
The Objective of Simple Novelty Search

R. Paul Wiegand
School of Modeling, Simulation, & Training

University of Central Florida
Orlando, FL

Abstract

Novelty search is a powerful tool for finding complex objects
in complicated, open-ended spaces; however, there is very
little foundational analysis of how novelty search works. In
this paper, we consider a simplified version of novelty search
that focuses entirely on how the sparseness metric and the
archive update criterion affect search. We find that, once one
sees that search in novelty search happens at the level of the
archive space, not the individual point space, it is clear that
the sparseness measure and archive update criterion create a
process that is driven by a clear pair of objectives: spread
out to cover the space, while trying to remain as efficiently
packed as possible. Our Simple Novelty Search Evolution-
ary Algorithm (SNSEA) is driven to converge to an ε-net in
the sense defined by k Nearest Neighbor (k-NN) theory. We
provide constructive advice for balancing mutation and the
sparseness criterion, as well as how to monitor convergence
in novelty search.

Introduction

Evolutionary computation can be a powerful problem solver
(De Jong 2006; Mitchell 1997; Michalawicz 1996; Goldberg
1989; Holland 1975); however, increasingly researchers are
leveraging these biologically-inspired approaches for rea-
sons that transcend straightforward optimization. Evolution-
ary algorithms (EAs) are now used in a wide array of cre-
ative endeavors from creating computer programs (Langdon
and Poli 2002; Banzhaf et al. 1998; Koza 1992) to help-
ing find faults (Hanes and Wiegand 2019; Elhadef and Ayeb
2000) to producing art (Dreher 2014; Secretan et al. 2008;
Romero and Machado 2007; Dawkins 1996). Indeed, there
is an entire branch of evolutionary computation dedicated to
its ability to generate, create, and innovate (Goldberg 2002).
Unfortunately, there is not a lot of theory or foundational
analysis for such applications.

One of the most successful and aggressively promoted
concepts springing from innovative power of evolution-
ary methods is the idea of Novelty Search (Stanley and
Lehman 2015; Lehman, Stanley, and Miikkulainen 2013;
Lehman and Stanley 2011b; 2008). The basic notion behind
novelty search is that for certain complex spaces, it might

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be better to ignore the optimization objective and instead ex-
plore the space by finding objects that are increasingly “dif-
ferent” from those that the search process has encountered
before. Though perhaps counter intuitive, novelty search has
been surprisingly effective at finding good solutions to a
number of challenging problems without even looking for
those solutions explicitly, for instance discovering effec-
tive grasping behaviors for highly articulated robotic arms
(Huang et al. 2014), unsupervised feature learning for deep
networks (Szerlip et al. 2015), discovering of sophisticated
gaits for quadruped locomotion (Morse et al. 2013), and
goal-seeking in complex multiagent simulations (Lehman
and Stanley 2011a).

Though there is very little theoretical analysis for novelty
search, proponents of these methods suggest at least three
ideas for why novelty search has been so successful. The
first basic premise is that novelty search avoids traps and de-
ceptive local optima by abandoning the objective in favor of
a novelty metric (Lehman and Stanley 2011a). Second, nov-
elty search is typically used in conjunction with open-ended
or generative representations (Lehman and Stanley 2008) to
encourage a process referred to in the literature as “complex-
ification” (Stanley and Miikkulainen 2004) — that is, sys-
tematic and steady increase of complex representations via
evolutionary search in conjunction with a search geared to
find novel items will lead to surprising and nuanced discov-
eries. Finally, by employing distance metrics within the final
solution space (e.g., robot behaviors) rather than the geno-
type space, novelty search finds what is interesting in the
space on which the designers are focused.

This paper focuses on the first proposed idea for how nov-
elty search works. Specifically, this paper is a preliminary
examination of the claims that novelty search has no objec-
tive, and that it is a “divergent” search process (Lehman,
Wilder, and Stanley 2016; Lehman and Miikkulainen 2015;
Stanley and Lehman 2015). We find neither claim is true
in the general sense: under the most basic components of
traditional novelty search (sparseness and an archive) the
archive is driven toward increasingly better ε-covers of the
search space while also trying to optimize the ε-packing
of the archive. Simple variants of novelty search that em-
ploy the traditional mechanisms can and do converge, even
when the space is unbounded. Understanding this allows us
to give some constructive advice for how to apply novelty

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

166

search more effectively: it is essential to balance the mu-
tation rate and the minimum sparseness criterion appropri-
ately, and there may be value in periodic archive resets.

