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Abstract

This paper presents an automatic classification model for the
identification of various types/makes of guitars. The classifi-
cation is carried out by machine learning classifiers trained
on mel frequency cepstral coefficients (MFCCs) features ex-
tracted from audio recordings. The classification results are
analyzed and insights from the experiments are shared.

1. Introduction

Experienced musicians rely on a variety of instruments to
help them express specific emotions or to achieve a particu-
lar auditory effect. Each type of instrument has its own char-
acteristics, appropriate for certain musical styles and per-
former preferences and moods — from the soft sounds of a
classical guitar to the angry growl of a distorted electric gui-
tar. Many sonic differences are subtle and imperceptible to
the casual listener. For example, the much-debated Stradi-
vari vs. Guarneri violin sonic differences are discernible
mostly to experienced violinists and select audiophiles. To
a trained ear, however, even subtle differences in tone can
be quite obvious. To an artist, finding the “perfect sound” is
a matter of vision and self-expression. A natural question,
therefore, arises: Can a computer identify musical instru-
ments by their sound as readily as a trained musician?

Musical instrument identification is part of the broader
topic of automatic music classification, which has been ex-
plored extensively (Dieleman et al. 2011, Haggblade et al.
2011). Identifying musical instruments from a mix or solo
recordings has been studied for guitar (Johnson et al. 2015),
violin (Dalmazzo et al. 2018, Lukasik 2010), piano (Fra-
goulis et al. 2006), and even drums (Souza et al. 2009). Gen-
eral studies, which attempt to distinguish the sonic charac-
teristics of broad classes of instruments have also been pur-
sued (Hamel et al. 2009, Essid et al. 2006, Agostini et al.
2003). Several software packages for musical feature extrac-
tion and classification exist (Moffat et al. 2015).
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An ever-popular instrument, the guitar has received its
fair share of attention: Researchers have created physical
models of guitars and player techniques (Traube and Smith
2001), invented methodologies for automatic recognition of
guitar components (Geib et al. 2017) and effects (Schmitt
and Schuller 2017) and for extracting guitar-based musical
structures (notes, chords, etc.) (Stark and Plumbley 2009,
Fragoulis et al. 2006). Some have explored guitar classifica-
tion (Johnson and Tzanetakis 2015, Freoura et al. 2014).

This paper examines the classification of a set of acoustic
and electric guitars in experiments designed to simulate hu-
man perception of sound. We present our motivation, meth-
odology and experimental setup, and discuss the results,
comparing them to prior work reported in the literature. Di-
rections for further research are outlined at the end.

2. Motivation and Methodology

Our goal was to determine if a computer can distinguish the
subtle differences in the sound of different guitars, which a
trained human ear can perceive. We wanted to experiment
with a variety of guitar models and makes under conditions
as close as possible to those a human listener experiences.

2.1 Mel Frequency Cepstral Coefficients

A popular model of human auditory response is based on
mel frequency cepstral coefficients (MFCC) used with great
success in speech processing. It has been demonstrated that
human pitch perception is most accurate in the 100Hz-
1000Hz frequency range. Above 1KHz, human hearing ac-
curacy correlates logarithmically with the sound frequency.
The mel-scale models this relationship between hearing per-
ception and frequency using units referred to as “mels”. Hu-
man auditory perception experiments have demonstrated
that the human ear acts as a filter for certain sound frequen-
cies. Moreover, these frequencies are non-uniformly spaced



— there are more filters in the low frequency range (100Hz-
1KHz) and fewer filters above 1KHz. The MFCCs are the
coefficients that make up the mel frequency cepstrum — a
mel-scale filter model of the power spectral envelope of a
single audio signal frame (typically 20-50ms long).

The MFCC extraction process consists of the following
steps: An audio signal is initially broken into short frames
(25ms in our case). After applying a Fast Fourier Transform,
the obtained frequency components are mapped to the mel
scale by using 26 triangular filters. The logarithm of all fil-
terbank values is taken and the Discrete Cosine Transform
is applied to decorrelate the frequency components. In the
end, only the first 13 MFCC coefficients are kept, since the
remaining ones represent higher frequencies to which the
human ear is less sensitive. Thus, an audio signal is repre-
sented as a sequence of 13-dimensional MFCC vectors.

2.2 Classification Methodology

To carry out guitar identification, we used support vector
machines with sequential minimal optimization (SMO) and
multilayer perceptrons (MLP) implemented in the WEKA
machine learning software (Hall et al. 2009) We also con-
ducted experiments with random forest classifiers, but the
results were weaker than those using SMOs and MLPs.

3. Experimental Setup

The guitars used in our experiments are described in Table

1. They were selected to have a broad mix of physical fea-

tures — different body/neck/fingerboard woods, pickups,

bridges, string materials and gauges. We included guitars,
which sound quite distinctly as well as guitars, which sound
similarly. The electric guitars were recorded using an Or-
ange Crush 201dx solid state amplifier. No effects were used
except for a 2006 Lovepedal Eternity E6 overdrive pedal for
the distorted guitar signals. The acoustic guitars were not
amplified. All guitars used the standard E-A-D-G-B-E tun-

ing. All audio was recorded with an iPhone 5 placed 30

inches away from the amplifier. We purposefully did not use

professional studio equipment to recreate the real-life expe-
rience of a typical listener. In that respect, our experiments
are different from all other research we have come across.

The recorded audio consisted of 4-second m4a clips, con-

taining one of the following:

- A single clean or overdriven (distorted) note (A through
G) in the lower octave played on the A string.

