
Establishing Strong Baselines for the New Decade:
Sequence Tagging, Syntactic and Semantic Parsing with BERT

Han He
Computer Science
Emory University

Atlanta GA 30322, USA
han.he@emory.edu

Jinho D. Choi
Computer Science
Emory University

Atlanta GA 30322, USA
jinho.choi@emory.edu

Abstract

This paper presents new state-of-the-art models for three tasks,
part-of-speech tagging, syntactic parsing, and semantic pars-
ing, using the cutting-edge contextualized embedding frame-
work known as BERT. For each task, we first replicate and
simplify the current state-of-the-art approach to enhance its
model efficiency. We then evaluate our simplified approaches
on those three tasks using token embeddings generated by
BERT. 12 datasets in both English and Chinese are used for
our experiments. The BERT models outperform the previously
best-performing models by 2.5% on average (7.5% for the
most significant case). All models and source codes are avail-
able in public so that researchers can improve upon and utilize
them to establish strong baselines for the next decade. We also
provide a dedicated error analysis and extensive dissections in
https://arxiv.org/abs/1908.04943.

1 Introduction

It is no exaggeration to say that word embeddings trained
by vector-based language models (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014; Bojanowski et al.
2017) have changed the game of NLP once and for all. These
pre-trained word embeddings trained on large corpus im-
prove downstream tasks by encoding rich word semantics
into vector space. However, word senses are ignored in these
earlier approaches such that a unique vector is assigned to
each word, neglecting polysemy from the context.

Recently, contextualized embedding approaches emerge
with advanced techniques to dynamically generate word em-
beddings from different contexts. To address polysemous
words, Peters et al. (2018) introduce ELMo, which is a word-
level Bi-LSTM language model. Akbik, Blythe, and Vollgraf
(2018) apply a similar approach to the character-level, called
Flair, while concatenating the hidden states corresponding
to the first and the last characters of each word to build the
embedding of that word. Apart from these unidirectional re-
current language models, Devlin et al. (2018) replace the
transformer decoder from Radford et al. (2018) with a bidi-
rectional transformer encoder, then train the BERT system
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on 3.3B word corpus. After scaling the model size to hun-
dreds of millions parameters, BERT brings markedly huge
improvement to a wide range of tasks without substantial
task-specific modifications.

In this paper, we verify the effectiveness and conciseness
of BERT by first generating token-level embeddings from
it, then integrating them to task-oriented yet efficient model
structures (Section 3). With careful investigation and engi-
neering, our simplified models significantly outperform many
of the previous state-of-the-art models, achieving the highest
scores for 11 out of 12 datasets (Section 4).

To the best of our knowledge, it is the first work that tightly
integrates BERT embeddings to these three downstream tasks
and present such high performance. All our resources includ-
ing the models and the source codes are publicly available.1

2 Related Work

Our work builds off recent work in representation learn-
ing, tagging and parsing. To learn contextualized represen-
tations, BERT (Devlin et al. 2018) employ masked LM to
jointly condition on both left and right contexts, showing
impressive improvement in various tasks. As a trend for
tagging, fine grained features often result in better perfor-
mance. These features include the morphological and con-
textual information from contextual string embeddings (Ak-
bik, Blythe, and Vollgraf 2018), the representations from
both string and token based character Bi-LSTM language
models (Bohnet et al. 2018), and the ensemble of multi-
lingual BERT and conventional representations (Heinzer-
ling and Strube 2019). Among parsing community, graph-
based parsers (Dozat and Manning 2017; Clark et al. 2018;
Ma et al. 2018) resurge due to GPU parallelization. Recently,
(Zhou and Zhao 2019) achieved impressive results by jointly
learning constituency and dependency parsing with BERT.

3 Approach

3.1 Token-level Embeddings with BERT

BERT splits each token into subwords using WordPiece (Wu
et al. 2016), which do not necessarily reflect any morphol-
ogy in linguistics. For example, Rainwater gets split into

1https://github.com/emorynlp/bert-2019
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Rain+water, whereas running or rapidly remain unchanged
although typical morphology would split them into run+ing
and rapid+ly. To obtain token-level embeddings for tagging
and parsing, the following two methods are experimented:

Last Embedding Since the subwords from each token
are trained to predict one another during language modeling,
their embeddings must be correlated. Thus, one way is to
pick the embedding of the last subword as a representation
of the token.