We are not claiming that novelty search is a poor method,
nor that novelty search cannot diverge in certain situations.
Moreover, we recognize that our simplified variant of nov-
elty search captures only a part of what more traditional im-
plementations involve — most notably, we draw parents di-
rectly from the archive and do not maintain a population.
Finally, we are deliberately isolating the claim as to whether
novelty search is objectiveless, and we say nothing at all
about complexification or discovery in behavioral spaces.
Instead, this paper serves as an indicator that more founda-
tional study of methods like novelty search is needed.

Technical Approach

Sparseness and Archives

The sparseness of some candidate object y, ρy , is computed
as the average distance to the k nearest neighbors in some
set A:

ρy :=
1

k

k∑

i=1

δ
(
xA
i , y

)
, (1)

where xA
i is the ith closest point in set A to y and δ is some

kind of distance calculation.
For traditional novelty search, this sparseness score is

used in two ways. The first is as a fitness value for evolution:
parent and/or survival selection can be based on maximiz-
ing sparseness. In such cases, the set under consideration is
the population itself. The second is as an update mechanism
for an archive of points the search is maintaining: Novelty
search adds individuals to the archive only if their sparse-
ness over that archive is above a certain threshold, ρmin. In
this case, the set under consideration is the archive.

Though there are many choices for search operators and
selection, the rest of the method is essentially an evolution-
ary algorithm (De Jong 2006). The archive continues to ex-
pand as the search progresses, and it is this fact combined
with the drive toward new, novel search points that gives rise
to the notion that novelty search “diverges”.

Archive-Based Searches

In a traditional application of an evolutionary algorithm,
each individual in the population typically represents a can-
didate solution to some problem. That is, in a traditional EA
application, the space being searched is the space of candi-
date solutions. From this perspective, it is easy to understand
why novelty search appears to be objectiveless: though indi-
viduals may be encoding candidate solutions, the algorithms
pay no attention to the optimization objective associated
with that candidate solution. We imagine search diverging
in the sense that increasingly different candidate solutions
are progressively proposed in an ever-growing archive.

However, there are alternative ways to understand search,
and some search methods are inherently focused on search-
ing the space of archives, not individual points. The mul-
tiobjective optimization problem is (typically) to find an

approximation of the Pareto non-dominating set for some
solution space (Seada and Deb 2018; Zitzler 2012; Zit-
zler, Deb, and Thiele 2000). Further, cooptimization prob-
lems (those approached by coevolutionary algorithms, for
example) are supersets of multiobjective optimization prob-
lems, where the goal is to simultaneously identify the set
of objectives and produce a set obeying some solution con-
cept — typically also Pareto-based (Ficici and Pollack 2001;
Bucci and Pollack 2002; Popovici et al. 2012; Ficici 2008).

Our insight is the observation that novelty search, at its
core, is searching the space of novel archives, not the space
of candidate solutions. The true goal of this search is to
cover a solution space as much as possible (develop a set
that spreads out in the space) while remaining as efficiently
packed as possible (keep points in the set far apart). We will
discuss concepts from k nearest neighbor (k-NN) theory on
page 3 that define these ideas more formally, and we de-
scribe heuristic approximations for measuring these in em-
pirical studies.

The Simple Novelty Search EA

In order to more carefully focus our study on the question of
whether or not the archive update mechanism within novelty
search has an objective, we begin by simplifying the algo-
rithm to only the critical components needed: namely a ge-
netic operator, an archive, and an update rule. Our algorithm
does not maintain a population at all. Instead, a parent is se-
lected uniformly at random from within the archive itself,
copied then mutated to produce a child. The child’s sparse-
ness is measured against the archive using Equation 1. If that
value is greater than some selected ρmin, then the child is
added to the archive. This is repeated until some termination
criterion is met.

