
Middleware Unifying Framework
for Independent Nodes System (MUFFINS)

James S. Okolica,1 Gilbert L. Peterson,1 Michael J. Mendenhall2

1Department of Electrical and Computer Engineering, Air Force Institute of Technology, WPAFB, OH, 45433
2Human Performance Wing, Air Force Research Laboratory, WPAFB, OH, 45433 ∗

Abstract

Multi-agent systems are used in domains where individual
component autonomy and cooperation are necessary. The
overall system performance requires that the diverse agents
maintain quality interactions to facilitate cooperation. A com-
plication to inter-agent interaction occurs when the agents
learn (change their own functionality), when new agents
are introduced, or existing agents are functionally modified.
This research focuses on creating a general use multi-agent
system, Middleware Unifying Framework For Independent
Nodes System (MUFFINS), and implementing a mechanism,
the Megagent, that addresses the interaction challenges. The
Megagent provides the ability for agents to assess their per-
formance per data source and to improve it with transforma-
tions based on feedback. Evaluation of the concept is tested
on data mangled from the Digits dataset to represent learn-
ing and new agents and in all cases improves accuracy over a
static agent.

Introduction

Multi-agent systems (MAS) are “systems composed
of multiple, interacting computing elements known as
agents” (Wooldridge 2009). Two key aspects of agents
are that they are capable of acting at least somewhat au-
tonomously and that they are capable of interacting with
other agents. The interaction requires an agent to reason over
another agent’s capabilities. This can be handled during the
design time of the system (Darimont et al. 2016) or dur-
ing continuous integration and testing (Nguyen, Perini, and
Tonella 2007). However, if the agents are within an execut-
ing system and modifying their responses, or the system has
no continuous integration test framework, the agents need to
address the reasoning issue themselves. Rather than levy a
requirement that every agent in a multi-agent system be able
to perform on-line learning, we address this learning prob-
lem within the MAS implementation itself.

This work presents a mechanism, the Megagent, that en-
ables agents to assess their performance on a per data source

∗The views expressed in this paper are those of the authors and
do not represent the views or policies of the United States Air Force
or the Department of Defense.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

basis and improve it using feedback received from down-
stream agents. Evaluation of the Megagent’s ability to learn
about changes in their publisher agents is conducted with a
set of seven agents that perform classification on the Digits
dataset (Alimoglu 1996). To simulate the changes that can
occur, there are data manglers that change the distributions
of the features to simulate an agent that has learned a new
representation. The remaining five data manglers perform
drops or swaps of the columns that represent new agents that
are added to the system that say that they provide the same
vector that the digitsClassifier agent works on, but
don’t fully match the anticipated format.

Results demonstrate that adding the Megagent to a MAS
allows for agents that autonomously learn and provides ro-
bustness to new and changing agents. In two cases, the
Megagent was able to match the unmodified accuracy. As
the amount of change increases, it was able to maintain a
reasonable accuracy and in all cases improve accuracy of
the agent over situations in which it was not present.

Related Work

There have been several efforts to implement frameworks to
provide an underlying platform for multi-agent systems. The
Java Agent Development Framework (JADE) (Bellifemine,
Poggi, and Rimassa 1999) uses the FIPA specification as
a starting point and provides a middleware for developing
agents capable of interacting with each other. It does this by
creating a platform (collection) of containers (agents) and
hiding the underlying communication complexities from the
developers. Zeus (Nwana et al. 1999) is a toolkit for develop-
ing multi-agent systems. In addition to providing an under-
lying communication channel, it also provides mechanisms
for developing agents, including ontologies so that agents
can understand each other, and predefined organization rela-
tionships so that agents can be organization and coordination
can be defined. While this works well for when the tasks are
known beforehand, it is too rigid for tasks defined after the
agents are already well-defined.

The MUFFINS Framework

To provide an experimental testbed for evaluating the Mega-
gent concept as well as future work, we have developed

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

205

Middleware Unifying Framework For Independent Nodes
System (MUFFINS). MUFFINS is a MAS that provides
agents coordination autonomy. Agents optionally accept in-
put and provide output. Each agent definition provides pre-
and post-conditions (similar to the preconditions and effects
defined in the task definitions of Zeus (Nwana et al. 1999))
to describe the input and output they accept and produce.
MUFFINS uses the Planning Domain Definition Language
(PDDL) (Ghallab et al. 1998) to define the pre- and post-
conditions. PDDL was selected based on its wide acceptance
and the expectation that future extentions to MUFFINS
could include a planner agent that optimizes connectivity.
Figure 1 shows an example that consists of a single generic
vector data object and several agents.

