
Decentralized Marriage Models

University of Kentucky
Lexington, Kentucky

kshitija.taywade@uky.edu, goldsmit@cs.uky.edu, harrison@cs.uky.edu

Abstract

Most matching algorithms are centralized in that a single
agent determines how other agents are matched together. This
is contrary to how humans form matches in the real world. We
propose three decentralized approaches for finding match-
ings that are inspired by three techniques that humans use
to find matches: a grid environment, with agents wandering
around, interacting and deciding preferences over potential
partners; affiliation networks where agencies recommend po-
tential partners; and small-world social networks, where in-
dividuals are probabilistically introduced to one another by
friends. We introduce a heuristic algorithm that can be used
in each of these environments. We also explore how this al-
gorithm can scale to a large number of agents.

Introduction

There are several personal, social, and cultural factors that
influence how people find potential mates. In this paper,
we explore the problem of finding optimal partner match-
ings under different assumptions about how people are in-
troduced. We model the marriage problem as: a grid-world
environment, a small-world network graph, and an affilia-
tion network graph. Each of these environments represents
a practically grounded way that people meet each other in
the real world. The grid-world models agents that actively
seek out potential partners on their own with little to no
prior information about the other agents they will meet. In
the small-world network, agents are presented with potential
matches based on their degrees of separation. Thus, agents
that are closer to each other in their social network are more
likely to be considered as candidates for a match. Affili-
ation networks model the situation where agents are reg-
istered to matrimonial agencies and get potential matches
suggested by those agencies. In many real world scenarios,
it is not feasible for a centralized agency to optimally se-
lect partners for agents. Typically, agents — people — act
to find partners autonomously without the need for a cen-
tralized agency. Thus, to better simulate real world scenar-
ios we introduce a heuristic-based, decentralized approach
for solving the marriage problem and show how it can be

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used, with slight modifications, to help agents find matches
in each of the three environments described above. We show
the effectiveness of our approach by demonstrating its abil-
ity to find good matchings in each of our three test models,
where good matchings are defined as those that maximize
the utility of all agents. We compare our results with several
centralized and decentralized baselines. Our proposed ap-
proach can also be applied to other matching markets such as
worker-employer and buyer-seller markets. As our method
produces outcomes in polynomial time, it is fitting for en-
vironments/models where large number of agents need to
make quick decisions.

Related Work

One popular set of approaches to solving marriage market
problems — decentralized approaches — explore how ran-
dom meetings can result in stable matches. Most of these
approaches are focused on finding stable matches, and, like
our work, use preferences or interests as the basis for their
matchings (Vanzin and Barber 2006). Contrary to this work,
our decentralized approach focuses on generating optimal
matchings instead of stable matches.

Distributed algorithms for weighted matching mainly in-
clude algorithms that are distributed in terms of agents act-
ing on their own either synchronously or asynchronously
(Hoepman 2004; Wattenhofer and Wattenhofer 2004), and
algorithms that are distributed using parallel programming
to find approximate maximum matchings (Lotker, Patt-
Shamir, and Rosén 2009; Manne and Bisseling 2007). In our
work, we model matching problems in a grid-world and in
social networks, and study the results produced by our de-
centralized approach.

Preliminaries

We model the marriage problem using bipartite matching,
where S1 and S2 are the two vertex sets to be matched, and
edges represent acceptable pairings.
Definition 1. An instance of Bipartite Matching is a bipar-
tite graph G = (S1∪S2, E) with E ⊆ S1×S2. A solution is
a maximal matching. We consider the problem of Weighted
Bipartite Matching, where the edge weights correspond to
preferences.

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Kshitija Taywade, Judy Goldsmith, Brent Harrison

213

Definition 2. An instance of the optimal marriage problem
is an instance of the weighted bipartite matching problem,
where S1 and S2 correspond to the categories of agents, pi,j
is the preference of i for j, i.e., the weight of edge (i, j),
and the goal is to find a maximum weight matching. When
preferences are asymmetric, the weight of a single pair is the
sum of the weights of the two directed edges between nodes.

