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Abstract

The problem of finding the correct number of latent topics
in Latent Dirichlet Allocation is typically addressed by using
a so-called wrapper approach and optimizing over the per-
plexity measure. This problem can be considered a dimen-
sionality reduction task. We investigate how popular methods
from different fields determine the right number of latent fac-
tors to retain. We address the reliability of these methods un-
der different conditions and under different characteristics of
datasets.
In particular, we show that although perplexity is the favorite
statistical method to choose the number of latent topics, it
does not systematically outperform other methods under dif-
ferent matrix sparsity levels. We show that SVD-based meth-
ods and a well-known methods in psychometrics sometimes
yield the greatest performances. We also show that we can
take advantage of antithetical results across methods to esti-
mate the reliability of the estimated number of latent topics.

Introduction

Finding the number of hidden factors is a common problem
for a number of statistical and machine learning techniques
that are deployed in fields such as information retrieval, psy-
chology, and recommender systems. Interestingly, each field
of study has its own methods of choice to solve this prob-
lem. Few studies borrow methods from outside their fields
to investigate the reliability and performance of these meth-
ods within a single field. In the field of Topic Modeling, this
problem translates to the task of finding the number of top-
ics.

We investigate if, and how methods outside of the typical
topic modeling studies can tackle this task. Experiments are
conducted with synthetic data where we know the ground
truth (number of topics) and, as a generative model, LDA is
well suited for that purpose.

The results of the experiments surprisingly show that, un-
der certain conditions, the linear methods show better esti-
mate the number of topics than perplexity. We also find that
sparsity has a key effect and even more important than α and
β to find the correct number of topics (K) by the mentioned
methods.
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The rest of this paper is organized as follows. We first
review LDA in more details and review the best known and
most successful methods to find the correct number of latent
factors in different fields. Then, we report the details of our
experiments. Next, we discuss the results before concluding.

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was originally introduced
by Blei, Ng, and Jordan (2003) and is arguably the most
widely used method for topic modeling. It is a genera-
tive, probabilistic model of documents. This technique uses
words distribution to cluster texts and discover latent topics
from it. It is based on the assumptions that each document
consists of a mixture of hidden topics and that each topic
consists of a set of words, both of which follow a Dirichlet
prior.

LDA has the following hyperparameters that have to be
determined before the training phase:
• Alpha (α), is the Dirichlet prior of document-topic den-

sity. Higher values of alpha implies documents composed
of more topics and lower values implies fewer topics per
document.

• Beta (β), is the Dirichlet prior of document-topic density.
A higher beta indicates that topics are composed of a large
vocabulary, and a lower value implies smaller vocabular-
ies per topic.

• K is the number of topics.
Griffiths and Steyvers (2004) suggest a value of 50/T for
α, where T is the number of topics, and 0.1 for β. And
consequently many studies such as (Jameel and Lam 2013;
Shang and Chan 2010) as well as the “topicmodels” package
(Grün and Hornik 2011) in R use of these values.

For finding the number of topic parameters K, most stud-
ies (Blei, Ng, and Jordan 2003; Su and Liao 2013, for eg.)
use perplexity along with a wrapper technique to find the
number that will essentially yield the most likely probability
of the data given the hyperparameters and the training pa-
rameters derived. A fair number of studies have shown its
effectiveness (Blei, Ng, and Jordan 2003; Vu, Li, and Law
2019; Henderson and Eliassi-Rad 2009; Cha and Cho 2012;
Hoffman, Bach, and Blei 2010; Zhang et al. 2007).

To skip defining the number of topics in advance, Hierar-
chical Topic Modeling (HTM) was proposed and studied by
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a number of researchers (Griffiths et al. 2004; Blei, Grif-
fiths, and Jordan 2010; Mimno, Li, and McCallum 2007;
Paisley et al. 2014). However, other studies (Kang, Ma, and
Liu 2012; Mao et al. 2012; Wallach, Mimno, and McCallum
2009) have shown that hierarchical topic modeling does not
yield better results and argue that some of the cons of HTM
methods are that they are heuristic-based and computation-
ally expensive.

Dimension reduction methods

Let us now turn to alternative methods to address the prob-
lem of finding the number of latent topics that are inspired
from dimension reduction and factor analysis.

In the social science and psychometrics areas, factor anal-
ysis techniques help decide the number of latent factors
to retain from a dataset (Ledesma and Valero-Mora 2007).
Among the best known, we find Kaiser’s eigenvalue-greater-
than-one rule, Parallel Analysis (PA), Cattell’s Scree test,
Minimum Average Partial test which is known as Velicer’s
MAP. They are reviewed below.

