
Bounded-Memory Criteria for
Streams with Application Time

Simon Schiff, Özgür L. Özçep
Institute of Information Systems (IFIS)

University of Lübeck
Lübeck, Germany

{schiff,oezcep}@ifis.uni-luebeck.de

Abstract

Bounded-memory computability continues to be in the focus
of those areas of AI and databases that deal with feasible
computations over streams—be it feasible arithmetical cal-
culations on low-level streams or feasible query answering
for declaratively specified queries on relational data streams
or even feasible query answering for high-level queries on
streams w.r.t. a set of constraints in an ontology such as in the
paradigm of Ontology-Based Data Access (OBDA). In classi-
cal OBDA, a high-level query is answered by transforming it
into a query on data source level. The transformation requires
a rewriting step, where knowledge from an ontology is in-
corporated into the query, followed by an unfolding step with
respect to a set of mappings. Given an OBDA setting it is very
difficult to decide, whether and how a query can be answered
efficiently. In particular it is difficult to decide whether a
query can be answered in bounded memory, i.e., in constant
space w.r.t. an infinitely growing prefix of a data stream. This
work presents criteria for bounded-memory computability of
select-project-join (SPJ) queries over streams with applica-
tion time. Deciding whether an SPJ query can be answered in
constant space is easier than for high-level queries, as neither
an ontology nor a set of mappings are part of the input. Using
the transformation process of classical OBDA, these criteria
then can help deciding the efficiency of answering high-level
queries on streams.

Introduction

The potential infinity and velocity of stream data is a big
challenge for designing streaming engines that are going
to be used in an agent, in a data stream management sys-
tem (DSMS) or in any other system that has to process
streams. This holds true regardless of whether one con-
siders engines for doing arithmetical calculations on low-
level streams (such as sensor percepts in agents), answer-
ing queries in a DSMS, answering high-level queries w.r.t.
a set of constraints in an ontology such as in the paradigm
of Ontology-Based Data Access (OBDA), or considering a
stream of actions and belief states in the agent paradigm.

Usually, stream queries are registered at a stream engine
at some point and then evaluated continuously on an ever

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

growing prefix of one or more input streams. Efficient al-
gorithms that evaluate registered queries continuously are
indispensable. However, deciding whether a query can be
evaluated efficiently is a non-trivial task. And even if it is
known that a query is computable efficiently it does not au-
tomatically lead to a procedure that generates an algorithm
evaluating that query efficiently. If one could find criteria to
identify such queries and a procedure that generates an al-
gorithm respectively, then this would mean a real benefit for
efficient stream processing.

In this paper, we are going to focus on one aspect of ef-
ficient stream processing dealt under the term “bounded-
memory computation”, namely keeping space consumption
during the evaluation as low as possible, in particular keep-
ing it constant in the size of the prefixes of the streams pro-
cessed so far. A stream engine in an agent or a DSMS has
only a bounded amount of space available, regardless of hard
disk storage or main memory. If more than constant space is
required, for instance linear space with respect to the ever
growing prefix of one or more input streams, then a system
will run out of memory at some point. In that case, it is not
possible to evaluate such a registered query correctly.

Recent efforts where made to temporalize and stream-
ify classical OBDA for processing streams of data (Baader,
Borgwardt, and Lippmann 2013). High-level queries are
written with respect to a signature of an ontology and an-
swered by transforming them into queries on data source
level. The ontology is a knowledge base and can be main-
tained by an expert of a specific domain such as an engi-
neer. Mappings map ontology predicates into a query on data
source level. Therefore, mappings are defined and main-
tained by an IT-specialist. Such an OBDA approach is also
of interest for AI research on rational agents whose knowl-
edge on the environment, e.g., is encoded in an ontology.

Given an OBDA setting, deciding whether a high-level
query is bounded-memory computable (bm-computable)
can be difficult. However, in case of classical OBDA, a high-
level query can be transformed into a query on data source
level such as the structured query language (SQL). Deciding
bounded-memory computability for SQL queries is easier
than for high-level queries as no ontology or set of map-
pings is part of the input. Nevertheless, some assumptions

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

148

made on the ontology level need to be considered on the
data source level. These assumptions and many more, as pre-
sented later, heavily influence the criteria for testing whether
a SQL query is bm-computable.