Figure 1: PDDL Definitions.

MUFFINS uses a publish/subscribe mechanic for inter-
agent coordination and communication. The process of cre-
ating subscriptions is shown in Figure 2. When a new agent
enters the network, it broadcasts an ENTER message list-
ing its outputs (step 1). When existing agents see the new
agent, they send it an ENTER message listing their outputs
(step 1). As illustrated in step 2, as agents receive lists of
outputs from other agents, they evaluate whether their in-
puts are compatible with a subset of the outputs other agents
produce. For instance, a source agent may produce vectors
of dimension 1 and vectors of dimension 16. If a transformer
agent takes vectors of dimension 16 as input, they are com-
patible with that source. As shown in step 3, when an agent
discovers an agent with compatible outputs, it sends a sub-
scription request to that agent along with its input. The po-
tential publisher agent checks the inputs with its outputs and,
as seen in steps 4 and 5, if it finds a match (i.e., a set of its
outputs that matches a set of the potential subscriber’s in-
puts), it adds the subscriber to one of its publication groups.
If the subscriber’s inputs match multiple outputs for the pub-
lisher, it adds the subscriber to multiple publication groups.
Finally, as shown in step 6, the publisher sends a confirma-
tion to the subscriber for each group it has joined it to.

As shown in Figure 3, with the inter-agent communication
handled in the lowerLevelCommunicationLayer
and the Subscription process handled in the
nodeCommunicationLayer, the abstract class
agentBase is defined independent of these imple-

Figure 2: PDDL Subscription Phases.

mentation details. There are five methods that all agents
perform and are implemented in the agentBase class:
providing their unique unit identifier (UUID), next job id
and sequence number, sending data to other agents either
via publication groups or peer-to-peer, spawning other
agents, processing data, and, for source agents, starting
ancillary threads to send data.

An Agent

Lower Level Commun Layer
Register Agent with Mul -Agent System
Receive data from other agents
Send data to other agents
Exit the Mul -Agent System

Node Communica Layer
Form or join groups with compa ble agents (Check Compa bility)
Validate received data is consistent with previously supplied agent
de ni ons

AgentBase Layer
Start Agent
Spawn Agents
Stop Agents
Receive and process data (Sense)
Send data to the Mul -Agent System (Act)

Agent Launcher
Start Agent(s)
List Ac ve Agents
Kill Agent(s)

Mul -Agent System

Figure 3: MUFFINS Framework.

Message types are implemented using Google’s
“language-neutral, platform-neutral” protobuf protocol
buffers for serializing structured data (Google 2018). There
are ten message types: two for subscription processing
(ConnectionRequest and ConnectionResponse), two for
the health monitor system (TransactionOverviewRequest
and TransactionOverviewResponse), one for passing
UUIDs from spawned processes to their parents (Spaw-
nAgentResponse), one feedback message type (Feed-
back) and four data message types (Vector, ImageData,
PythonPickle, ProtoDataFrame). Several of the mes-
sage types (e.g., the ones for subscription processing,
spawning and transaction overview requests) are han-
dled by either the nodeCommunicationLayer or
lowerLevelCommunicationLayer and never get
to the agentBaseLayer, leaving the agent responsible
for no more than the transaction overview and four data
message types.

206

The Megagent

While the MUFFINS framework addresses an assembly
of autonomous agents discovering and connecting to each
other, it does not address the central question of enabling
agents’ ability to reason over other agents during execution
time. While it is possible to put the burden for this learning
on individual agents, it is more efficient to create a mech-
anism within the MUFFINS framework, making it possible
for agents to include it as needed. The first step is adding
feedback to MUFFINS. As agents assess each other’s per-
formance, they can decide whose output is ‘good enough’,
a user-specified and task-specific value, for them to use as
input. Furthermore, as agents receive feedback on the output
they are producing, they can use that feedback to improve
their performance.