Algorithm 1: Simple Novelty Search Evolutionary
Algorithm (SNSEA)

input : ρmin, k, termination criterion
output: archive

initialize individual x
archive = {x}
while not reached termination condition do

draw parent uniformly at random from archive
child = mutate(copy of parent)
ρ = sparseness(child, archive, k)
if ρ ≥ ρmin then

archive = archive ∪ {child}
end

end

For this paper, we use k = 3 for the sparseness compu-
tation in all cases for simplicity. The termination criterion
is simply a maximum number of generations (500 in most
cases). We will demonstrate the algorithm in a discrete bi-
nary space, a bounded Euclidean space, and an unbounded
Euclidean space.

For the discrete experiment, the SNSEA will use a binary
representation where individual points exist in the space

167

{0, 1}n, where n is the length of the binary string. Muta-
tion is performed by independently flipping each bit with
probability 1/n. Without loss of generality, we initialize the
first point at 0n. Distance is computed in this space using
Hamming distance, thus we refer to it as a Hamming Space.

For the Euclidean space experiments, the SNSEA will use
a real valued representation where the individual points ex-
ist in the space R

d, where d is the dimension of the space.
Mutation is performed by independently adding an offset to
every value in the vector according to N(0, σ). Without loss
of generality we initialize the first point at 0d. Distance is
computed in this space using Euclidean distance, thus we
refer to it as a Euclidean Space. In the experiment where the
space is bounded, we restrict mutation so that it cannot pro-
duce child gene values outside of [0, 1]— we redraw until
the gene is inside this region.

We’ll talk more about the implications of omitting a pop-
ulation in the Discussion section. It suffices to say here
that this represents a substantive change to the way novelty
search typically works. Another difference is that all our dis-
tance calculations are in the genotype space; however, this is
not an important departure since we are only evaluating the
claim about whether an objective exists, not what it looks
like for a given problem instance.

Packing and Covering

In order to develop bounds on how efficiently distance-
based, lazy methods like k-nearest neighbor algorithms are
able to develop hypotheses for a given space, the theory
community for that field have developed several formal def-
initions (Clarkson 1999).

The first idea is the ε-cover of a set: How well does the set
cover some space?

Definition 1 An ε-cover of some space Z = 〈U, δ〉, where
δ : U×U �→ R is a distance measure over U , is a set A ⊂ U
such that ∀x ∈ U, ∃a ∈ A with δ(x, a) < ε.

The second idea is ε-packing of a set: How efficient is the
distribution of points in the set?

Definition 2 Given the space Z = 〈U, δ〉, where δ : U ×
U �→ R is a distance measure over U , a set A ⊂ U is an
ε-packing iff δ(a, b) > 2ε ∀a, b ∈ A.

Put more simply, a set that covers a space well is one that
is spread out over that space such that no point in the space
is too far from at least one point in the set, while a set that is
packed well is one in which points inside the set aren’t too
close together. Note that for cover, smaller is better (points
in U are closer to points in A); however, for packing, larger
is better (points in A are further apart).

Definition 3 An ε-net A ⊂ U is a set that is an ε-cover of
U and an (ε/2)-packing.

In k-NN theory, an ε-net is optimal: A set that is both effi-
ciently packed and covers the space well.

This preliminary paper begins a careful introduction of
methods for how to evaluate the performance and claims of
novelty search methods. For example, it provides a few em-
pirical counter-examples to the “objectiveless” claim. For

packing this is straightforward: It is simply half the maxi-
mum pairwise distance in the archive. Estimating the cover
measures is computationally infeasible cover large discrete
spaces and impossible over Euclidean spaces. We approx-
imate this as follows. First, we select points uniformly at
random from inside the search space. When the space is
bounded, these points are selected from inside that bounded
region. We’ll explain how we address the unbounded ap-
proximation in the section with those results. For the binary
case, we also explicitly include the 1n point in that sample.
We then find the closest point in the archive to each sam-
ple point. The maximum of such distances is reported as our
estimate for ε-cover.

