-
sumes that both agents had private information distributions
induced by the strategies for the prior rounds using Bayes’
rule, assuming they had been following the agent’s strategy
for the prior rounds (Ganzfried and Sandholm 2015). The
game we study here is very similar to no-limit Texas hold
’em endgames, except that we are assuming a ten-card deck,
specific stack and betting sizes, and that raises are not al-
lowed. We expect our analysis to extend in all of these di-
mensions and that our approaches will have implications for
no-limit Texas hold ’em and many other complex variants.

Minimum defense frequency and range advantage
For a bet of size b and a pot of size P , the minimum defense
frequency (MDF) is defined to be the quantity α = P

b+P .
Suppose player 2 calls the bet with probability α, and sup-
pose that player 1 has an extremely weak hand that he is
contemplating betting as a bluff. With probability α the bluff
would be called and player 1 would lose b, while with prob-
ability 1−α player 2 would fold and player 1 would win P .
Thus the expected profit for player 1 from betting is:

α ·(−b)+(1−α)P = P −α(b+P ) = P − P

b+ P
·(P +b) = 0.

Thus player 1 is precisely indifferent between betting as a
bluff and not betting with his weak hand. If player 2 were
to call with any probability below α, then player 1 would be
able to have a guaranteed profit by bluffing with all his weak
hands; therefore, the value α is the minimum amount of the
time that player 2 must call (or raise if it is permitted) against
a bet in order to prevent player 1 from profitably betting with
all his weak hands. For our parameters of b = 1, P = 1
the MDF is α = 1

2 . Note also that if player 2 calls with
probability exceeding α, then player 1 would never want to
bluff with his weak hands (in which case player 2 would
never want to call with his medium-strength hands, etc.). So
in general we would expect player 2 to call with frequency
precisely equal to α; however this is not always the case.
Consider an extreme example when player 1 is always dealt
a 10 and player 2 is always dealt a 1. Then clearly player 2
would always prefer to fold to a bet because he will never
have the best hand. Note that in this example player 1 has
a range advantage equal to 1. In general, if player 1 has a
significant range advantage, optimal play may suggest that
player 2 call with probability below α.

The range advantage for player 1 under the distributions
p, q is player 1’s equity in the hand given the distributions.
This is equal to the probability that player 1 will have a better
hand under p plus one-half times the probability that they
have the same hand. So we define the Range Advantage as:

Range Advantage(p, q) =

(
n∑

j=1

n∑
i=j+1

piqj

)
+

(
1

2

n∑
i=1

piqi

)

(1)
We generated 100,000 games with uniform random dis-

tributions for p and q (recall that p is player 1’s distribution

Figure 4: Range advantage vs. optimal defense frequency
over 100,000 random games with bet size equal to pot.

and q is player 2’s). We then solve these games for a Nash
equilibrium. Let c(i) be the optimal frequency for player 2 to
call a bet from player 1 with card i according to the equilib-
rium strategy. Then the optimal defense frequency (ODF) c∗
is the weighted sum of the call probabilities over all hands,
i.e., c∗ =

∑
i (qic(i)) . In our experiments we seek to under-

stand the relationship between the range advantage and the
optimal defense frequency which, as described above, may
differ considerably from the minimum defense frequency.

For each hand in the sample, we can add a data point
where the x coordinate is the range advantage of the dis-
tributions p, q, and the y coordinate is the optimal defense
frequency c∗. A scatterplot of points selected according to
this process is shown in Figure 4. The graph depicts a clear
negative trend between the range advantage of player 1 and
the optimal defense frequency for player 2. We also observe
a mass of hands with optimal frequency exceeding the MDF
value of 0.5. We note that each game may contain several
solutions, and it is possible that there also exist other equi-
libria with different ODF values. Thus, for the games with
ODF exceeding 0.5, it is possible that the game also con-
tains an equilibrium with ODF equal to 0.5, and that our al-
gorithm happened to select this one. This situation can arise
for games where player 1’s equilibrium strategy checks with
all hands and never bets; in this case there are many equi-
librium strategies for player 2 to play in response to a hypo-
thetical “off-path” bet action by player 1, and player 2 need
only play a strategy that does not give player 1 incentive to
deviate and start betting some hands instead of checking.

Experiments
We first compare several approaches for the variant where
the players are restricted to just the pot-sized bet: “previous
expert knowledge [has] dictated that if only a single bet size
[in addition to all-in] is used everywhere, it should be pot
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sized” (Hawkin, Holte, and Szafron 2012).
For each approach, we compute the mean-squared error

(MSE) from the optimal defense frequency (ODF) over the
100,000 game sample First we consider just predicting the
MDF, which is 0.5 for this case of a pot-sized bet, which pro-
duces MSE of 0.0067. We next considered “Linear MDF,”
which in this case would select the optimal constant predic-
tor, which selected 0.466 as opposed to 0.5, and produced
MSE of 0.0055. We next integrated range advantage as a fea-
ture to produce the optimal regressor prediction of -.446*RA
+ 0.688, with MSE 0.0024, and finally quadratic regression
which produced MSE of 0.0012. These results (Table 1)
show that adding in range advantage as a feature leads to
a significant reduction in MSE over just using MDF (around
a 56% reduction even accounting for optimized normaliza-
tion of MDF), while also unsurprisingly quadratic leads to
a further reduction. Though there is a risk of overfitting, the
plot in Figure 4 appears to fit closer with a quadratic than a
linear curve, so the quadratic predictor seems more appropri-
ate. For all approaches we perform 10-fold cross validation.