Data
Source 1

Data
Source 2

Data
Source N

…

Classi er

In l
Data

Transac on
Repository

Feedback

MEGAGENT

Recvd
Data

Mapped
Data

Transformer 1

Recvd
Data

Mapped
Data

Transformer K

A
n
a
l
y
z
e
r

…

Data
Mangler

Figure 4: Megagent Architecture.

Figure 4 provides an overview of a Megagent with a static
classifier (the dashed boxes and arrows are used for testing).
Initially, there are no transformers. The Megagent receives
data from different data sources, sends them to the Classifier,
stores the input and results in the Transaction Repository
and sends results as output. At some future time, the Mega-
gent receives feedback on a result. The feedback may come
from one of the agents it sends its output to or from an ex-
ternal agent (possibly an agent further downstream, possibly
an agent “listening in”). The feedback references a specific
job that the Megagent performed. The Megagent then asso-
ciates the feedback with its initial classification for the job
and stores both in the transaction repository. If the Mega-
gent’s performance feedback on data from a specific data
source drops below a threshold level, a user-specified and
task-specific value, it then uses the transactions to build a
Transformer agent. In the future, all data received from that
data source will go through a transformer associated with
that data source. If the cumulative accuracy drops below the
threshold a second time, the Megagent determines its perfor-
mance is unacceptable and stops accepting input from that
data source.

When the transformer instantiates, it begins by taking the
training data passed to it by the Megagent and creating mul-
tiple candidate transformations to determine which performs
best. To accomplish this, it uses a dedicated communica-
tion channel established with the Megagent’s primary agent
(e.g., a classifier). For each transformation, it takes each ex-
emplar, transforms it and sends it to the primary agent for

processing. The primary agent processes it and sends back
the result. It takes the result and compares it to its truthed
training data. After each transformation has processed all of
the training data, the transformer class chooses the best
transformation and informs the Megagent it is now started
and ready.

Currently, the transformer class includes four types
of transformations: a linear transformation, a k-means clus-
tering (MacQueen and others 1967) algorithm using statis-
tical moments (mean, standard deviation, skew, and kerto-
sis), a locality sensitive hashing (LSH) (Indyk and Motwani
1998) algorithm and a combination of the k-means cluster-
ing and LSH algorithms. The linear transformation simply
builds a linear transformation using the training data and
a Euclidean distance calculation. The goal of the k-means
clustering is to determine which feature a given feature ac-
tually is. Consider the vector (1, 2, 3, 4, 5). Does the first fea-
ture (value 1) actually represent feature one or does it actu-
ally represent feature three? The k-means clustering begins
by creating a single cluster for each feature in each class
using the statistical moments of the data the primary agent
was originally trained on. It then adds additional clusters for
features until it drops the average intra-cluster distance be-
low a user specified threshold (12.5 for the experiment). It
then creates a transformation using the training data from
the statistical moments of the data source in question. Local-
ity sensitive hashing (LSH) creates hashes using subsets of
the features to produce a representative exemplar for a class.
The size of the subsets is based on a user specified value (6
for this experiment). The final transformation first performs
the k-means clustering to swap the features as needed and
then uses LSH to discover a class-representative exemplar.

Experimental Evaluation and Results
Initial testing of the Megagent was done using the Digits
dataset (Alimoglu 1996) which consists of approximately
7500 training and 3500 test handwriting samples. The pre-
processing converts raw data from a pressure sensitive tablet
into fixed length feature vectors of sixteen integers ranging
in value from zero to one hundred.

Figure 4 shows the architecture for the experiment. The
base agent is a J4.8 (Frank, Hall, and Witten 2016) decision
tree classifier trained on the training data. The decision tree
has an accuracy of 91%. Then two data sources are created.
The first outputs the original test data. The second outputs
the test data mangled in one of seven ways. The Megagent-
wrapped classifier receives the source data, classifies it and
sends it along to an analyzer. The analyzer then provides
feedback back to the classifier consisting of the correct an-
swer. For this experiment, the megagent triggers creation of
a transformer when the accuracy for a single data source is
below 70% and it has processed at least 500 transactions.