Average Embedding For a compound word like ‘dog-
house’ that gets split into ‘dog’ and ‘##house’, the last sub-
word does not necessarily convey the key meaning of the
token. Hence, another way is to take the average embedding
of the subwords.

Model In-domain Out-of-domain

BERTBASE: LAST 86.7 79.5
BERTBASE: AVERAGE 86.7 79.8

BERTLARGE: LAST 86.8 79.4
BERTLARGE: AVERAGE 86.4 79.5

Table 1: Results from the PSD semantic parsing task (§4.3)
using the last and average embedding methods.

Table 1 shows results from a semantic parsing task, PSD
(Section 4.3), using the last and average embedding methods
with BERTBASE and BERTLARGE models.2 The average method
is chosen for all our experiments since it gives a marginal
advantage to the out-of-domain dataset.

3.2 Input Embeddings with BERT

While Devlin et al. (2018) report that adding just an additional
output layer to the BERT encoder can build powerful models
in a wide range of tasks, its computational cost is too high.
Thus, we separate the BERT architecture from downstream
models, and feed pre-generated BERT embeddings, eBERT,
as input to task-specific encoders:

F i = Encoder
(
X⊕ eBERT)

Alternatively, BERT embeddings can be concatenated with
the output of a certain hidden layer:

Fh = Encoder[h:]
(
Encoder[:h] (X)⊕ eBERT)

where Encoder[:h] denotes for encoder layers from 1 to h,
and Encoder[h:] denotes for layers from h to the last one.
Table 2 shows results from the PSD semantic parsing task
(Section 4.3) using the average method from Section 3.1. F i

shows a slight advantage for both BERTBASE and BERTLARGE

over Fh; thus, it is chosen for all our experiments.

3.3 Bi-LSTM-CRF for Tagging

For sequence tagging, the Bi-LSTM-CRF (Huang, Xu, and
Yu 2015) with the Flair embeddings (Akbik, Blythe, and
Vollgraf 2018), is used to establish a baseline for English.

2BERTBASE uses 12 layers, 768 hidden cells, 12 attention heads,
and 110M parameters, while BERTLARGE uses 24 layers, 1024 hidden
cells, 16 attention heads, and 340M parameters. Both models are
uncased, since they are reported to achieve high scores for all tasks
except for NER (Devlin et al. 2018).

Model In-domain Out-of-domain

BERTBASE: F i 86.7 79.8

BERTBASE: F h 86.5 79.5
BERTLARGE: F i 86.4 79.5

BERTLARGE: F h 85.9 79.1

Table 2: Results from the PSD semantic parsing task (Sec-
tion 4.3) using F i and Fh.

e4,8
Flair

b u y  a p p l e T V

Figure 1: Generating the Flair embedding for ‘apple’.

Given a token w in a sequence where ci and cj are the start-
ing and ending characters of w (i and j are the character
offsets; i ≤ j), the Flair embedding of w is generated by
concatenating two hidden states of cj+1 from the forward
LSTM and ci−1 from the backward LSTM (Figure 1):

eFlair
i,j = hf(cj+1)⊕ hb(ci−1)

eFlair
i,j is then concatenated with a pre-trained token embedding

of w and fed into the Bi-LSTM-CRF. In our approach, we
present two models, one substituting the Flair and pre-trained
embeddings with BERT, and the other concatenating BERT
to the other embeddings. Note that variational dropout is not
used in our approach to reduce complexity.

3.4 Biaffine Attention for Syntactic Parsing

A simplified variant of the biaffine parser (Dozat and
Manning 2017) is used for syntactic parsing (Figure 2).
Compared to the original version, the trainable word
embeddings are removed and lemmas are used instead
of forms to retrieve pre-trained embeddings in our ver-
sion, leading to less complexity yet better generalization.
Given the i’th token wi, the feature vector is created by
concatenating its pre-trained lemma embedding eLEM

i , POS
embedding ePOS

i learned during training and the representa-
tion eBERT

i from the last layer of BERT. This feature vector is
fed into Bi-LSTM, generating two recurrent states rfi and rbi :

rfi = LSTMforward (
eLEM
i ⊕ ePOS

i ⊕ eBERT
i

)

rbi = LSTMbackward (eLEM
i ⊕ ePOS

i ⊕ eBERT
i

)