We present criteria for bounded-memory computability of
SQL queries over relational data streams with a specific at-
tribute for application time. We assume that the SQL queries
are transformation outputs of high-level queries in a stream-
ified OBDA scenario and that they may contain constraints
from the ontology and the high-level execution model.

Preliminaries
Queries that can be evaluated in constant space with respect
to an ever growing prefix of one or more input streams are
said to be bm-computable (Definition 1).
Definition 1 (Definition 3.1 in (Arasu et al. 2004)). A query
is computable in bounded-memory if there exists a constant
M and an algorithm that evaluates the query using fewer
than M units of memory for all possible instances of the
input streams of the query.

An instance of a stream is at any point of time a bag of
tuples seen so far. Only a bounded amount of tuples can be
stored in memory as otherwise, more than constant space
is required during query evaluation. The bounded amount
of tuples can be seen as a representation for the instance
of a stream. Such a representation is later referred to as a
synopsis and results have to be the same at any point of time
regardless of whether query Q is applied on the synopsis or
the instance of a stream.

At any time, the instance of the output stream is defined
as the result of applying query Q on the database instance
that contains all tuples ever received. Therefore, we have to
restrict the class of queries to monotonic ones. As usual, a
query Q over a schema R is called monotonic iff for ev-
ery two instances I, J of R: I ⊆ J → Q(I) ⊆ Q(J). In
particular, an SQL query is monotonic, if it does not con-
tain negation or aggregation. This is the case for the class of
select-project-join (SPJ) queries and their (polyadic) unions,
which are in the focus of this paper.

If the projection of a query is duplicate preserving, then
the polyadic union operator is duplicate preserving and if
the projection is duplicate eliminating, then the polyadic
union operator is duplicate eliminating. It can be shown that
a set of SPJ queries, combined by a polyadic union opera-
tor, is bm-computable if every SPJ query in the set is bm-
computable. Moreover, not every SPJ query in a set is nec-
essarily bm-computable if the union of every SPJ in the set
is bm-computable. SPJ queries have static relations (Defini-
tion 2), infinite streams and finite streams as input.
Definition 2. A static relation R consists of a finite bag of
tuples having the same schema.

We draw a distinction between an infinite stream and a
finite stream (Definition 3). The distinction is necessary for
defining criteria testing whether a transformed query is bm-
computable or not.
Definition 3. An infinite (finite) stream S (F) is an infi-
nite (finite) sequence of relational tuples having the same
schema.

A finite or infinite stream is referred to as a stream in the
following, except when there is a notable difference.

We assume that the SPJ queries that are going to be tested
for bounded-memory computability are given in a specific
normal form as described in (Definition 4).
Definition 4 (Extension of Subsection 4.4 in (Abiteboul,
Hull, and Vianu 1995)). An SPJ algebra query is in normal
form iff it has the form:

ΠL

(
m×
i=1

{〈ai〉} × σP

(
k×

i=1

Ri ×
l×

i=1

Si ×
p×

i=1

Fi

))
where Π ∈ {π̇, π} is a duplicate-preserving projection op-
erator π̇ or a duplicate-eliminating projection operator π,
L = {j1, . . . , jn}, n ≥ 0 is the list of attributes projected
out, a1, . . . , am ∈ dom a set of constants in the domain,
m ≥ 0, {1, . . . ,m} ⊆ {j1, . . . , jn}, R1, . . . , Rk are static
relation names (repeats permitted), S1, . . . , Sl are infinite
stream names (no repeats permitted), F1, . . . , Fp are finite
stream names (no repeats permitted), and P is a set of atoms
of the form (X op Y) where op ranges over {<,=, >, �=}
(Abiteboul, Hull, and Vianu 1995). X is an attribute and Y is
either an attribute, integer or timestamp. The comparison of
constants is omitted, as they evaluate either to true or false.
No timestamp attribute is in the project list L. Each infinite
stream or finite stream contains a timestamp attribute. The
comparison of timestamp and integer attributes is forbidden.
We assume that the size of a query is bounded by a constant.