Methods

In this section we introduce our models in more detail. We
assume that agents start off agnostic about the world and
about their potential mates in every model. We propose a
decentralized approach to help autonomous agents find their
partners in all the three models. The models differ in how,
and how often, agents meet.

Grid-World Environment

Model The grid-world model is a spatial environment where
agents can freely navigate the grid and encounter each other.
We deploy agents at random cell locations on the grid.
Agents can only see the contents of their current grid lo-
cation.
Algorithm The grid-world environment contains S1 and S2

agents in equal numbers. At the beginning of each episode,
agents are initialized at random starting locations. From
here, they start randomly exploring the grid environment.
When an agent encounters another agent of the opposite cat-
egory, it discovers how much utility it can get if it is matched
with that agent, and it stores that value if it is positive. It does
not store the identity of the other agent. If two agents from
the same category encounter each other, they ignore each
other. Each agent has information about the total number of
agents of the opposite category present in the environment.
Using this, they can calculate how many potential matches
could be formed and can, from that, reason about how many
candidate agents they have not encountered yet. This helps
determine if an agent forms a match and stays there, or if
it chooses to explore to find a better match. We define the
exploration rate r to be the ratio of steps so far to the total
number of steps. For each individual, we define h to be the
average of all positive utilities an agent has seen so far, c is
the highest possible utility for an agent in the environment
and u is the utility an agent gets from a match if it is part of
that match. An agent decides whether to form a match with
another agent when they encounter each other in the same
cell, if they each get positive utility from the match. If an
agent encounters more than one agent of the opposite cate-
gory at the same cell then it chooses the best among them.
If two agents are willing, then the match is formed. Agents
only stay in the match when they find themselves in one of
the following situations:
• If u ≥ 0.75× c; • If r ≤ 0.6, u ≥ h;
• If 0.6 ≤ r ≤ 0.8, u ≥ 0.5× h; • If r ≥ 0.8, u ≥ 0.

In this way, agents first set high expectations and then
gradually lower their expectations as time passes. Note that,
if an agent encounters a better agent at the same cell while
in a match, then it may leave the current match and form a
new one with the better agent if that new agent is also in-
terested. The matching at the end of the last episode is the

resulting matching (the marriage). Each of these conditions
can be tuned for specific environments.

Affiliation Network/Bipartite Network

Model It is usually used to represent common membership
of groups, and in our case refers to membership in matrimo-
nial agencies or dating websites. In this network, actors are
connected by common membership. We represent such net-
work as a bipartite graph, with nodes being either individuals
(actors) or matrimonial agencies (collectives). Edges repre-
sent individuals’ memberships in the agency. Matrimonial
agencies suggest matches to their members. An actor can be
a member of more than one agency.
Algorithm We create two types of agents, agencies and peo-
ple, as nodes in the affiliation graph; people are randomly as-
signed to agencies. At each step, agencies randomly suggest
a match to everyone who is registered with them. These sug-
gestions are not necessarily symmetric: an agent may be sug-
gested to another, without receiving the other as a sugges-
tion. The one receiving a suggestion might express interest
in the other. Each individual has a list of possible matches,
including others they are interested in, and those who are
interested in them. They may select one match to propose
to, and be accepted or not. However, if they receive a better
proposal in that time step, they retract their own proposal.
If a proposal is offered and accepted and not retracted in
that time step, then the marriage happens. When individuals
form a match, they are removed from the agencies’ regis-
tered candidate lists. If no marriage happens for an individ-
ual in a particular time step, then the individual’s list is up-
dated at the next step when they get new suggestions from
agencies, until they get married. People are removed from
others’ lists when they get married. To recap: when an agent
expresses interest in another agent, the couple is married un-
less the agent receives interest from a better candidate at the
same time step, or the recipient refuses them. The factors
that affect an agent’s decisions on whether to propose, or to
accept a proposal, are the utilities the agent has seen so far,
and the time left. There are four possibilities listed below
when agents decide to take actions (proposing to someone
or accepting a proposal).
• If r < 0.4 & c ≥ 0.75×m; • If 0.4 ≤ r ≤ 0.6 & c ≥ h;
• If 0.6 ≤ r ≤ 0.8 & c ≥ 0.75× h;
• If 0.8 ≤ r & c ≥ 0.5×h. If any of these conditions hold for
an individual with respect to someone who was suggested,
then they propose. If a proposal has been received, and the
recipient finds themselves in one of those conditions, then
they will accept the proposal. Note that, in the fourth case,
expectations have been lowered, similarly to what happens
as time runs out in the grid-world environment. Each of these
conditions can be tuned for specific environments.