The SNSEA Optimization Process
Though the SNSEA does not have a population in the sense
in which traditional novelty search has, another perspec-
tive is that the archive is the population. Seen this way, the
SNSEA is most comparable to a (μ+1)-EA (De Jong 2006),
where parent selection occurs randomly from the population
(archive) and truncation survival selection is being used. Of
course, it differs from this in that the fitness of an individual
depends on the current population (archive), which grows.

So the algorithm does have selective pressure and pro-
gresses in a particular direction; it is not random search.
Generally, the algorithm gradually grows the size of the
archive, adding new points as they are discovered. The
SNSEA will steadily increase packing and decrease cover.

Mutation & Minimum Sparseness

One important observation to make about the SNSEA is
that it is clear that the minimum sparseness criterion and
the magnitude of the mutation are deeply related. More
formal proof is needed; however, here we appeal to intu-
ition. Consider the first SNSEA step in a Hamming space
of dimensionality n and a bit-flip mutation rate of 1/n. If
ρmin = O(lg n) then we will expect to wait for n steps just
to see a point far enough away to add to the archive. As the
archive expands, the problem gets worse because we must
select a random archive point near the surface of the archive
and generate a sufficiently far away point. In the Euclidean
space, this problem is magnified since the relative ratio of
the volume of the interior to the convex hull of the archive
increases quickly as the archive grows. The curse of dimen-
sionality leads to further complications with highly dimen-
sional spaces.

On the other hand, if ρmin is constant relative to the di-
mensionality of the space, then the SNSEA will spread out
very slowly in the space — indeed, exponentially slowly as
n increases for Hamming space.

So it is very important to get the balance between the
mutation rate and the sparseness criterion. For Hamming
spaces, we suggest setting the mutation rate to 1/n and the
sparseness criterion to c lg n, where c ∈ (0, 1). We do not
have a recommendation yet for Euclidean spaces.

SNSEA Converges in Hamming Space

The SNSEA in Hamming space will add new points to the
archive until there are no points left in {0, 1}n that can be

168

ρmin = 3

Converges to ε−Net

0

5

10

15

0 50 100 150 200
Generation

M
ea

su
re

Archive
Measure

Cover
Epsilon

Packing
Epsilon

Minimum
Sparseness

Bit−flip mutation using 1/n
Hamming Space, n= 16

Figure 1: SNSEA applied to a Hamming space with n = 16
and ρmin = 3 averaged over 50 independent trials.

added that will meet the sparseness criterion. It’s easy to
see this for a small example, where n = 3 and ρmin = 2:
start with the 000, then adding the 111 point, now all other
points are at most Hamming distance 2 from one of these
two points, so no new points can be added. This is true for
all Hamming spaces for k > 1: eventually there will be an
archive that fully covers the space with ε ∼ ρmin.

Empirically, it is easy to construct an example illustrat-
ing this effect. We consider n = 16, ρmin = 3

4 lg 16 = 3,
and a max generation of 200. We ran 50 independent trials
and reported the mean values for our packing and cover ap-
proximations for each generation. For comparison purposes,
we also compute the average minimum sparseness for the
archive in each generation — that is, we find the minimum
sparseness of the archive at each step for each independent
trial, and report the average over all trials. This gives us
a sense for how the internal SNSEA mechanics will relate
to the packing and cover measure. We can see from Fig-
ure 1 that, indeed, the cover of the Hamming space decreases
steadily and the packing increases steadily. This experiment
clearly shows SNSEA converging to an ε-net. The internal
sparseness measure also levels off with the other two curves.

Though not shown in this paper, this behavior is consis-
tent in any Hamming space. While from the perspective of
individual points in the space, one might be led to believe
the process is divergent (the archive grows steadily until the
space is filled), really we can see that the search is occur-
ring at the level of the archive space, not the individual point
space. In that sense, the process is clearly convergent.