Two multi-layer perceptrons (MLP) are then used to extract
features for wi being a head harc-h

i or a dependent harc-d
i , and

two additional MLP are used to extract hrel-h
i and hrel-d

i for
labeled dependency parsing:
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Figure 2: Biaffine attention parser

h(arc-h)
i = MLP(arc-h)(rfi ⊕ rbi ) ∈ R

k×1

h(arc-d)
i = MLP(arc-d)(rfi ⊕ rbi ) ∈ R

k×1

h(rel-h)
i = MLP(rel-h)(rfi ⊕ rbi ) ∈ R

l×1

h(rel-d)
i = MLP(rel-d)(rfi ⊕ rbi ) ∈ R

l×1

harc-h
1..n are stacked into a matrix Harc-h with a bias for the

prior probability of each token being a head, and harc-d
1..n are

stacked into another matrix Harc-d as follows (n: # of tokens,
U (arc) ∈ R

k×(k+1)):

H (arc-h) = (h(arc-h)
1 , . . . ,h(arc-h)

n ) ∈ R
k×n

H (arc-d) = (h(arc-d)
1 , . . . ,h(arc-d)

n )⊕ 1 ∈ R
(k+1)×n

S(arc) = H (arc-h)� · U (arc) ·H (arc-d) ∈ R
n×n

S(arc) is called a bilinear classifier that predicts head words.
Arc labels are predicted by another biaffine classifier S(arc),
which combines m bilinear classifiers for multi-classification
(m: # of labels, U (rel) ∈ R

l×(l+1), V (rel) ∈ R
(2·l+1)×m):

H (rel-h) = (h(rel-h)
1 , . . . ,h(rel-h)

n ) ∈ R
l×n

H (rel-d) = (h(rel-d)
1 , . . . ,h(rel-d)

n )⊕ 1 ∈ R
(l+1)×n

U rel
i = H(rel-h)� · U (rel)

i ·H(rel-d) ∈ R
n×n

S(rel) = (U rel
1 , . . . ,U rel

m )

+ (H(rel-h) ⊕H(rel-d))� · V (rel) ∈ R
m×n×n

During training, softmax cross-entropy is used to optimize
S(arc) and S(rel). Note that for the optimization of S(rel), gold
heads are used instead of predicted ones. During decoding, a
maximum spanning tree algorithm is adopted for searching
the optimal tree based on the scores in S(arc).

3.5 Biaffine Attention for Semantic Parsing

Dozat and Manning (2018) adapted their original biaffine
parser to generate dependency graphs for semantic parsing,
where each token can have zero to many heads. Since the tree
structure is no longer guaranteed, sigmoid cross-entropy is
used instead so that independent binary predictions can be
made for every token to be considered a head of any other
token. The label predictions are made as outputting the labels
with the highest scores in S(rel) once arc predictions are made,
as illustrated in Figure 2.

This updated implementation is further simplified in our
approach by removing the trainable word embeddings, the
character-level feature detector, and their corresponding lin-
ear transformers. Moreover, instead of using the interpolation
between the head and label losses, equal weights are applied
to both losses, reducing hyperparameters to tune.

4 Experiments
Three sets of experiments are conducted to evaluate the im-
pact of our approaches using BERT (Section 3). For sequence
tagging (Section 4.1), part-of-speech tagging is chosen where
each token gets assigned with a fine-grained POS tag. For
syntactic parsing (Section 4.2), dependency parsing is chosen
where each token finds exactly one head, generating a tree
per sentence. For semantic parsing (Section 4.3), semantic
dependency parsing is chosen where each token finds zero
to many heads, generating a graph per sentence. Every task
is tested on both English and Chinese to ensure robustness
across languages. Standard datasets are adapted to all experi-
ments for fair comparisons to many previous approaches. All
our models are experimented three times and average scores
with standard deviations are reported.

4.1 Sequence Tagging

For part-of-speech tagging, the Wall Street Journal corpus
from the Penn Treebank 3 (Marcus, Marcinkiewicz, and San-
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ALL OOV

Ma and Hovy (2016) 97.55 93.45
Ling et al. (2015) 97.78 n/a
Clark et al. (2018) 97.79 n/a
Akbik, Blythe, and Vollgraf (2018) 97.85 (±0.01) n/a
Bohnet et al. (2018) 97.96 n/a
Baseline 97.70 (±0.05) 92.44 (±0.03)
Baseline \ BERTBS 96.96 (±0.06) 91.23 (±0.22)
Baseline \ BERTLG 96.96 (±0.05) 91.26 (±0.25)
Baseline + BERTBS 97.68 (±0.06) 92.69 (±0.32)
Baseline + BERTLG 97.67 (±0.02) 93.01 (±0.27)

(a) Results from the English test set. BERTBS and BERTLG are
BERT’s uncased base and cased large models, respectively.