We forbid the comparison of timestamps and integers as
this would require a conversion of timestamps to integers,
and there is possibly more than one way of converting a
timestamp into an integer (and vice versa).

An important notion for our criteria is that of boundedness
of attributes. Arasu and colleagues (Arasu et al. 2004) define
the boundedness of attributes in queries that refer only to
infinite streams. The boundedness of attributes in queries,
which are the results of a transformation in a OBDA scenario
considered in this paper, differ, as transformed queries refer
additionally to static relations and finite streams.
Definition 5. If selection P+ contains an equality join of
the form (Si.A = Rj .B) or (Si.A = k) for some con-
stant k, then attribute A of stream Si is lower-bounded and
upper-bounded. An attribute A is lower-bounded (upper-
bounded) if the selection P+ contains an inequality join of
the form (Si.A > Rj .B) or (Si.A > k) ((Si.A < Rj .B)
or (Si.A < k)). If an attribute is lower-bounded and upper-
bounded, then it is bounded, otherwise it is unbounded.

As mentioned in the beginning, a high-level query QH

written with respect to an ontology can be transformed into
a query on data source level, such as a SPJ query, depending
on the expressiveness QH and the ontology language.

Usually, classical OBDA query answering is defined un-
der set semantics and transformed queries have a duplicate
eliminating operator. However, it is possible and reason-
able to define OBDA query answering under bag-semantics
(Nikolaou et al. 2017). Therefore, we present bounded-
memory requirements for queries with a duplicate eliminat-
ing as well as duplicate preserving operators.

149

Execution Model

According to Definition 3, an infinite stream Sj (1 ≤ j ≤ l)
is an infinite sequence of relational tuples having the same
schema. The domain of each attribute is the set of integers
or timestamps from a flow of time (T,≤T), where T has 0
as minimum, has no last element, is discrete, and ≤T is non-
branching (i.e. linear). Exactly one attribute of a schema is
from the domain of timestamps. The amount of tuples hav-
ing the same timestamp is bounded by a constant.

A finite stream Fj (1 ≤ j ≤ p) is a stream except that
T has a last element (Definition 3). We assume that the last
element of T is known before processing starts.

All streams are synchronized with respect to the times-
tamps and every tuple with the same timestamp fits into
memory. An evaluation plan can assume that tuples of a
stream arrive at the system with monotonic increasing times-
tamps and the order of every tuple per timestamp is random.

Static relations Rj (1 ≤ j ≤ k) consist of a finite bag of
tuples having the same schema (Definition 2). The domain
of each attribute is the set of integers. Rj does not change
over time while processing a query (which makes Rj static).
Every attribute A of a static relation is lower-bounded by
min{rj [A]}, upper-bounded by max{rj [A]}, and therefore
always bounded.

All tuples of a stream having the same timestamp are re-
ceived and cached until a tuple with a new timestamp arrives
at the system. A marker denotes the arrival of such a tuple
that has a timestamp different from those timestamps of the
cached tuples. The query is executed as soon as a marker is
received, results are written into the output, and the cache
is emptied. Figure 1 visualizes two synchronized streams S,
T , where a marker denotes the arrival of a new timestamp.

Example 1. A DSMS receives two synchronized and or-
dered streams S, T of temperature values produced by tem-
perature sensors. The streams are synchronized, because the
arrival of a new marker denotes the arrival of a tuple with
a timestamp that is different from the timestamps of the
cached tuples, and tuples arrive in order with respect to
their timestamp. In this example, the tuples S(−1◦C, 0s)
and T (−2◦C, 0s) arrive at the DSMS and are written into
a cache. A marker triggers the re-evaluation of a query that
is registered at the system. The cache is emptied and new tu-
ples arrive at the system that have another timestamp than
the already processed tuples. All tuples that arrive at the
DSMS between two markers fit into memory, as the amount
of tuples between two markers is bounded by a constant.