The Small-World Network

Model This is to formalize the process of finding matches
through one’s social network. In practice, people are often
introduced by friends, or through chains of acquaintances.
We randomly generate suggested matches, with probabil-
ity inversely proportional to their distance in the graph, as
a proxy for such introductions. Every node represents some-
one in search of a mate. We use a small-world network,
where the average distance between nodes is somewhere be-

214

tween 6 and 7, based on the folkloric “six degrees of sep-
aration” introduced by Travers et al. (Travers and Milgram
1977). We use the Watts-Strogatz model (Watts and Strogatz
1998) of small-world graph construction to build our model.
Algorithm This is a variant of the Affiliation Network algo-
rithm, where suggestions come not from agencies, but from
the individuals’ social network (small-world network). The
likelihood of two individuals, i and j, meeting is a func-
tion of their distance d(i, j) in the network. At each stage,
individuals receive at most 3 suggestions/introductions. To
generate the list of suggestions for i, the algorithm first sam-
ples (uniformly at random) one from each distance from i.
The sampled individuals are added to the list with probabil-
ity 1

2d(i,j) . (Note that closer individuals are more likely to
be added.) Finally, if the list has more than 3 suggestions,
individuals on the list are chosen uniformly at random for
culling from the list for this stage. We have chosen these
parameters as they keep number of introductions per agent
balanced, and similar to our other models. Note that unlike
grid-world, in the affiliation network and social network al-
gorithms, once agents become paired with someone they are
considered married forever.

Experiments

We evaluate our algorithms on: quality, scalability, and ro-
bustness. To test quality, we calculate the total utility of all
matchings found by our algorithm in each of the three mod-
els. In our models, agents try to increase their own utility,
rather than global utility. We also examine the total number
of matches found by each algorithm. We run each algorithm
on each environment 10 times using different randomly as-
signed preferences between agents each time. The perfor-
mance of our method is the average cumulative utility over
these trials. To evaluate scalability, we perform these trials
with 100 and 500 agents in each model. To evaluate the ro-
bustness of each algorithm with respect to observed utility
values, we perform trials with utility ranges (1,10) and (-
10,10). Thus, for each model we perform 4 sets of experi-
ments: 100 agents, (1,10) utility range and (-10,10) utility
range; 500 agents, (1,10) utility range and (-10,10) utility
range. Our experiments consider both symmetric and asym-
metric preferences for each set of trials run. Following are
our comparison baselines:
Gale-Shapley (Gale and Shapley 1962).
Bidirectional Local Search attempts to find globally opti-
mal stable matchings (Viet et al. 2016). Note that the goal
of GS and BLS is to find stable matches, which is different
than our goal.
Hoepman Algorithm is a decentralized variant of the
sequential greedy algorithm which computes a weighted
matching at least one half the maximum. (Hoepman 2004).
This comparison is important because there, agents also act
selfishly, as in our approaches.
Hungarian Algorithm finds optimal weighted bipartite
matchings (Kuhn 1955). It is optimal in a utilitarian sense,
meaning that individual agents may get low-utility matches
in order to maximize the total utility, particularly in the
assymmetric-preference case.