ALL OOV

Zhang et al. (2015) 94.47∗ n/a
Zhang et al. (2014) 94.62∗ n/a
Kurita, Kawahara, and Kurohashi (2017) 94.84∗ n/a
Hatori et al. (2011) 94.64 n/a
Wang and Xue (2014) 96.0 n/a
Baseline 95.65 (±0.26) 83.57 (±0.55)
Baseline \ BERT 96.38 (±0.15) 88.13 (±0.72)
Baseline + BERT 97.25 (±0.18) 90.53 (±0.91)

(b) Results from the Chinese test set. * are evaluated on the character-
level due to automatic segmentation, so their results are not directly
comparable to ours but reported for reference.

Table 3: Test results for part-of-speech tagging, where token-
level accuracy is used as the evaluation metric. ALL: all
tokens, OOV: out-of-vocabulary tokens.

torini 1993) is used for English, and the Penn Chinese Tree-
bank 5.1 (Xue et al. 2005) is used for Chinese. Table 3 shows
tagging results on the test sets.

For English, the baseline is our replication of the Flair
model using both GloVe and Flair embeddings (Section 3.3).
It shows a slightly lower accuracy, -0.15%, than the original
model (Akbik, Blythe, and Vollgraf 2018) due to the lack
of variational dropout. \BERT substitutes GloVe and Flair
with BERT embeddings, and +BERT uses all three types
of embeddings. The baseline outperforms all BERT models
for the ALL test, implying that Flair’s Bi-LSTM character
language model is more effective than BERT’s word-piece
approach. No significant difference is found between BERTBS

and BERTLG. However, an interesting trend is found in the
OOV test, where the +BERTLG model shows good improve-
ment over the baseline. This implies that BERT embeddings
can still contribute to the Flair model for OOV although the
CNN character language model from Ma and Hovy (2016) is
marginally more effective than +BERT for OOV tokens.

For Chinese, the Bi-LSTM-CRF model with FastText em-
beddings is used for baseline (Sec. 3.3). \BERT that sub-
stitutes FastText embeddings with BERT and +BERT that
adds BERT embeddings to the baseline show progressive im-
provement over the prior model for both the ALL and OOV
tests. +BERT gives an accuracy that is 1.25% higher than the
previous state-of-the-art using joint-learning between tagging
and parsing (Wang and Xue 2014).

4.2 Syntactic Parsing

Table 4 shows parsing results on the test sets. The same
datasets for POS tagging are also used for syntactic parsing.

UAS LAS

Dozat and Manning (2017) 95.74 94.08
Kuncoro et al. (2017) 95.8 94.6
Ma et al. (2018) 95.87 94.19
Choe and Charniak (2016) 95.9 94.1
Clark et al. (2018) 96.6 95.0
Zhou and Zhao (2019) 97.20 95.72
Baseline 95.78 (±0.04) 94.04 (±0.04)
Baseline \ BERT 96.76 (±0.09) 95.27 (±0.13)
Baseline + BERT 96.79 (±0.08) 95.29 (±0.12)

(a) Results from the English test set.
UAS LAS

Dozat and Manning (2017) 89.30 88.23
Ma et al. (2018) 90.59 89.29
Baseline 91.02 (±0.10) 89.89 (±0.09)
Baseline \ BERT 93.21 (±0.06) 92.21 (±0.05)
Baseline + BERT 93.34 (±0.21) 92.29 (±0.22)

(b) Results from the Chinese test set.

Table 4: Test results for dependency parsing, where unlabeled
and labeled attachment scores (UAS and LAS) are used as the
evaluation metrics. Scores in italic are joint learning results.

Our simplified version of the biaffine parser (Section 3.4) is
used for baseline, where GloVe and FastText embeddings
are used for English and Chinese, respectively. The baseline
model gives a comparable result to the original model (Dozat
and Manning 2017) for English, yet shows a notably better
result for Chinese, which can be due to higher quality em-
beddings from FastText. \BERT substitutes the pre-trained
embeddings with BERT and +BERT adds BERT embeddings
to the baseline. Moreover, BERT’s uncased base model is
used for English.