Preprocessing of Queries

Our criteria are defined for queries in a special form. Due
to this, queries that consist of SPJ queries combined by a
polyadic union operator need to be preprocessed in four
steps in such a way that criteria testing whether the query
is bm-computable can be applied:

1. Split each SPJ query, with selection containing inequality
join predicates of the form (Si.A �= Sj .B) with i �= j,
into multiple SPJ queries combined by a polyadic union
operator, until no SPJ query contains a selection with a

Marker DSMS

. . . S(1◦C, 1s) S(−1◦C, 0s)

. . . T (0◦C, 1s) T (−2◦C, 0s)

Figure 1: Execution Model

disjunction. Then, a SPJ query has (Si.A > Sj .B) and
another one (Si.A < Sj .B) in its selection.

2. Join streams Si with timestamp attribute I and Sj with
timestamp attribute J into a single stream S with fresh
timestamp K, if both are part of a SPJ query, where (I =
J) is in the selection P+. The fresh schema of stream S
contains every attribute from the streams Si, Sj from the
domain of integers and attribute K with K = I = J from
the domain of timestamps.

3. Rename an infinite stream Si with timestamp attribute I
into finite stream Fi if I is upper-bounded in the selection
of a SPJ query.

4. Derive a set of locally totally ordered (LTO) queries from
each SPJ query and combine them by a polyadic union
operator. A LTO query is derived from a SPJ query Q by
adding filter predicates to the selection P of Q. Adding
different filter predicates to P of Q results in a finite
number of different LTO queries. Whether a query is a
LTO query or not, depends on the transitive closure P+

of selection P . The transitive closure P+ is the set of
all atomic predicates that can be logically inferred by the
predicates in P , involving only elements of P (Arasu et
al. 2004).

For every input stream Si of a LTO query, the set of inte-
ger attributes of Si and constants contained in the query are
totally ordered (Definition 6).

Definition 6 (Definition 4.3 in (Arasu et al. 2004)). A set of
elements E (attributes, integers, constants) is totally ordered
by a set of predicates P if for any two elements e1 and e2 in
E, exactly one of the three atomic predicates (e1 < e2) or
(e1 = e2) or (e1 > e2) is in P+.

A preprocessed query is here referred to as a modified
LTO query (Definition 7).

Definition 7. A modified LTO query has the following prop-
erties:

1. The selection does not contain an inequality join of the
form (Si.A �= Sj .B).

2. Does not refer to any two streams Si with timestamp at-
tribute I and Sj with timestamp attribute J together with
an equality join predicate of the form (Si.I = Sj .J) ∈
P+, with i �= j.

3. Does not refer to a stream Si where the timestamp at-
tribute is upper-bounded.

150

4. Each set of integer attributes of every SPJ query is totally
ordered.

Set A(S) contains all attributes that are in the schema of
stream S, and set S(Q) contains all input streams of query
Q. A dependency graph G(Q) = (V,E) induced by a mod-
ified LTO query Q has the vertices V = S(Q) and edges
E = {(Si, Sj) | Si, Sj ∈ V ∧ (Si.I > Sj .J) ∈ P+ ∧
I, J are timestamp attributes}. For each stream S ∈ S(Q),
graph G̃(S,Q) is the connected component in G(Q), in that
stream S is contained. Graph G(S,Q) is the spanning tree of
G̃(S,Q). If G(S,Q) forms a tree, then d(G(S,Q)) denotes
the distance of stream S to the root node of a tree. The chil-
dren of a parent node in a tree are those with a distance of
one to the parent node.

Our criteria depend on the potential redundancy of in-
equality predicates (Definition 8), and two sets MaxRef,
MinRef (Definition 9).

Definition 8 (Definition 4.1 in (Arasu et al. 2004)). An in-
equality predicate (e1 < e2) ∈ P is said to be redun-
dant in P iff one of the following three conditions hold: (1)
there exists an element e such that (e1 < e) ∈ P+ and
(e < e2) ∈ P+; (2) there exists an integer constant k such
that (e1 = k) ∈ P+ and (k < e2) ∈ P+; (3) there ex-
ists an integer constant k such that (e1 < k) ∈ P+ and
(e2 = k) ∈ P+.

Definition 9 (Definition 5.4 in (Arasu et al. 2004)).
MaxRef(Si) is the set of all unbounded integer attributes
A of Si that participate in a non-redundant inequality join
(Sj .B < Si.A), with i �= j, in P+ and MinRef(Si) is the
set of all unbounded integer attributes A of Si that partici-
pate in a non-redundant inequality join (Si.A < Sj .B), with
i �= j, in P+.