Decentralized Models and Algorithm Parameters

For each model, learning occurs in episodes in which
agents take a fixed number of actions before episode con-
cludes. We use two episodes to train each agent. Between
episodes agents remember positive utilities they have re-
ceived so far by being matched. The number of training steps
in each episode depends on number of agents as well as the
size of the grid: (1) 100 agents:

(
20 × 20

)
grid, 1000 steps

(2) 500 agents:
(
45× 45

)
grid, 30,000 steps. For affiliation

networks, we use a bipartite version of the binomial (Erdös-
Renyi) graph model (Erdös and Renyi 1959). To generate the
graph, we specify the number of nodes in the first bipartite
set (agents), n; the number of nodes in the second bipartite
set (agencies), m; the probability for edge creation between
agents and agencies, p. We use parameter combinations as:
(1) n=100, m=5, p=0.5 (2) n=500, m=10, p=0.5. There is
a 50% chance that an agent belongs to a given agency. In the
resulting network, each agent is affiliated with 4–5 agencies
on average. We chose these parameters by conducting an in-
formal social survey amongst people that are registered to
matrimonial agencies. To construct a small-world graph, we
need: the number of nodes, n; the number of nearest neigh-
bors that each node is joined with, k; and the probability of
rewiring each edge, p. The average shortest path between
any two nodes depends on these values. We need parameter
values such that the average shortest path between any two
nodes is about 6 (inspired by the six degrees of separation
phenomenon). Therefore, for a network with 100 agents, we
set n=100, k=5, and p=0.05, resulting in the average shortest
path as approximately 6.2. For 500 agents, we have n=500,
k=4, and p=0.15, resulting in average shortest path lengths
of approximately 6.6.

Results and Discussion

We have compared our approach for the three marriage mod-
els to several centralized algorithms, and to the decentralized
Hoepman algorithm. These results are summarized in Ta-
ble 1. Our approaches significantly outperform the Hoepman
algorithm in most cases, which highlights the power of our
decentralized approach for solving matching problems when
using a variety of representations. In addition, the fact that
our method produced matchings with higher total utility de-
spite each agent being selfish further shows the power of our
algorithms. Moreover, our decentralized algorithms drasti-
cally outperformed the Gale-Shapley algorithm and gives
quite close results to bidirectional local search algorithm in
the set of experiments with asymmetric preferences. This is
especially notable because our decentralized approaches are
more generally applicable since they do not rely on a cen-
tralized agent. Despite that, our approaches were not able
to outperform the Gale-Shapley algorithm in environments
with symmetric preferences. This is likely due to how the
Gale-Shapley algorithm finds matches. When preferences
are symmetric, it is likely that the matchings produced by the
algorithm are not so bad for the second group. Bidirectional
local search algorithm is centralized, which is a big advan-
tage that our approach does not have, therefore it performs
better than our approach. We find that our models give some-

215

Table 1: Results in terms of average total utility averaged over 10 runs. We also list percentage of the optimal utility obtained.
The highest performers among three models for each set of experiments are listed in bold.
Upper: For asymmetric preferences Lower: For symmetric preferences.

Agents; Util-
ity Range

Gale-
Shapley

Bidirectional
Local Search

Hoepman
Algorithm

Grid-world Affiliation
Network

Small-world
Network

Optimal
(Hungarian)

100;
(1,10)

608.5
(65.1%)

915.2
(98.05%)

742.2
(79.51%)

790.5
(84.69%)

776.2
(83.14%)

753.3
(80.7%)

933.4

100;
(-10,10)

134.6
(16.4%)

779
(95.10%)

676.9
(82.63%)

678.1
(82.78%)

592.5
(72.34%)

606.7
(74.06%)

819.1

500;
(1,10)

2841.5
(57.30 %)

4881.7
(98.45 %)

3740.7
(75.44 %)

4018
(81.03 %)

4368.1
(88.09 %)

3924.2
(79.14 %)