In areas of machine learning applications such as rec-
ommender systems, we find Singular Value Decomposi-
tion (SVD) based approaches such as Bi-Cross-Validation
(BCV), which is known as a wrapper method, and the more
recent Randomize-SVD (RSVD) (Neishabouri and Des-
marais 2019)

In this paper we evaluate the method PA, which accord-
ing to the psychometrics literature is a top performer (Zwick
and Velicer 1986), alongside with SVD-Based methods and
perplexity in finding the correct number of topics under dif-
ferent conditions of datasets. This choice corresponds to our
assessment of the most promising alternatives to perplexity
(Neishabouri and Desmarais 2019). Moreover, we investi-
gate the reliability of these methods and compare them.

Parallel Analysis

Horn’s Parallel analysis (PA) (Horn 1965) is a well-known
technique in psychometrics that is almost ignored by the ma-
chine learning community. It relies on the correlation matrix
of the observed variables of the original datasets, and mul-
tiple random datasets generated having the same size as the
original dataset. A factor is retained if its associated eigen-
values of the correlation matrix of the original dataset are
bigger than the mean or 95 percentile eigenvalues that are
derived from the correlation matrices of the random gener-
ated datasets. The remaining factors are considered random
noise.

In this article, mPA and cPA refer to the two variations
of PA method that correspond respectively to the average
and 95 percentile of the eigenvalues of the random datasets
respectively.

Bi-Cross-Validation (BCV) of the SVD

Gabriel cross-validation (BCV.G) and Wold style cross-
validation (BCV.W) are wrapper methods that rely on cross
validating the singular value decomposition (SVD) to find
the best rank of a matrix to truncate the SVD (Owen, Perry,
and others 2009).

The singular value decomposition of a matrix is a well-
known matrix factorization technique. It decomposes the
original matrix, A, into three matrices as below.

A = Um×m Σm×n VT
n×n

where U and V are two eigenvector matrices that are or-
thonormal and called the left-singular vectors and right-
singular vectors of A respectively and the matrix Σ is di-
agonal with non-negative real values.

Both the Gabriel-style (BCV.G) and Wold-style (BCV.W)
cross validation variations consists in dividing the data into
a training and a test set. Prediction is done with a truncated
(lower rank) product of the factorization. The prediction er-
ror is measured as the sum of squares of residuals between
the truncated SVD and the original matrix. Determining the
number of LD relies on a comparison of the residual error
over a random set of values for the test set.

In the Wold-style cross validation, the test set is a ran-
dom set of values in the matrix. The difference between
Wold- and Gabriel-style is that, for the later, the test set
is “blocked”. It holds out a certain number of rows and
columns of a matrix simultaneously as a test set. BCV.G di-
vides the rows of the matrix into k segments and the columns
into h segments. The total number of folds are k × h which
refer to the number of blocks. In each step, one of the blocks
is considered as the test set and the remaining blocks are as
the training set to reconstruct the original matrix. More de-
tails about this method are given in (Owen, Wang, and others
2016; Kanagal and Sindhwani 2010)

With large data sets free of missing values, Owen, Wang,
and others (2016) report that BCV has a better result than
other methods in the state of the art. Several studies indi-
cate that the Wold-style cross validation provides a better
result but is slower than Gabriel-style (Kanagal and Sind-
hwani 2010; Owen, Perry, and others 2009).

Randomized Singular Value Decomposition: RSVD

Randomized Singular Value Decomposition (RSVD) is
briefly introduced in (Beheshti, Desmarais, and Naceur
2012) and developed further in (Neishabouri and Desmarais
2019). This method is similar to PA. It compares the singu-
lar values of the original matrix with the randomized matrix.
The randomized matrix is a sample of the original matrix by
selecting columns randomly with the same size.

The number of latent values is determined as the point of
intersection of the two curves of the randomized and original
matrices SVD singular values.

Perplexity

Perplexity is arguably the most popular metric in language
modeling. It is based on the probability of the unseen test set,
normalized by the number of words to evaluate the goodness
of LDA model. The perplexity is defined as:

PP (W) = P (W1W2, ...,Wm)
−1/m)

where PP and W refer to perplexity and word respec-
tively, and P is the probability estimate assigned to docu-
ment words. A model with a given number of topics that
minimize perplexity value is considered an optimal model
(Chen, Yao, and Yang 2016; Vu, Li, and Law 2019) .
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Experiments and results

We conduct experiments to compare the methods outlined
above over the task of inferring the number of topics used
to generate synthetic documents generated with the LDA
model. Specifics of each method for the experiments are:

• Parallel Analysis (PA): we use the “paran” library (Dinno
2018) in R. We examine the accuracy of the mean eigen-
value rule and the 95th percentile eigenvalue rule. We call
them “mPA” and “cPA” respectively.