Example Queries

In this section, we illustrate (the proofs for) our criteria for
bounded-memory computability with an extensive example.
The example query Q has input streams S(A, I), T (B, J),
and U(C,K), where A, B, and C are integer attributes, and
I , J , and K are timestamp attributes:

ΠA,B(σ(I>J)∧(J>K)∧(A>B)∧(0<B)∧(B<5)(S × T × U))

The query is bm-computable in the duplicate preserving,
but not in the duplicate eliminating case. In the duplicate
preserving case, synopses Syn(t), Syn(u) are created for
streams T and U . A synopsis, such as Syn(t) contains for
the current instance t of stream T tuples that “represent” t
so that Q(t) = Q(Syn(t)). In case of duplicate preserving
queries, synopsis Syn(t) contains two sets sTn , sTp . Set sTn
in Syn(t) of stream T contains values with respect to the
current time step, and sTp in Syn(t) of stream T values that
were inserted into sTn in the past. Sets sTn and sUn contain
only values with respect to the current time step and the size
of them is always finite as only a bounded amount of tuples
arrive at a DSMS at each time step. Set sTp is always finite as
only distinct values of bounded attribute B between 0 and 5
are stored in the synopsis and set sUp only contains an empty

tuple with a counter as presented later. Therefore, the size of
Syn(t) and Syn(u) is bounded by a constant.

Assume tuples from streams S, T , and U arrive at a
DSMS as visualized in Figure 2. The arrows denote that
(I > J) ∈ P or (J > K) ∈ P are satisfied. At time
step 0s, the tuples (42, 0s) and (7, 0s) arrive at the DSMS.
Tuple (42, 0s) is discarded as (I > J) ∈ P can never be sat-
isfied. All tuples arrive with an increasing timestamp value
and no tuple with a timestamp value less than 0s was ever
received in the past or will be received in the future. The
same holds for tuple (7, 0s) with respect to (J > K) ∈ P
and additionally (B < 5) ∈ P is not satisfied. In the next
time step, tuple (1, 1s) arrives at the DSMS and is not dis-
carded, as (J > K) ∈ P is possibly satisfied in the fu-
ture. Value 1 is not stored in memory, as attribute C is not
in the project list L or part of a predicate in selection P of
Q. Instead, an empty value () is stored in sUn together with
a counter 〈1〉. Conceptually, ()〈1〉 ∈ sUn denotes that a tu-
ple was received from stream U at the current time step.
In the next time step, ()〈1〉 is moved from set sUn into sUp .
Now, ()〈1〉 ∈ sUp denotes that a tuple was received from
stream U in the past. Tuple (2, 2s) is not discarded, as
(J > K) ∈ P and {(0 < B), (B < 5)} ⊆ P are satis-
fied, and (I > J) ∈ P is possibly satisfied in the future.
Value 2 is stored in memory, as B is in the project list L and
()〈1〉 ∈ sUp denotes, that (2, 2s) was received after exactly
one tuple (here (1, 1s)) from stream U in the past. There-
fore, (2)〈1〉 is stored in sTn and moved into set sTp at the
next time step. Counter 〈1〉 of value 2 denotes, that (2, 2s)
was received exactly once after a tuple was received from
stream U in the past. In the next time step, tuple (3, 3s) ar-
rives at the DSMS and again, an empty value together with
counter 〈1〉 is stored in sUn . At time step 4s, ()〈1〉 ∈ sUn is
moved into set sUp = {()〈1〉} and then merged by adding
the counters of the empty values. Element ()〈2〉 ∈ sUp de-
notes that two tuples where received from stream U in the
past. Tuple (1, 4s) arrives at the DSMS from stream T and
(1)〈2〉 is stored in sTn denoting that (1, 4s) was received ex-
actly two times after two tuples where received from stream
U in the past. In the next time step, (1)〈2〉 is moved from
set sTn into sTp and tuples (42, 5s) and (3, 5s) arrive at the
DSMS. Value 3 is stored together with counter 〈2〉 in sTn
as described before and value 42 is not stored in memory
as synopsis Syn(s) does not exist. All tuples received from
stream S are only needed at the current time step to com-
pute results and never in the future. Therefore, a synopsis
Syn(s) is unnecessary. Tuple (42, 5s) from stream S is re-
ceived after tuple (2, 2s) and (2, 2s) after (1, 1s) as depicted
in Figure 2. Thus, (42, 2) needs to be written into the out-
put stream, as attributes A and B are in the project list L.
However, the tuples (42, 5s), (2, 2s), (1, 1s) are not stored
in memory and results need to be computed from the val-
ues stored in the synopsis Syn(t). As depicted in Figure 2,
(2)〈1〉 is stored in sTp denoting, that value 2 was received
from stream T in the past after exactly a single tuple was
received from stream U in the past. Therefore, (42, 2) can
be derived as a result from synopsis Syn(t). Additionally,
(42, 5s) was received after (1, 4s) from stream T and (1, 4s)