SNSEA Converges in Bounded Euclidean Space

The property of a Hamming space that leads to the notion
that an archive can saturate the space is not inherent to that
space. This property is true for any bounded space: Eventu-
ally the archive will cover the space completely and will be
maximally packed. In the case of real-valued spaces, though,

ρmin = 0.6

Archive Converged to ε−Net

Nothing substantively

new is being added0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500
Generation

M
ea

su
re

Archive
Measure

Cover
Epsilon

Packing
Epsilon

Minimum
Sparseness

Gaussian Mutation σ = 0.3
Bounded 3D Euclidean Space

Figure 2: SNSEA applied to a bounded 3-dimensional Eu-
clidean space averaged over 50 independent trials.

the process is slightly more complicated by the fact that the
space is no longer discrete (i.e., there are an infinite number
of arbitrarily precise points).

Again, it is easy to construct an example illustrating this
effect. We consider d = 3, ρmin = 0.6, σ = 0.3, and a
max generation of 500. We ran 50 independent trials and
again reported the mean values for our packing, cover, and
min sparseness approximations for each generation. Figure 2
clearly shows an example where the SNSEA on a bounded
3D Euclidean space converges to an ε-net. Note that after the
net is formed, the algorithm continues to occasionally add
new points. These points are not substantively improving
any measure, including and importantly the internal sparse-
ness measure. A local optimum has been identified by the al-
gorithm, it has converged into that local optimum, and now
it is making small fine-tuning changes to move closer to true
locally optimal archive configuration. The archive is not im-
proving the overall cover of the space by very much.

This is useful to know! We can implement approximations
of cover and packing in our algorithm, and when we see that
an ε-net is formed either stop the search or reset the archive
to enable the search to explore new archive configurations.

SNSEA Can Converge in Unbounded Spaces

It should be noted that the original authors of novelty search
were clear that bounded spaces are not where novelty search
is intended to be run (Lehman and Stanley 2008). Perhaps it
is obvious that any bounded space will eventually be satu-
rated by the archive? What the above examples do, though,
is illustrate that if your understanding is that novelty search
is diverging until it runs into the “walls” of the bounded
space, then you may be looking at the process incorrectly:
The processes are converging right from the beginning of
the optimization, and the resulting archive is implicitly a lo-
cal optimum (an ε-net).

But the SNSEA is driven to optimize the dual objectives

169

ρmin = 0.45

Eventually converges to ε−Net

0

2

4

6

8

0 100 200 300 400 500
Generation

M
ea

su
re

Archive
Measure

Cover
Epsilon

Packing
Epsilon

Minimum
Sparseness

Guassian Mutation σ = 0.1
Unbounded 8D Euclidean Space

Figure 3: SNSEA applied to an unbounded 8-dimensional
Euclidean space averaged over 50 independent trials.

of cover and packing whether spaces are bounded or un-
bounded. It is true that some parameterizations will lead to
an apparent continual increase in the packing; however, this
is precisely the same as a traditional real-valued EA maxi-
mizing a function like f(x) = 2x− 3; the EA will continue
to produce new x values that give larger f(x). Whether one
calls this “convergence” or “divergence” depends on one’s
point of view; however, the SNSEA process is optimizing
against the packing/cover objectives, regardless.

However, we can eschew the semantic debate in specific
cases: There are parameterizations where the algorithm will
converge in every sense of the word, even when the space
is unbounded. When the mutation σ is small relative to the
ρmin, we can deliberately exacerbate the problem that oc-
curs where large archive sizes make the algorithm increas-
ingly unlikely to select points close enough to the surface
of the archive that mutation has a reasonable probability to
generate a point that will meet the sparseness criterion.

Figure 3 illustrates such an example, where σ = 0.1,
ρmin = 0.45, d = 8, and the algorithm is run to 500 gen-
erations. The space is completely unbounded. While pack-
ing can still be estimated as it was above, cover cannot be
since the space is infinitely large. To address this, we assume
that the search will (with high probability) remain within
the bound ±σ ·maxGen in all dimensions, and we estimate
cover as above but inside that region. We also confirmed that
though any 8D point was possible in principle, in all runs
none were generated outside that region. Again, 50 indepen-
dent trials were performed. This process asymptotes toward
an ε-net very, very slowly. We keep the max generation count
low so that the visualization above conveys useful informa-
tion. There is no doubt that this process is a convergent one,
even though the space is unbounded.

