
Limits of the Technological Singularity

 
Abstract

The technological singularity hypothesis asserts that the in-
vention of a synthetic intelligence with greater cognitive ca-
pacities than a human being will trigger an exponential in-
crease in synthetic cognition and knowledge.  Each genera-
tion of synthetic intelligences will be able to create new 
generations of cognitive beings with even greater capabili-
ties than themselves. Some projections envision a future 
with superintelligences with millions or billions times the 
cognitive capability of human beings.  This paper will argue 
that the primary function of cognition is to predict the future 
and make plans based on those predictions.  Exponential in-
creases in cognitive capability and knowledge do not neces-
sarily result in exponential increases in the ability to predict 
and plan for the future.  We will show that exponential in-
creases in knowledge may only result in modest linear in-
creases in the ability to predict the future or make plans.
Therefore, the actual capabilities of superintelligent ma-
chines may only be minimally, if at all, greater than current 
human capabilities.

The Technological Singularity
The concept of the technological singularity offers a vision 
of the future where synthetic beings have immense cogni-
tive abilities that are orders of magnitude greater than pos-
sessed by human beings.  The term “technological singu-
larity” has been popularized by I.J. Good, Vernor Vinge, 
and Ray Kurzweil (Good, 1965; Vinge 1993, Kurzweil, 
1999).  The genesis of these theories is that human beings 
will create a machine with artificial general intelligence 
with greater cognitive power, problem-solving ability, and 
creative skills than a human being.   In turn, this machine 
will be able to create synthetic intelligences even greater 
than its own (since it is more intelligent than its creators).   
This even more capable intelligence will then be able to 
design a machine with even greater capacity, and so on.   
This process will be repeated resulting in superintelligenc-
es with exponentially more intelligence than human beings.  
Some projections envision a single machine having more 
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computational power than all human beings combined by 
2050, and the curve does not stop there (Figure 1).

Many prominent futurologists believe this future is plau-
sible and potentially threatening to humanity’s well-being 
(Nick Bostrom, 2014).   “’The fact is that AI can go further 
than humans, it could be billions of times smarter than hu-

mans at this point,’ Pearson said. (CNBC, 2018).” How 
could human beings compete with such agents?   Would 
humanity become subservient to these superintelligent ma-
chines?

In this paper, we will present an approach to cognitive 
ability that emphasizes its purpose in allowing agents to 
predict, plan and act in ways that enhance their goals and 
desires in the future.  We will then show that even in a de-
terministic world, an exponential increase in knowledge 
may only result in a linear increase in the ability to see into 
the future.  Future events are not completely random; they 
are possible to predict within certain ranges.  However, a 
substantial increase in knowledge does not necessarily re-
sult in narrowing or refining those ranges of possibilities.   
Therefore, we will conclude that while hypothetical super-
intelligences may possess substantially more cognitive 
ability than human beings, they may not be significantly 

Figure 1 Exponential Growth of Computational Power (Kurzweil, 
1999)
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better than human beings at predicting, planning, and act-
ing in order to better control the future.

The Purpose of Cognition
A significant difficulty in discussing the Technological 
Singularity and superintelligent machines is determining 
the meaning of intelligence.   What does it mean for a be-
ing to be more intelligent than another?  One approach to 
this issue is to look at the purpose of cognitive abilities.   
Cognition in animals provides assistance in the processing 
and interpretation of perception that allow for the better 
survivability of the animal.     This approach puts a heavy 
emphasis on the ability to use perceptional and conceptual 
data to predict the future.  “Indeed, the main purpose of 
cognition seems to consist in anticipatory (offline) prepara-
tion: selecting a goal, configuring the system for a particu-
lar task, priming goal-relevant action systems, and prepar-
ing for the processing of possible trigger stimuli” (Hummel 
2015). To describe an agent as having more intelligence 
than another agent is to say that it is better able to predict
the future, anticipate how its possible actions may alter the 
future, and select the actions that are more likely to lead to
reaching the agent’s goals.   With that approach, let us now 
address how much better a superintelligence would be at 
predicting the future as compared to a human being. 