Approach Formula MSE
Fixed MDF 0.5 0.006686
Linear MDF 0.466 0.005512
Linear RA -.446*RA + 0.688 0.002406

Quadratic RA -1.760*RA2 + 1.316*RA + 0.275 0.001161

Table 1: Results for simplified game with pot bet size.

We next ran experiments over a larger dataset consisting
of 100,000 games for each of the three bet sizes of 0.5 pot,
0.75 pot, and pot. These experiments allowed us to uncover a
rule that would extend beyond different bet sizes, as the dif-
ferent bet sizes correspond to different values of the MDF
α. For these experiments the MDF now becomes a feature
(while it was just the constant 0.5 for the prior experiments).
The MSE of several approaches are given in Table 2. The
MSE of fixed MDF is 0.0086, which is reduced to 0.0068
for linear MDF (note that, in contrast to the pot-sized ex-
periments where MDF was a fixed constant, in this setting
where MDF is a feature there is now both a coefficient for
MDF and a constant parameter). Using both MDF and RA
brought down MSE further to 0.0030 (similar to the pot-
sized experiments including RA as a feature reduces MSE
over linear MDF by around 56%). We also used the product
of RA and MDF as a new feature, and including this did not
lead to a significant reduction in MSE over just using RA
(both when used in addition to RA and in place of it).

The optimal linear predictor using RA and MDF (rounded
to 3 decimal places) is 0.904*MDF - 0.495*RA + 0.261.
Noting that the first coefficient is close to 1, the second is
close to 0.5, and the third is close to 0.25, we also investi-
gated this “simplified” predictor with coefficients that can be
more easily remembered and applied in real time. This pro-
duced an MSE of 0.0048, which is about halfway between
the MSE of Linear MDF and Linear MDF with RA.

Another observation we made from Figure 4 is that the op-
timal defense frequency only rarely exceeds the MDF (and
furthermore the pattern for the points where ODF exceeds

MDF seems to be different from that of the points for which
it doesn’t). So we decided to consider an approach where we
truncate the predictor at the MDF (i.e., take the minimum of
the predictor value and MDF). We also considered an ap-
proach where we used a separate simple linear function for
the cases where player 1 has a significant range advantage
(RA > 0.75) of 1-RA for RA values exceeding 0.75, while
using the same approach as before for RA ≤ 0.75.

Using min(MDF, 0.0904*MDF - 0.495*RA + 0.261) pro-
duced MSE of 0.0026, which is only a small improvement
over that of linear MDF with RA (without using the min
function). However, applying the min function to the sim-
plified linear predictor of MDF - 0.5*RA + 0.25 led to a
significant reduction in MSE from 0.0048 to 0.0032 (33%
reduction). Adding in the separate rule of using (1-RA) for
RA > 0.75 further decreased MSE to 0.0024. Finally we
note that quadratic regression not surprisingly produced the
lowest MSE out of the rules we considered. There are many
more complex approaches we could have also experimented
with (e.g., additional features, decision trees, higher degree
regression, etc.), however these run a significant risk of over-
fitting (and also producing less-understandable rules).

New fundamental rule of poker strategy
Many of the approaches presented in Table 2 achieve a sig-
nificant performance improvement over just (linear) MDF.
While not the best-performing approach, we single out the
rule min(MDF, MDF - 0.5*RA + 0.25) as being the best-
performing single rule using simple coefficients that are easy
for a human to remember and apply. This rule produces MSE
of 0.0032, which is over a 50% reduction in MSE over linear
MDF (and a 63% reduction in MSE over fixed MDF). This
rule is a single equation, with very simple values of the co-
efficients (1, -0.5, and 0.25). It only performs slightly worse
than the analogous approaches that use more complicated
coefficient values. It is also outperformed by a piecewise ap-
proach that adds in a second case of (1-RA) for the case RA
> 0.75, and uses the same predictor for RA ≤ 0.75. How-
ever, we consider this approach as essentially two different
rules combined into one approach, not as a single rule.

Fundamental Rule of Poker Strategy 1. Given minimum
defense frequency value MDF when facing a certain bet size,
and assuming a range advantage of RA, then you should call
the bet with a fraction of the hands in your range equal to
min(MDF, MDF - 0.5*RA + 0.25), and fold otherwise.