Between \BERT and +BERT, no significant difference is
found, implying that those pre-trained embeddings are not so
useful when coupled with BERT. All BERT models show sig-
nificant improvement over the baselines for both languages,
and outperform the previous state-of-the-art approaches us-
ing cross-view training (Clark et al. 2018) and stack-pointer
networks (Ma et al. 2018) by 0.29% and 3% in LAS for En-
glish and Chinese, respectively. Considering the simplicity
of our +BERT models, these results are remarkable.

4.3 Semantic Parsing

The English dataset from the SemEval 2015 Task 18: Broad-
Coverage Semantic Dependency Parsing (Oepen et al. 2015)
and the Chinese dataset from the SemEval 2016 Task 9: Chi-
nese Semantic Dependency Parsing (Che et al. 2016) are used
for semantic dependency parsing.

Table 5 shows the English results on the test sets. The
baseline, \BERT, and +BERT models are similar to the ones
in Section 4.2, except they use the sigmoid instead of the
softmax function in the output layer to accept multiple heads
(Section 3.5). Our baseline is a simplified version of Dozat
and Manning (2018); its average scores are 1.2% higher and
1.0% lower than the original model for ID and OOD, due to
different hyperparameter settings. +BERT shows good im-
provement over \BERT for both test sets, implying that BERT
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embeddings are complementary to those pre-trained embed-
dings, and surpasses the previous state-of-the-art scores by
3% and 2% for ID and OOD, respectively.

DM PAS PSD AVG

Du et al. (2015) 89.1 91.3 75.7 85.3
Almeida and Martins (2015) 89.4 91.7 77.6 86.2
Wang et al. (2018) 90.3 91.7 78.6 86.9
Peng, Thomson, and Smith (2017) 90.4 92.7 78.5 87.2
Dozat and Manning (2018) 93.7 93.9 81.0 89.5
Che et al. (2019) 92.9 94.4 81.6 89.6
Baseline 92.48 94.56 85.00 90.68
Baseline \ BERT 94.36 96.03 86.59 92.33
Baseline + BERT 94.57 96.13 86.80 92.50

(a) Results from the in-domain (ID) test sets.
DM PAS PSD AVG

Du et al. (2015) 81.8 87.2 73.3 80.8
Almeida and Martins (2015) 83.8 87.6 76.2 82.5
Wang et al. (2018) 84.9 87.6 75.9 82.8
Peng, Thomson, and Smith (2017) 85.3 89.0 76.4 83.6
Dozat and Manning (2018) 88.9 90.6 79.4 86.3
Che et al. (2019) 89.2 92.4 81.0 87.5
Baseline 86.98 91.35 77.28 85.34
Baseline \ BERT 90.49 94.31 79.31 88.07
Baseline + BERT 90.86 94.38 79.48 88.21

(b) Results from the out-of-domain (OOD) test sets.

Table 5: Test results for semantic dependency parsing in En-
glish; labeled dependency F1 scores are used as the evaluation
metrics. DM: DELPH-IN dependencies, PAS: Enju depen-
dencies, PSD: Prague dependencies, AVG: macro-average of
(DM, PAS, PSD).

Table 6 shows the Chinese results on the test sets. No signifi-
cant difference is found between \BERT and +BERT. +BERT
significantly outperforms the previous state-of-the-art by 4%
and 7.5% in LF for NEWS and TEXT, which confirms that
BERT embeddings are very effective for semantic depen-
dency parsing in both English and Chinese.

NEWS TEXT
UF LF UF LF

Artsymenia, Dounar, and Yermakovich (2016) 77.64 59.06 82.41 68.59
Wang et al. (2018) 81.14 63.30 85.71 72.92
Baseline 80.51 64.90 88.06 77.28
Baseline \ BERT 82.91 67.17 90.83 80.46
Baseline + BERT 82.92 67.27 91.10 80.41

Table 6: Test results for semantic dependency parsing in Chi-
nese, where unlabeled and labeled dependency F1 scores (UF
and LF) are used as the evaluation metrics. NEWS: newswire,
TEXT: textbook.

5 Conclusion

In this paper, we describe our methods of exploiting BERT
as token-level embeddings for tagging and parsing tasks.
Our experiments empirically show that tagging and parsing
can be tackled using much simpler models without losing
accuracy. Out of 12 datasets, our approaches with BERT
have established new state-of-the-art for 11 of them. As the
first work of employing BERT with syntactic and semantic

parsing, our approach is much simpler yet more accurate than
the previous state-of-the-art.
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