151

time

0s

1s

2s

3s

4s

5s

A

����42

42

B

��7

2

1

3

C

1

3

sTn = {(3)〈1〉}

sTp = {(1)〈2〉, (2)〈1〉}

sUn = {}

sUp = {()〈2〉}

Figure 2: Example instances of streams S, T, and U

after (3, 3s) and (1, 1s) from stream U . Thus, (42, 1) needs
to be written twice into the output stream. Again, this result
can be derived from (1)〈2〉 ∈ sTp as before.

Query Q is not bm-computable in the duplicate eliminat-
ing case as attribute A is in the project list L. Any evaluation
strategy that evaluates Q has to check whether a tuple was
already written into the output stream. Therefore, an evalu-
ation strategy has to keep track of every distinct tuple that
was written into the output stream. However, attribute A is
not bounded and arbitrary many distinct tuples of stream S
might arrive at the system, where Syn(t) and Syn(u) are
not empty. An evaluation strategy, that necessarily has to
keep track of every distinct value of attribute A, stores an
unbounded amount of tuples in memory. Therefore, Q is not
bm-computable in the duplicate eliminating case.

Duplicate Preserving Queries

This section presents in Theorem 1 a sufficient and nec-
essary criterion for bounded-memory computability of
duplicate-preserving modified LTO queries (Definition 7).

Theorem 1. Let

π̇L

(
m×
i=1

{〈ai〉} × σP

(
k×

i=1

Ri ×
l×

i=1

Si ×
p×

i=1

Fi

))
be a modified LTO query Q, k, p ≥ 0, and l > 1. Q is bm-
computable iff all of the following conditions are fulfilled:

C1: For every stream Si, the graph G(Si, Q) forms a tree,
with i = 1, . . . , l.

C2: Graph G(Si, Q) forms a tree and for every integer join
of the form (Si.A op Sj .B), with i �= j and op ranges
over {<,=, >}, if G(Si, Q) = G(Sj , Q), then Si, Sj

have either the same stream as parent, Si is the par-
ent of Sj , or Sj is the parent of Si, else if G(Si, Q) �=
G(Sj , Q), then d(G(Si, Q)) = d(G(Sj , Q)) = 0.

C3: Graph G(Si, Q) forms a tree and for every integer at-
tribute A ∈ A(Si) in project list L, with i = 1, . . . , l,
d(G(Si, Q)) ≤ 1, and if |{G(Si, Q) | 1 ≤ i ≤ l}| > 1,
then A is bounded, else if |{G(Si, Q) | 1 ≤ i ≤ l}| = 1
and d(G(Si, Q)) = 1, then A is bounded.

C4: Graph G(Si, Q) forms a tree and for every inte-
ger equality join predicate (Si.A = Sj .B), with
i �= j, Si.A and Sj .B are both bounded, except
for |{G(Si, Q) | 1 ≤ i ≤ l}| = 1 and either
d(G(Si, Q)) = 0 or d(G(Sj , Q)) = 0. If |{G(Si, Q) |
1 ≤ i ≤ l}| = 1 and d(G(Si, Q)) = 0 then Sj .B
is bounded and d(G(Sj , Q)) = 1. If |{G(Si, Q) | 1 ≤
i ≤ l}| = 1 and d(G(Sj , Q)) = 0 then Si.A is bounded
and d(G(Si, Q)) = 1.