4958.4

500;
(-10,10)

461.5
(9.8%)

4577.3
(97.41 %)

3667
(78.04 %)

3821.9
(81.34%)

3935.4
(83.76%)

3626.8
(77.18%)

4698.6

100;
(1,10)

943.4
(94.4%)

988
(98.89%)

738.8
(73.95%)

852.9
(85.37%)

843.2
(84.40%)

875
(87.58%)

999

100;
(-10,10)

856.6
(87.8%)

937.4
(96.08 %)

729.6
(74.78 %)

799.3
(81.92%)

817
(83.74%)

814.2
(83.45%)

975.6

500;
(1,10)

4943.6
(98.9%)

4995
(99.9 %)

3739
(74.78 %)

4332.1
(86.64%)

4666.8
(93.33%)

4553.6
(91.07%)

5000

500;
(-10,10)

4827.2
(96.5%)

4974.6
(99.49 %)

3687.6
(73.75 %)

4237.6
(84.75%)

4582.8
(91.65%)

4486
(89.72%)

5000

what similar results. This roughly indicates that different en-
vironment settings do not significantly change the quality or
the quantity of matches found. When we compare results for
affiliation network and small-world network, we noticed that
in 8 out of 10 different experiment settings, affiliation net-
work performs better than small-world network setting. This
may suggest that when agents are affiliated to agencies there
is slightly better chance of finding a good partner than just
depending on interpersonal networks, but it certainly needs
more investigation as some of our parameters were based on
our discretion and not on real-world data. The fact that each
of our decentralized algorithms performed well across all
environments and test cases indicates that they can be useful
across different strategies for finding partners.

Conclusion

For proposed decentralized models and approach, the overall
utility of matches found were, on average, 84% of the util-
ity achieved by optimal (Hungarian) centralized algorithm.
Since we argue that the social problem is inherently de-
centralized, agents have limited information, and typically
preferences are asymmetric, so optimal sets of matchings
are quite rare; our results are quite strong. Our approaches
outperform the distributed Hoepman algorithm, which sup-
ports our claim. For asymmetric preferences, our algorithms
performed significantly better that Gale-Shapley. However,
when preferences are symmetric, the Gale-Shapley algo-
rithm produced nearly optimal utility matchings, better than
our approach. Millennia of literature assures us that human
romantic preferences, however, are not symmetric.

References

Erdös, P., and Renyi, A. 1959. On random graphs I. Publ.
Math. Debrecen 6:290–297.

Gale, D., and Shapley, L. S. 1962. College admissions
and the stability of marriage. The American Mathematical
Monthly 69(1):9–15.
Hoepman, J.-H. 2004. Simple distributed weighted match-
ings. arXiv preprint cs/0410047.
Kuhn, H. W. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly 2(1-
2):83–97.
Lotker, Z.; Patt-Shamir, B.; and Rosén, A. 2009. Dis-
tributed approximate matching. SIAM Journal on Comput-
ing 39(2):445–460.
Manne, F., and Bisseling, R. H. 2007. A parallel approxima-
tion algorithm for the weighted maximum matching prob-
lem. In International Conference on Parallel Processing and
Applied Mathematics, 708–717. Springer.
Travers, J., and Milgram, S. 1977. An experimental study
of the small world problem. In Social Networks. Elsevier.
179–197.
Vanzin, M. M., and Barber, K. 2006. Decentralized partner
finding in multi-agent systems. In Coordination of Large-
Scale Multiagent Systems. Springer. 75–98.
Viet, H. H.; Lee, S.; Chung, T.; et al. 2016. A bidirectional
local search for the stable marriage problem. In 2016 Inter-
national Conference on Advanced Computing and Applica-
tions, 18–24. IEEE.
Wattenhofer, M., and Wattenhofer, R. 2004. Distributed
weighted matching. In International Symposium on Dis-
tributed Computing, 335–348. Springer.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of ‘small-world’ networks. Nature 393(6684):440.

216