Note that for RA = 0 (player 2 always has the best hand),
this will predict ODF = min(MDF, MDF + 0.25) = MDF. For
RA = 1 it will predict ODF = min(MDF, MDF -0.25) = MDF
- 0.25. And for RA = 0.5 (neither player has a range advan-
tage) ODF = min(MDF, MDF) = MDF (which is expected
for the case when no player has a clear advantage).

As an example to apply this rule, suppose we are in a set-
ting where opponent bets the pot (so MDF = 0.5), and we
believe that the opponent has a range advantage of 0.8. Then
we have min(MDF, MDF - 0.5*RA + 0.25) = min (MDF,
MDF - 0.15) = MDF - 0.15 = 0.5-0.15 = 0.35. So the rule
would stipulate that we should call 35% of the time.

43



Approach Formula MSE
Fixed MDF MDF 0.008586
Linear MDF 0.904*MDF + 0.0140 0.006791

Linear MDF with RA 0.904*MDF - 0.495*RA + 0.261 0.002996
Linear MDF with RA*MDF 1.330*MDF - 0.851*[RA*MDF] + 0.0134 0.002971

Linear MDF with RA and RA*MDF 1.202*MDF - 0.150*RA - 0.595*[RA*MDF] + 0.0885 0.002966
Simplified Linear MDF with RA MDF - 0.5*RA + 0.25 0.004795

Min Linear MDF with RA min(MDF, 0.904*MDF - 0.495*RA + 0.261) 0.002638
Simplified Min Linear MDF with RA min(MDF, MDF - 0.5*RA + 0.25) 0.003196

Piecewise Simp. Min Linear MDF w. RA 1 - RA, RA > 0.75; min(MDF, MDF - 0.5*RA + 0.25), RA ≤ 0.75 0.002446
Quadratic MDF with RA and MDF*RA -1.945*RA2 - 0.615*RA*MDF + 0.0111*MDF2 + 1.806*RA + 1.197*MDF - 0.368 0.001459

Table 2: Results for several approaches over 100,000 hands for each of three games with bet sizes of 0.5 pot, 0.75 pot, and pot.

Recall that previously the best rule to apply here would be
just to use ODF = MDF = 0.5. Our new rule produces an im-
provement of over 60% over the best prior approach, while
being a simple rule that can be easily understood and applied
in real time. Had we instead defined the range advantage to
range from -1 to 1 instead of 0 to 1 (so that RA of 0 meant
no advantage and +1 means player 1 has full advantage),
then the rule becomes min(MDF, MDF - 0.25*RA), which
is even easier for a human to interpret. This is obtained by
applying the transformation RAnew ← 2 ∗RAold − 1.

We can call this rule the “100–50–25 MIN rule,” denoting
the fact that the three coefficients (1, -0.5, 0.25) are in the
proportions of 100–50–25 and application of the MIN func-
tion. As this rule obtains significantly lower MSE than the
prior best rule of using MDF, the “100–50–25 MIN rule” is
the most important fundamental rule of poker strategy.

We note that several prior “fundamental rules” have been
proposed in the literature, which are based primarily on
anecdotes and intuition. For example in one popular book
on strategy, Phil Gordon writes, “Limping is for Losers.
This is the most important fundamental in poker—for ev-
ery game, for every tournament, every stake: If you are the
first player to voluntarily commit chips to the pot, open for
a raise. Limping is inevitably a losing play. If you see a per-
son at the table limping, you can be fairly sure he is a bad
player.” (Gordon 2011) (Note that some very strong play-
ers, e.g., poker AI Claudico (which is Latin for “I limp”), do
in fact “limp” sometimes).2 (Ganzfried 2017) Another rule
called “Zeebo’s Theorem” states: “No player is capable of
folding a full house on any betting round, regardless of the
size of the bet.”3 We think our rule is more important than
these and furthermore is based on rigorous analysis.

Conclusion
Using techniques from machine learning, we have been able
to obtain a new important rule of poker strategy that achieves
significantly lower MSE than the most popular rule of basing
calling decisions on MDF. We obtain the 100–50–25 MIN
rule, which is a single easily-understandable equation for the
predictor of ODF, which produces an improvement of over
60% of the best prior approach. Generating improved rules

2A limp is a conservative play of just calling the minimum bet
in the first round as opposed to the more aggressive raise action.

3http://www.thepokerbank.com/strategy/theorems/zeebo/

or features can enhance performance of machine learning
algorithms. Of course even better rules could be obtained
(we obtained some, for example with more complex co-
efficients, piecewise linear functions that branch based on
RA value, and quadratic regression); however these are all
more complex and would be harder for a human player to
memorize and implement in real time. There can also be
some concern about overfitting with more complex rules.
It would be interesting to explore implications for the re-
cent line of work on developing approaches for computing
human-understandable strategies to other domains where
game-theoretic algorithms produce strategies that must be
interpreted by human decision makers. For example, in na-
tional security humans often ultimately make the decisions
that may be generated by algorithms (Paruchuri et al. 2008).
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