Superintelligence and Predicting the Future
The argument for the inevitability of the Technological 
Singularity is strongly tied to the notion that computational 
capacity, both in terms of memory and processor speed, 
will continue to increase exponentially.   Much of that ar-
gument is based on Moore’s Law, the observation that 
computer capacity/speed doubles every year and a half to 
two years.   Moore’s Law has held since the birth of digital 
computers until today.  While there are signs that Moore’s 
Law is beginning to fail, this paper will assume that
Moore’s Law continues to hold (although the rate of dou-
bling may slow down).   Further, the prospect of viable 
quantum computers suggests that any current slowdown in 
Moore’s Law will be leap-frogged with the advent of 
commercial quantum computers.   

This paper argues that even with that exponential in-
crease in computational ability, these improvements will
not result in an exponential increase in the ability to predict 
and plan for the future.  Our argument will involve looking 
at two limitations on computational ability: 1) the effect of 
Mathematical Chaos in a deterministic universe and 2) the 
combinatorial explosion of future events in a deterministic 
universe.  As an aside, we will also consider limitations on 
deep neural networks as some of the recent successes using 
those algorithms might suggest they can overcome these 
shortcomings.  They cannot. 

Predicting the Future in a Deterministic 
Chaotic Universe

One of the hallmarks of the Newtonian Age of Science is 
the success of using deterministic laws in predicting the 
future.  Humanity has discovered many laws and principles 
of the natural world that have allowed for great advances in 
transportation, agriculture, medicine, meteorology, and 
communication.  These technologies have significantly 
affected our success and flourishing as a social species.  If 
a superintelligence has exponentially more cognitive power 
than a human being, would it be able to make exponential 
advances in finding and applying deterministic laws and 
principles in predicting the future?

First, it should be noted that we may not live in a deter-
ministic universe.  Current theories in quantum physics 
suggest that at the subatomic level, events may in fact have 
a great deal of randomness.   However, it is not obvious 
that the randomness at the subatomic level will necessarily 
result in randomness at the macro level.   Certainly, most
of the phenomena we observe at our macro-level do not 
seem to exhibit a great deal of randomness; rather, there 
exist reassuring regularities and deterministic behavior.  It 
is plausible that the randomness that occurs at the subatom-
ic level does not have a great impact on our ability to make 
predictions at the macro level.   We will return to this issue 
later.

A more fundamental concern for making predictions 
about the future is that, while we may live in a determinis-
tic world, the equations that govern behavior of macro-
scopic objects exhibit chaos.  Chaos Theory studies how 
seemingly random behavior may result from deterministic 
equations.   Of particular importance to this paper is the 
fact that equations that exhibit chaos are extremely sensi-
tive to initial conditions.  Minute changes in initial values 
result in vast (and unpredictable) changes in outcomes in 
the future.  

Many of the equations that accurately describe our natu-
ral and social world are equations that exhibit chaos.   Most 
physical systems are chaotic (e.g., the gravitational three-
body problem, double pendulums, billiards on an oval ta-
ble, weather phenomena, general relativity, fluid dynamics, 
heart arrhythmia).   Many non-physical systems also exhib-
it chaotic behavior (e.g., population dynamics, economics, 
profit models, stock market models).    Therefore, any in-
telligent being will be making predictions about a world 
that is described by equations that are highly sensitive to 
initial conditions.   

As we will show in the next section, even an exponential 
increase in the accuracy of initial conditions may only re-
sult in a linear increase in prediction time.  
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The Impact of Chaos on Forecast Horizon
Very simple equations can generate chaotic behavior.  

Equation 1 presents a simple discrete recurrence relation.  
The value of a variable x at discrete time, t, depends on its 
value at previous discrete time, t – 1.  