Discussion

Novelty search is a powerful tool for finding complex ob-
jects in complicated, open-ended spaces. It relies on at least
three key pieces: a sparseness metric and archive, generative
representations, and distance measures in the actual solution
space (e.g., behaviors) rather than genotype space. Unfortu-
nately, there is very little foundational analysis of how nov-
elty search works. This is important because there are sev-
eral claims about novelty search that can and should be an-
alyzed, perhaps first and foremost the idea that the search is
“divergent” and “objectiveless”.

In this paper, we consider only the first piece, using an ex-
tremely simplified version of novelty search so that we can
focus entirely on how the sparseness metric and the archive
update criterion affect search. We find that, once one sees
that search in novelty search happens at the level of the
archive space, not the individual point space, it is clear that
the sparseness measure and archive update criterion create a
process that is driven by a pair of objectives: spread out to
cover the space, while trying to remain as efficiently packed
as possible. Our SNSEA is driven to converge to an ε-net
in the sense defined by k-NN theory — we claim that most
novelty searches do something like this.

One obvious concern about our work is the lack of a true
population for the SNSEA: we rely on only the archive it-
self. This concern is understandable given that the very issue
we describe in the unbounded case (the process must find a
point on the surface of the archive, then mutate sufficiently
far away) appears related to this choice. In a traditional nov-
elty search with a population that has a fixed size, the popu-
lation may reflect the leading edge of the search (this has yet
to be analyzed). We defend our choice in three ways.

First, this is the first step in beginning to try to understand
the mechanics of novelty search in a more careful and formal
way. It’s best to do this with the simplest variants first. Sec-
ond, the observation that the sparseness and archive update
mechanisms within novelty search are creating a process that
is driven to optimize the cover and packing of a space is in-
dependent of this choice: novelty search does this, whether
or not there is a population. Third, it isn’t clear that the par-
ent selection, new point generation problem is entirely fixed
by a population. If novelty search is indeed optimizing, it is
possible that the population (as a set) may have similar prob-
lems. At the very least, the present research suggests that it
is worthwhile studying that question.

This article provides three key contributions to novelty
search. First, it lays out a vision for novelty search as an
optimizer of archive space and introduces tools from k-NN
theory to help understand this process. Second, it establishes
guidance for configuring the mutation and the ρmin, which
are intimately tied in novelty search. Finally, it provides
constructive advice for monitoring archive performance and
dealing with scenarios where novelty search appears to have
converged (e.g., reset the archive).

Our next step will be to empirically explore these ques-
tions about sparseness and archives with population-based
novelty search methods, preliminary results for which also
appear to show convergence properties. The overall goal is
to develop tools and improved understandings for how nov-

170

elty search works, and how engineers can make productive
design choices when employing this algorithm. Finally, we
are also interested in exploring when novelty search can get
stuck in local suboptima.