• Bi-Cross Validation: Wold-style cross validation with 5
folds and also Gabriel-style cross validation with 4 sub
matrices (Perry 2015) which are the default of the library.
We refer to them as BCV.W and BCV.G respectively.

• Randomized SVD (RSVD): implemented in R using al-
gorithm 1 in (Neishabouri and Desmarais 2019).

• Perplexity: We use LDA with Gibbs sampling and per-
plexity functions in “topicmodels” library (Grün and
Hornik 2011) in R.

PA, BCV and RSVD are linear methods to find the num-
ber of latent factors, while LDA is a non-linear method
which uses perplexity to find the optimal number of latent
factors to retain.

In our experiments we generate document-term matrices
from a LDA model with known hyper-parameters. Using
synthetic data is our choice of validation method because
we know the ground truth of the generated data and we can
control the different characteristics to investigate. We design
some experiments that simulate the short texts such as re-
views, comments, abstracts, tweets, etc. We aim to find the
correct number of topics behind the generated datasets us-
ing the mentioned methods in order to compare their perfor-
mance.

We explore the performance of methods over document-
term datasets of size = 250 × 1000, where the rows and
columns refer to the number of documents and vocabulary
respectively. We also consider two sets of priors (alpha and
beta) to generate document-term matrices, namely set 1 =
[α = 0.6, β = 0.1] and set 2 = [α = 0.8, β = 0.6].

We study the methods’ performance for different dataset
characteristics such as the number of latent topics, level of
sparsity (number of terms per document) for each set of pri-
ors. Hence, we generate 15 different datasets for each set
of priors, and we further generate datasets for 3 sizes of la-
tent topics, K = [5, 10, 15] and that for different levels of
sparsity using the number of terms per document such as
[50, 100, 200, 300, 400].

Datasets generation

To generate synthetic document-term matrices, we rely on
the generative nature of LDA (Blei, Ng, and Jordan 2003).

Algorithm 1 shows the procedure and steps to perform our
experiment per each dataset.

Results of the experiments over the different data sets are
reported below.

Algorithm 1 Experiment Procedure
• Define size of documents and vocabulary
• Define α, β and K
• DTM ← Generate synthetic Document-Term dataset us-

ing LDA generative Process
• Estimate K using each of the linear method (DTM)
• Estimate K using Perplexity through following steps:

1. Split DTM into five folds
2. For each unique fold
(a) Take the fold as a test
(b) Take rest of the folds as a training set
(c) For K = 2 : 25

i. Fit LDA model using Gibbs sampling on the training
set

ii. Evaluate the fitted model on the test set using per-
plexity

iii. Retain the evaluation score per each K
(d) Take the average of the perplexity score for each K

3. Return K with minimum average perplexity score

Experiment 1, α = 0.6 and β = 0.1

In this experiment, we explore each method on the gen-
erated datasets with α = 0.6 and β = 0.1. Figure 1
(top plot) displays the estimation of each method at dif-
ferent levels of sparsity (number of terms per documents)
= [50, 100, 200, 300, 400] and latent topics, = [5, 10, 15].

For the further analysis, we compute loss of the esti-
mated number of latent topics using the Mean Absolute Er-
ror (MAE):

lossMAE = 1/n
n∑

i

|Ki − K̂i|

Where Ki is the real number of latent topics of data set i and
K̂i is the estimated number.

We discuss the results in the next section.

Experiment 2, α = 0.8 and β = 0.6

This experiment illustrates the effect of higher priors in each
of the mentioned method’s estimation. We generate all the
datasets with α = 0.8 and β = 0.6. Figure 1 (bottom plot)
shows the estimation of each method at different levels of
sparsity and latent topics. The details are discussed in the
following section.

Discussion and analysis of errors

According to Figure 1, we can conclude that dataset charac-
teristics such as sparsity, number of topics, α and β play a
crucial role for the capacity of the methods to find the num-
ber of latent topics.

As we could expect, the error estimation of K grows as
the real value of K grows, and as the size of the documents
drop from 400 to 50 terms. Unexpected is that the direc-
tion of errors is opposite when comparing perplexity with
all other methods. These error trends are analyzed below.
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Figure 1: Estimation of the methods at each level of sparsity in the first (top) and second (bottom) experiments. In each panel,
K and Terms in the figure refer to the number of topics and terms per document respectively.