For the purposes of our discussion, let us assume t is de-
fined in discrete seconds.   In the graph presented in Figure 
2, x0 is set to 0.5.   (Therefore, x1 is (0.5)2 – 1.9 or -1.65).  

As is evident from the graph, this equation describes an 
oscillating value.  The pattern of the oscillation will never 
repeat.  Imagine that x describes the location of some ob-
ject at a certain time.   How accurately can we predict 
where the object will be at a certain time?   If its initial 
starting position is 0.5, then we can determine its future 
position with absolute certainty.   But suppose we are off in 
our measurement of its initial position.  Suppose we can 
only measure accurately to one angstrom (one ten-billionth
of a meter or 10-10 meter).  So instead of its starting posi-
tion being at 0.5, its starting position would be 
0.5000000001 m.   On Figure 3, we plot both the original 
curve when x0 is 0.5, and the new curve where x’

0 is 0.5 
plus one angstrom.  As can be seen, the curves differ dra-
matically after around t = 44.   In other words, if our origi-

nal estimate is off by 1 angstrom, we can make accurate 
predictions up to around 44 seconds before our predictions 
are no longer accurate (and never regain accuracy).   

This phenomenon of a forecasting horizon is well known 
in the field of chaotic mathematics.  Small perturbations in 
initial conditions cause the output of equations to diverge 
over time.   The smaller the perturbation, the longer the
two values remain close.  The relationship between the 
magnitude of the forecast horizon varies inversely propor-
tional to the logarithm of the size of the error.  The smaller 
the error, the longer the horizon – but the relationship is 
exponential.  It requires an exponential decrease in the er-
ror to result in a linear increase in the forecast horizon.  

The implications of this result are astounding when ap-
plied to making predictions about the future.  Current hu-
man technology allows us to make measurements to 
around 1 angstrom in certain cases.  Would a superintelli-
gence be able to make better predictions with increased 
knowledge?   What if the superintelligence had the 
knowledge to make much finer measurements?   In an ex-
periment, the initial measurement was varied by a tiny 
amount starting with one angstrom.  The time was recorded 
as to when the prediction made by this measurement dif-
fered from the actual value by more than 50%.  In Figure 4
the measurement error decreases by an order of magnitude 
along the x-axis.  What is extraordinary about this graph is 
that decreases by several orders of magnitude in the meas-
urement error only result in very modest gains in the fore-
cast horizon.  For instance, with a decrease equivalent to 6 
orders of magnitude (one million times more accuracy), the 
forecast horizon goes from 49 seconds to 74 second (1.5 
times further).   The limits of how far one could look ahead 
in this simple equation are ultimately capped by the limits 
in one’s measurement ability.  In our universe, no meas-
urement is possible below a Planck length, 1.6 x 10-35 me-
ters.  So even if one were measure at the very limits, over 
1025 times more accurately than an angstrom, the graph 
shows that one can only look 3.14 times further into the 
future.   

Figure 2 Initial Measurement Is Off By 1 Angstrom

Figure 2 An Illustration of Chaotic Behavior from a Simple
Recurrence Relation, xt=x2t-1-1.9

Figure 3 Forecast Horizon By Measurement Error (Note: For 
example, the error at N=25 is 10-25 m)
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Some predictions can be made about the value of x.  We 
can predict with 100% accuracy that the value of x will be 
between -2 and 2. However, we could have experimentally 
made that estimate even with a fairly inaccurate initial 
measurement.  Increasing the accuracy of the initial meas-
urement has almost no effect on the accuracy of the pre-
dicted range of x values.   

Similar results can be obtained by looking at other cha-
otic equations such as those that govern the famous Three-
Body Problem.  Figure 5 shows a similar experiment for an
instance of the Three-Body Problem.  Again, notice how 
an exponential increase in measurement accuracy results in 
a modest linear increase in forecast horizon.  At one ang-
strom of accuracy, the forecast horizon is at 1,865 seconds; 
at 10-35 accuracy, the forecast horizon is 10,394 – 5.6 times 
farther.   