References

Banzhaf, W.; Nordin, P.; Keller, R. E.; and Francone, F. D.
1998. Genetic Programming – An Introduction: On the Au-
tomatic Evolution of Computer Programs and Its Applica-
tions. San Francisco, CA: Morgan Kaufmann.
Bucci, A., and Pollack, J. B. 2002. A mathematical frame-
work for the study of coevolution. In Foundations of Genetic
Algorithms VI, 221–236.
Clarkson, K. L. 1999. Nearest neighbor queries in metric
spaces. Discrete & Computational Geometry 22(1):63–93.
Dawkins, R. 1996. The Blind Watchmaker. W. W. Norton &
Company.
De Jong, K. A. 2006. Evolutionary Computation: A Unified
Approach. MIT Press.
Dreher, T. 2014. History of Computer Art. chapter IV.3.
Elhadef, M., and Ayeb, B. 2000. Evolutionary algorithm for
identifying faults in t-diagnosable systems. 74–83.
Ficici, S. G., and Pollack, J. B. 2001. Pareto optimality in
coevolutionary learning. In Advances in Artificial Life, 6th
European Conference, 316–325.
Ficici, S. G. 2008. Multiobjective optimization and coevolu-
tion. In Multiobjective Problem Solving from Nature. 31–52.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison Wesley.
Goldberg, D. 2002. The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Springer.
Hanes, J., and Wiegand, R. P. 2019. Analytical and evolu-
tionary methods for finding cut volumes in fault trees con-
strained by location. EEE Transactions on Reliability.
Holland, J. 1975. Adaptation in Natural and Artificial Sys-
tems. Cambridge, MA: The MIT Press.
Huang, P.; Lehman, J.; Mok, A. K.; Miikkulainen, R.; and
Sentis, L. 2014. Grasping novel objects with a dexterous
robotic hand through neuroevolution. In 2014 IEEE Sympo-
sium on Computational Intelligence in Control and Automa-
tion, 125–132.
Koza, J. 1992. Genetic Programming. MIT Press.
Langdon, W., and Poli, R. 2002. Foundations of Genetic
Programming. Springer.
Lehman, J., and Miikkulainen, R. 2015. Enhancing diver-
gent search through extinction events. In Proc. of the Ge-
netic and Evolutionary Computation Conference, 951–958.
Lehman, J., and Stanley, K. O. 2008. Exploiting open-
endedness to solve problems through the search for novelty.
In Proceedings of the Eleventh International Conference on
the Synthesis and Simulation of Living Systems, 329–336.
Lehman, J., and Stanley, K. O. 2011a. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary Computation 19(2):189–223.

Lehman, J., and Stanley, K. O. 2011b. Improving evolvabil-
ity through novelty search and self-adaptation. In Proceed-
ings of the IEEE Congress on Evolutionary Computation,
2693–2700.
Lehman, J.; Stanley, K. O.; and Miikkulainen, R. 2013. Ef-
fective diversity maintenance in deceptive domains. In Proc.
of the 15th Annual Conference on Genetic and Evolutionary
Computation, 215–222. ACM.
Lehman, J.; Wilder, B.; and Stanley, K. O. 2016. On the
critical role of divergent selection in evolvability. Frontiers
in Robotics and AI.
Michalawicz, Z. 1996. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag, 3rd edition.
Mitchell, T. 1997. Machine Learning. McGraw-Hill.
Morse, G.; Risi, S.; Snyder, C. R.; and Stanley, K. O. 2013.
Single-unit pattern generators for quadruped locomotion. In
Proceedings of the 15th Genetic and and Evolutionary Com-
putation Conference, GECCO ’13, 719–726.
Popovici, E.; Bucci, A.; Wiegand, R. P.; and de Jong, E. D.
2012. Coevolutionary principles. In Handbook of Natural
Computing. 987–1033.
Romero, J., and Machado, P., eds. 2007. The Art of Artifi-
cial Evolution: A Handbook on Evolutionary Art and Music.
Springer.
Seada, H., and Deb, K. 2018. Non-dominated sorting based
multi/many-objective optimization: Two decades of research
and application. In Multi-Objective Optimization - Evolu-
tionary to Hybrid Framework. 1–24.
Secretan, J.; Beato, N.; D’Ambrosio, D. B.; Rodriguez, A.;
Campbell, A.; and Stanley, K. O. 2008. Picbreeder: Evolv-
ing pictures collaboratively online. In Proceedings of the
Computer Human Interaction Conference.
Stanley, K. O., and Lehman, J. 2015. Why Greatness Cannot
Be Planned - The Myth of the Objective. Springer.
Stanley, K. O., and Miikkulainen, R. 2004. Competitive
coevolution through evolutionary complexification. Journal
of Artificial Intelligence Research 21:63–100.
Szerlip, P. A.; Morse, G.; Pugh, J. K.; and Stanley, K. O.
2015. Unsupervised feature learning through divergent dis-
criminative feature accumulation. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2979–2985.
Zitzler, E.; Deb, K.; and Thiele, L. 2000. Comparison
of multiobjective evolutionary algorithms: Empirical results.
Evolutionary Computation 8(2):173–195.
Zitzler, E. 2012. Evolutionary multiobjective optimization.
In Handbook of Natural Computing. 871–904.

171