C5: Graph G(Si, Q) forms a tree and |MaxRef(Si)| +
|MinRef(Si)| = 0, with i = 1, . . . , l, except for
|{G(Si, Q) | 1 ≤ i ≤ l}| = 1 and d(G(Si, Q)) = 0.

We shortly motivate each of the conditions in the cri-
terion. As G(Si, Q) forms a tree by C1, counters in sSi

n
of parent streams Si can be updated depending on child
streams Sj counters in s

Sj
p each time a tuple from stream

Si is received. By condition C2, an inequality join of the
form (Si.A op Sj .B) is only allowed if Si, Sj have either
the same stream as parent, Si is the parent of Sj or Sj is
the parent of Si, where op ranges over {≤,=,≥}. This en-
sures that each update of a counter can be computed with re-
spect to any join between the attributes of Si and Sj or child
streams Sj of Si at the current time step where it can be
guaranteed that all values in s

Sj
p of child streams Sj where

received in the past with respect to the values in sSi
n of the

parent stream Si of child streams Sj .
At each time step, a counter denotes how often values of

an attribute A in project list L need to be written into the
output stream. However, attributes are only written into the
output stream if all sSi

n of streams Si that are in the root
of G(Si, Q) are not empty and at least one tuple is received
from one of those streams Si at the current time step. Then,
only the counters in sSi

n of streams Si in the root of G(Si, Q)
or counters in sSi

p of streams Sj that are a child of streams
Si in G(Si, Q) are up to date and therefore, only attributes
A ∈ A(Si) ∪A(Sj) are by condition C3 in project list L.

Conditions C4 and C5 ensure that every attribute that in-
fluences the output of Q is bounded. If an attribute A influ-
ences the output of Q, then all values of attribute A need
to be stored in memory. However, storing all values ever
received would require an unbounded amount of memory.
Therefore, only distinct values together with a counter are
stored in memory which requires only a bounded amount of
memory if attribute A is bounded.

Duplicate Eliminating Queries

This section presents in Theorem 2 a sufficient criterion
for bounded-memory computability of duplicate eliminating
modified LTO queries (Definition 7).
Theorem 2. Let

πL

(
m×
i=1

{〈ai〉} × σP

(
k×

i=1

Ri ×
l×

i=1

Si ×
p×

i=1

Fi

))
be a modified LTO query, k, p ≥ 0, and l ≥ 1. Q is bm-
computable if all of the following conditions are fulfilled:
C1: Every integer attribute in the project list L is bounded.

152

C2: For every integer equality join predicate (Si.A =
Sj .B), where i �= j, Si.A and Sj .B are both bounded.

C3: |MaxRef(Si)|eq + |MinRef(Si)|eq ≤ 1 for i ≤ 1, . . . , l.

In C3, |E|eq is the number of equivalence classes into which
element set E is partitioned by the set of predicates P .

The criterion for queries with a duplicate eliminating op-
erator is less restrictive than for queries with a duplicate pre-
serving operator as counters are unnecessary. However, all
attributes influencing the output of Q need to be bounded to
keep track of all tuples that where already written into the
output stream. That is necessary to prevent duplicates being
written into the output stream. Graph G(Si, Q) does not have
to form a tree as no counters need to be updated.

Related Work

Our criteria on bounded-memory computability are moti-
vated by those of Arasu and colleagues (Arasu et al. 2004).
The main difference is that Arasu and colleagues provide
general criteria for a subclass of SQL queries over infinite
streams without considering additional constraints on spe-
cific attributes such as that of a time attribute. Our results
show that additional constraints such as that of having a time
domain with a linear order and a starting time point have a
strong influence on bounded-memory computability.

Pushing the idea of constraints on streams further leads
to considering constraints specified in a knowledge base /
ontology. In this respect, our work is related to (in fact, mo-
tivated by) stream processing within the OBDA paradigm
(Calbimonte et al. 2012) or stream processing w.r.t. Dat-
alog knowledge bases (Beck, Dao-Tran, and Eiter 2018;
Walega, Kaminski, and Grau 2019). In particular we con-
sidered queries resulting from the transformation (Schiff,
Özçep, and Möller 2018) of OBDA queries in STARQL
(Özçep, Möller, and Neuenstadt 2014).