A conclusion that can be drawn from this analysis is that 
orders of magnitude gains in accuracy only result in mod-
est improvements in prediction accuracy.  The results of 
such studies are so dismal that researchers in weather fore-
casting have concluded that local weather forecasting will 
remain capped in accuracy to 15-16 days regardless of the 
amount of any additional data or measurement precision –
a conclusion that would apply to all intelligent beings, not 
just humans (Brisch and Kantz, 2019; Zhang et al, 2019).  

Predicting the Future with Exponential 
Branching

Chaotic behavior suggests that increasing computational 
power will not result in better predictions beyond a modest 
window.   However, even in non-chaotic events, exponen-
tial increases in computational power may not result in 
exponential increases in abilities.  This paucity of im-
provement will be noticeable in any domain where the 
branching factor is inherently exponential – which is a fea-
ture of most future events planning.  The canonical exam-
ple in computer science and artificial intelligence of the 
impact of exponential explosion is in computer chess.    

Several studies have explored how increasing search 
depth leads to higher chess rankings as indicated in Figure 
6.   However, ELO rankings are challenging to use to com-
pare vastly unequal players as they are based on winning 
percentages.   Overall winning percentages are a problem-
atic metric to compare computer opponents.  Suppose one 
player beats another player 100% of the time – how much 
better is that player?  Twice as good? One hundred times 
as good?   One million times as good?   Instead, we con-
ducted a study that looks at search depth that looks at the 
chance of finding a better move as the search deepens.   

In an implementation using the computer chess engine 
Stockfish, we conducted a study as follows:

� We generated 100 mid-games by having the en-
gine play itself 100 times and stop after 20 moves.
The resulting partially completed games all ended 
up in unique positions.

� For each of the 100 mid-games, the chess engine 
searched for the best next moves.   The engine 
would be limited in its search by constraining the 
number of board positions searched in the game
tree.   These constraints were given in powers of 
2, so Level 20 would be a level where the search 
looked at approximately 220 ~ 1 million board po-
sitions.  

� A “Gold Standard” move set was defined as the 
best three moves as specified by a search that 
evaluated 234 board positions (which takes ap-
proximately 4 hours of clock time).  

� We plotted 
1) the percentage of times the best move for a 
given level was different than the “Gold
Standard” (Figure 7), and
2) the percentage of times the best move for a 
given level was different than the proceeding 
level (Figure 8).

Figure 5 Forecast Horizon for Example Three Body Problem

Figure 6 ELO Ranking Estimate Based on Search Depth (from 
Ferreira, 2013)
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As can be seen from Figure 7, differing from the Gold 
Standard decreases as the search deepens.   The decrease is 
at first steep, but it begins to level off so that the effect of 
an exponential increase in the number of board positions 
search does not result in a significant change in the likeli-
hood of selecting the best move.   The algorithm is just as 
likely to select the best move when searching 223 board 
positions as it does 230 board positions.  As indicated in 
Figure 8, once a certain threshold of board positions evalu-
ated (around 219 in this chart), the advantage of increasing 
the search space only results in a 5% chance of selecting a 
different move at the next level, and that chance is constant 
across the rest of the graph.  

One interpretation of these results is that an exponential 
increase in search space follows a law of diminishing re-
turns.  Initial gains are quite good – but after a certain point 
the exponential increase in the search gives only modest 
gains.  This finding corroborates a result of an earlier re-

sult by Steenhuisen who looked at search depths up to size 
20 (Steenhuisen, 2005).  

A Word about (Deep) Neural Networks
Recent successes using deep neural networks might sug-
gest that limitations in search algorithms (such as those 
discussed in the previous section) can be overcome by us-
ing connectionist models.  In particular, DeepMind’s Al-
phaZero crushed Stockfish in a 1000-game chess match, 
seemingly conferring a significant advantage to deep neu-
ral networks.  In these timed games, AlphaGo dominated.  
However, neural networks have some shortcomings that 
may not allow these algorithms to improve at a significant 
rate even given exponential increases in computational 
power.