Table 3 shows the ratio of correct and over/under estima-
tion for each method averaged over all data sets. We find that
the linear models RSVD and BCV often show a higher capa-
bility to estimate the right number of topics than perplexity.
Moreover, we see that although BCV.W has the same ac-
curacy as perplexity, it has a bias in the opposite direction.
Perplexity overestimates the number of latent topics whereas
BCV.W underestimate it. More on this trend below. Note
that for the two plots in Figure 1, a bias correction is applied
to mPA and cPA

Figure 1 also illustrates that all the methods have a higher
loss with higher sparsity and higher priors (α, β).

In order to examine the effect of these parameters, we
compute average loss of all the methods under each con-
dition. Figure 2 displays the relation between average loss
of all the methods and datasets characteristics such as spar-

sity (Terms per Documents), and each set of priors. We find
that by increasing sparsity, all methods have a higher loss on
average. Moreover, it shows that there is a higher average
loss where priors have a higher value. We also can see that
where there is a less sparsity, hyperparameters α and β do
not affect the results significantly. Which means that if we
could control the sparsity we can ignore the effect of Alpha
and Beta values.

Another interesting point of the two plots in Figure 1 is
that, with increased sparsity, the perplexity method overes-
timate whereas the other methods underestimate the num-
ber of topics. In order to investigate the behavior of per-
plexity with respect to the other methods, we define an-
other variable as “status” that tells us whether each method
over/underestimate if the estimations differ more than one
from the correct latent topics. Table 1 shows the number of
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Table 1: Perplexity Overestimation table

Overestimate Not Overestimate
Opposite Direction 9.00 0.00

Same Direction 4.00 17.00

Table 2: Perplexity Overestimation Odds Ratio and Confi-
dence Interval

Odds Ratio Lower Limit CI Upper Limit CI
73.89 3.581 1524.226

Table 3: Accuracy and over/under estimation of each method

Methods Correct Overestimate Underestimate

RSVD 0.57 0.20 0.23
mPA 0.53 0.30 0.17
cPA 0.57 0.17 0.27
BCV.W 0.47 0.00 0.53
BCV.G 0.47 0.17 0.37

Perplexity 0.47 0.43 0.10
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Figure 2: Association between sparsity, hyperparameters
and loss

times perplexity overestimate in the same or opposite direc-
tion of the other methods.

To compare the behavior of perplexity with the other
methods and assess if the overestimation of perplexity with
respect to the other methods estimations is significant or not,
we compute the odds ratio alongside the 95% confidence in-
terval (CI) of perplexity. In order to avoid singular odds ra-
tios, we make the Laplace correction, a kind of prior, and
add 0.5 to all the values in table 1. Table 2 shows that the
odds ratio of perplexity overestimation in opposite direction
of the other method is 73.89 times greater than when is not
overestimating and the CI also indicate that the odds ratio is
statistically significant since it does not include 1.

It also worth mentioning that perplexity can overestimate
even more where α = 0.8 and β = 0.6, but since to avoid
time consumption we set a range of K = 2 : 25 to evaluate
the LDA model using perplexity, it shows the maximum one.

Conclusion and future work

We tackled the problem of finding the number of topics with
well-known linear methods from the other fields that have
not been utilized before. We showed that despite the fact
these methods are within a linear framework and under cer-
tain conditions, some of them have a better performance than
the commonly used perplexity measure to find the number
of topics. We also show the boundaries where perplexity, as
well as the other methods, become subject to unreliable esti-
mations. We show that the performance deteriorates sharply
as dataset sparsity and priors increase.

The boundaries have the interesting characteristic that the
perplexity measure overestimates the number of latent di-
mensions, whereas the other methods understimates them.
This leads to an interesting indicator that all methods are
providing unreliable estimates.

The experiment results also corroborates the finding that
LDA performs poorly with short texts (Li et al. 2019), and in
particular that the commonly used perplexity measure to de-
rive the number of topics overestimates this parameter with
high sparsity.

An important limitation of this work is that we do not
have a analytical explanation for the different behavior of
the methods.

Current research in each domain mostly focuses on spe-
cific technical approaches and evaluation that are known
within the field which makes it difficult to conclude that if
the achieved results are actually the best that could be and
reliable. Our experiments show the necessity of engaging to
more multidisciplinary methods in order to be aware of the
reliability of an evaluation approach despite the popularity.
Our experiments and contribution could lead to a more reli-
able and accurate estimation of the number of topics.
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