Table 1 shows results from the seven tests. In the first two
tests, the test data was perturbed from its true value by a
random amount using a normal distribution with a standard
deviation of 10 and 16 respectively. This represents an agent
that may be learning or alternatively an agent that has a de-
grading sensor. The next test is a shuffling of the features
which represents a new or revised agent that is sending the

207

Table 1: Megagent Results.
Input Data Pre-Transform Post-Transform Identified Percentage
Manipulation Accuracy Accuracy Transformer Improvement

Noise (std dev 10) 0.70 0.89 Linear Transform 27
Noise (std dev 16) 0.56 0.75 Linear Transform 34
Shuffle order (20 swaps) 0.13 0.91 Statistics 600
Zero 6 of 16 columns 0.43 0.83 Locality Sensitive Hashing 93
Zero 8 of 16 columns 0.30 0.77 Locality Sensitive Hashing 157
Zero 6 of 16 columns and shift left
remainder

0.11 0.81 Locality Sensitive Hashing
and Statistics

636

Zero 6 of 16 columns and shuffle
order (20 swaps)

0.12 0.69 Locality Sensitive Hashing
and Statistics

475

Baseline 0.91

same data just in a different order. Tests four and five involve
zeroing out either 6 or 8 of the features. These tests represent
a new agent that may not provide all of the functionality of
the original. In the final two tests, in addition to zeroing out
some of the features, the remaining data is either compressed
or shuffled as above. The results are shown in Table 1. In all
but one case, when the Megagent added a transformer, the
resulting accuracy improved above the threshold. In the final
case, the results were just below the threshold. The increase
in accuracy ranged from 27% for minimal data changes to a
high of over 600% when the input is significantly modified.

Conclusions and Future Work
This paper presented the Megagent concept in which the
ability to handle autonomously learning agents in a MAS
is integrated into the MAS infrastructure. This provides each
agent the capability to represent and reason about the actions
and knowledge of other agents. The Megagent was demon-
strated in a MAS with the task of performing hand written
digit identification. Experimental results show the Megagent
dramatically overcoming data mangling based on feedback
received. MUFFINS and the Megagent allow for including
static agents when existing agents can change their knowl-
edge and actions or in cases when new agents are introduced
into existing systems.

For this experiment, feedback was provided immediately;
it was provided for each exemplar; and feedback consisted of
truthed data. Future work should handle and evaluate inter-
mittent feedback which provides a score of how good the an-
swer is (e.g., real valued feedback between 0.0 and 1.0). Fur-
thermore, while the Megagent provides a first step toward
self-assembly, it is only a first step. Agents in the multi-agent
system also need to have some concept of task, how well
they perform on different tasks and how good the input is
from different other agents for different tasks. With this ad-
ditional information, self-assembly in multi-agent systems
will become closer to reality.

References
Alimoglu, F. 1996. Combining multiple classifiers for
pen-based handwritten digit recognition. Master’s thesis,
Institute of Graduate Studies in Science and Engineering,
Bogazici University.

Bellifemine, F.; Poggi, A.; and Rimassa, G. 1999. JADE–a
FIPA-compliant agent framework. In Proceedings of Practi-
cal Applications of Intelligent Agents, number 97-108 in 99,
33. London.
Darimont, R.; Zhao, W.; Ponsard, C.; and Michot, A. 2016.
A modulare requirements engineernig framework for wbe-
based toolchain integration. In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference, 405–406.
Frank, E.; Hall, M. A.; and Witten, I. H. 2016. The WEKA
workbench. Online Appendix for ”Data Mining: Practical
Machine Learning Tools and Techniques”.
Ghallab, M.; Howe, A.; Knoblock, C.; McDemott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Google. 2018. Protocol buffers. https://developers.google.
com/protocol-buffers/.
Indyk, P., and Motwani, R. 1998. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, 604–613. ACM.
MacQueen, J., et al. 1967. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, 281–297. Oakland, CA, USA.
Nguyen, C.; Perini, A.; and Tonella, P. 2007. Automated
continuous testing of multi-agent systems. 1–19.
Nwana, H. S.; Ndumu, D. T.; Lee, L. C.; and Collis, J. C.
1999. Zeus: a toolkit for building distributed multiagent sys-
tems. Applied Artificial Intelligence 13(1-2):129–185.
Wooldridge, M. 2009. An Introduction to Multiagent Sys-
tems. John Wiley & Sons.

208