Bounded-memory computability is a general feature not
restricted to the realm of streams. Indeed, historically, it has
been considered in the first place in the realm of temporal
databases where the focus is on finding bounded-history en-
codings in order to check temporal integrity constraints—
as described in the classic paper of Chomicki (Chomicki
1995). Moreover, under the term “incremental maintainabil-
ity” a generalized form of bounded memory processing is
discussed in dynamic complexity (Patnaik and Immerman
1997). The aim is to solve problems that are not captured by
some logic L (for example, calculating the transitive closure
of a graph is not definable as a first order logic formula) by
allowing an incremental update of formulas in L. The un-
derlying incremental update model extends the idea of up-
dating the values in registers which underlies our execution
model. An early description for a stream execution model
over first-order logic structures are stream abstract state ma-
chines (Gurevich, Leinders, and Van Den Bussche 2007).

Conclusion and Future Work

We made a step towards coping with the infiniteness of
streams by finding criteria for testing whether a SPJ query
over streams with application time and static relations can be

evaluated in constant space. Our model is sufficiently gen-
eral in order to capture realistic scenarios, as those described
in (Schiff, Özçep, and Möller 2018), with non-trivial crite-
ria for bounded-memory computability. Though non-trivial,
those criteria are easy to check so that queries computable in
constant space can be identified. Concerning the generality
of our approach we note further that the domain of attributes
is not restricted to integers but can be any discrete structure
(cf. (Arasu et al. 2004, chp. 9)).

We currently work on extending criteria for queries with
optional negation. Queries with negation are not monotonic
and therefore a new execution model is required where tu-
ples are not only appended to the instance of the output
stream. Additionally it would be interesting to find criteria
for queries that allow the comparison of timestamp attributes
with non-timestamp attributes.

References

Abiteboul, S.; Hull, R.; and Vianu, V., eds. 1995. Founda-
tions of Databases. Addison-Wesley.
Arasu, A.; Babcock, B.; Babu, S.; McAlister, J.; and Widom,
J. 2004. Characterizing memory requirements for queries
over continuous data streams. ACM Transactions on
Database Systems (TODS) 29(1):162–194.
Baader, F.; Borgwardt, S.; and Lippmann, M. 2013. Tempo-
ralizing ontology-based data access. In International Con-
ference on Automated Deduction, 330–344. Springer.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. Lars: A logic-
based framework for analytic reasoning over streams. Arti-
ficial Intelligence 261:16–70.
Calbimonte, J.-P.; Jeung, H.; Corcho, O.; and Aberer, K.
2012. Enabling query technologies for the semantic sensor
web. Int. J. Semant. Web Inf. Syst. 8(1):43–63.
Chomicki, J. 1995. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM Trans.
Database Syst. 20(2):149–186.
Gurevich, Y.; Leinders, D.; and Van Den Bussche, J. 2007.
A theory of stream queries. In Proceedings of the 11th Inter-
national Conference on Database Programming Languages,
DBPL’07, 153–168. Berlin, Heidelberg: Springer-Verlag.
Nikolaou, C.; Kostylev, E. V.; Konstantinidis, G.; Kamin-
ski, M.; Grau, B. C.; and Horrocks, I. 2017. The bag
semantics of ontology-based data access. arXiv preprint
arXiv:1705.07105.
Özçep, Ö. L.; Möller, R.; and Neuenstadt, C. 2014. A
stream-temporal query language for ontology based data ac-
cess. In KI 2014, volume 8736 of LNCS, 183–194. Springer.
Patnaik, S., and Immerman, N. 1997. Dyn-fo: A parallel,
dynamic complexity class. Journal of Computer and System
Sciences 55(2):199–209.
Schiff, S.; Özçep, Ö. L.; and Möller, R. 2018. Ontology-
based data access to big data. Open Journal of Databases
(OJDB) 6:21–32. Postproceeding of Hidest’18.
Walega, P. A.; Kaminski, M.; and Grau, B. C. 2019. Rea-
soning over streaming data in metric temporal datalog. In
AAAI-19.

153