Individual neural networks consistently reach limits in 
their performance, and no amount of extra data or pro-
cessing time will improve their performance.   Further, 
adding extra hidden layers, i.e., making the neural network 
“deep”, confers advantages for some problems, but, at 
some point, adding more layers does not result in better 
performance.   

Most papers describing a neural network experiment 
comes with a learning curve such as the representative 
graph given in Figure 9.  What this figure indicates is that 
as the number of training epochs (the amount of training 

increases), the performance of the system gets better.  
However, as can be clearly seen, after an initial rapid 
climb, the performance only gets incrementally better, and 
then it typically has no improvement no matter how much 
longer it runs or how much data it receives.   

Studies also show that increasing the depth of a neural 
network by adding hidden layers may result in some initial

Figure 8 Percentage of Time the Best Move at a Level 
Differed from the Best Move at the Preceding Level

Figure 7 Percentage of the time the best move selected at a level 
differs from the Gold Standard move

Figure 9 Representative Illustration of the Learning Curve of a 
Neural Network
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gains, but additional layers may actually result in worse 
performance.  A seminal study on image processing using 
ResNet found that increasing the number of hidden layers 
found diminishing returns as indicated in the chart given in 
Figure 10.

Why We Still Might Want to Be Concerned 
About Superintelligences

This paper attempts to dispel the fears that machines in the 
future will be “billions” of times more intelligent than hu-
mans.   Even with massive improvements in computational 
power, such machines only have the potential for modest 
linear improvements in intelligence.  Nonetheless, linear 
improvements are still improvements.  A machine that can 
predict stock market behavior five seconds ahead of anoth-
er can dominate trading, the basis of high-frequency trad-
ing (HFT) algorithms.  Making a better chess move than 
your opponent only 5% of the time (and never making a 
worse move) will result in a 60-70% winning percentage.    
When we look to a future with superintelligent machines, 
we do need to be concerned that machines will supplant 
many workers, not just because they are cheaper, but be-
cause they are better.   An accountant that can find tax sav-
ings that are 3% better is going to be preferred.  A machine 
won’t have to be a 1000 times smarter to take your job –
just 3% better.   Nick Bostrom’s concern that autonomous 
machines will outsmart us, manipulate us and run circles 
around us seems unlikely given that they will only be mod-
estly better at predicting and planning the future, and we 
can still build non-autonomous machines that can be used
as tools to match wits with those autonomous machines.   

Conclusions
Machines with extraordinary computational power will be 
built in our future.   Their ability to perform computations 
will certainly exceed the human body’s ability to perform
computations.   As those systems improve, their memory 

capacity and processor speed may outstrip human capacity 
by many orders of magnitude.   This paper argues that 
those machines will not outstrip human intelligence by 
many orders of magnitude.  In fact, their level of intelli-
gence, as measured by their ability to predict and plan for 
the future, may only be marginally better than human abil-
ity.   The limitations mentioned in this paper are two-fold: 
1) limitations based on the inability to predict future events 
that are based on chaotic equations, and 2) limitations 
based on diminishing returns of analyzing exponentially 
expanding search spaces.   Chaos is of particular concern 
in predicting the future, even in a deterministic world.   We 
close this paper by noting that quantum physics suggest 
that the physical world is not deterministic – randomness 
exists at the subatomic level.   And, because chaotic equa-
tions are so sensitive to initial values, a fluctuation at the 
quantum level, even at the dimensions of a Planck length
(10-35 m), can very quickly propagate through the system 
resulting in changes at the macro-scale.  Thus, any efforts 
for accurate predictions of future events on the human 
scale beyond a few minutes, hours or days, may be theoret-
ically impossible.   No matter how smart you are.   
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