- A single clean or overdriven note (A through G) in the
higher octave played on the high-E string.

- An open major or minor chord (A through G), except for
the barred Cm, Gm, and F chords. The chords were rec-
orded clean only (no overdrive).

- An overdriven (distorted) three-note power chord (root
note, 5" note, and root note in the next octave).
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The audio clips were recorded for each of the seven gui-
tars except no overdriven notes or power chords were rec-
orded for the classical and the 12-string acoustic guitars. The
Audacity sound processing software (Audacity Team 2019)
was used to cut the original m4a clips into 25ms frames and
store them as wav files for feature extraction. The MFCC
vectors were extracted using Python programs we wrote
based on the methodology described in section 2.2. The ex-
tracted MFCC vectors were recorded into WEKA ARFF file
used for training the machine learning classifiers.

Table 1. Guitars used in the experiments

Guitar [ Type Model

Sterling by Music Man Axis AX40, maple
body and neck, dual humbucking pickups,
Floyd-Rose tremolo bridge, Fender 250LR
.09-.46 nickel-plated steel strings.

Guitar A| Electric

1996 Fender Stratocaster (M1J), Blackmore
model, alder body, maple neck with scalloped
rosewood fingerboard, three Lace sensor gold
single-coil noiseless pickups, tremolo bridge,
Fender 250LR .09-.46 nickel-plated strings.

Guitar B| Electric

(Cordoba Dolce 7/8 Classical Guitar, cedar
top, mahogany back and sides, mahogany
neck with rosewood fingerboard, Savarez
500C]J high-tension nylon strings.

Guitar C|Acoustic

2007 Fender Deluxe Stratocaster (USA), al-
der body, maple neck with rosewood finger-
board, three samarium cobalt single-coil
noiseless pickups, .10-guage steel strings.

Guitar D| Electric

2016 Gibson Les Paul Traditional, mahogany
body with maple top, mahogany neck, rose-
wood fingerboard, dual °57 classic humbuck-
ing pickups, Nashville tune-0-matic bridge
land stopbar, Gibson light .10-.46 strings.

Guitar E | Electric

1980s Asama (a Japanese Fender Stratocaster
clone), basswood body, maple neck and fin-
gerboard, DiMarzio Area '58 (neck), Area
'67 (middle), and Area '61 (bridge) pickups,
Fender 250LR .09-.46 nickel-plated strings.

Guitar F | Electric

Seagull Coastline Series S-12 dreadnought
Acoustic [guitar, cedar neck, cherry back and sides, sil-
ver leaf maple neck, steel 12-string set.

Guitar G

4. Results and Discussion

We conducted a large number of machine learning experi-
ments using the MFCC vector sequences extracted from the
guitar sound recordings described in section 3. Initially, we
experimented with pairwise identification of guitars, testing
each guitar against all others. Next, we experimented with
sets of three guitars, focusing on comparing humbucker
pickup guitars to single-coil pickup guitars as well as com-
paring similarly sounding guitars to each other. Finally, we
attempted a concurrent identification of all electric guitars
and then the full set of guitars. We used SMO and MLP clas-
sifiers with leave-one-out (L10) validation.



Overall, the results (Table 2) exceeded our expectations.
In the head-to-head comparisons, most results were in the
upper 90" accuracy percentile for both clean and distorted
signals. In many cases the classifiers identified distorted
guitars slightly better than the same guitars played clean. As
expected, the acoustic guitars, especially the classical Cor-
doba nylon string guitar, were readily identifiable. The av-
erage SMO and MLP accuracies for the Cordoba guitar in
the pairwise clean guitar comparisons were 95.17% and
96.83% respectively. For the 12-string Seagull guitar, the
average SMO and MLP pairwise clean comparison accura-
cies were 93% and 98.17%. In the experiments with dis-
torted guitar signals, the acoustic guitars were identifiable
even more readily: The average SMO/MLP accuracies for
the nylon string guitar were 95.33% and 97.83% respec-
tively, and for the 12-string guitar - 93% and 97.5%.

The next interesting question was the distinction between
electric guitars with humbucking vs. single-coil pickups. To
a trained human ear, the humbucking sound has a richer fre-
quency spectrum and timbre. The single-coil pickups tend
to sound brighter (usually described as a “bell-type” sound).
In the clean signal humbucking-vs-single-coil experiments
the SMO/MLP classifiers obtained 90.5% and 93.75% aver-
age accuracies respectively. The average accuracies in the
distorted signal experiments were lower — 83.75% for SMO
and 87.25% for MLP. This is not surprising since the dis-
torted signals have many more overlapping overtones,
which makes the identification difficult even for a trained
musician. Table 2 reveals that the average accuracy is lower
when comparing the American Fender Stratocaster to the
Gibson and Axis guitars. For the other two Stratocasters, the
identification produces high accuracies. The most likely ex-
planation is that the samarium cobalt single-coil pickups of
the American Stratocaster have richer dynamics than the tra-
ditional single-coil pickups, and resemble the frequency re-
sponse of humbucking pickups.

Next, we compared the three Stratocaster models — first
two-by-two, then all three simultaneously. The average ac-
curacies in the pairwise tests were 69.33% (SMO, clean),
80% (MLP, clean), 91.67% (SMO, distorted), and 92.33%
(MLP, distorted). In the three-way Stratocaster test, the ac-
curacies were 57% (SMO, clean), 74% (MLP, clean) 83%
(SMO, distorted), and 84% (MLP, distorted). As expected,
the accuracies were lower overall, though, interestingly, the
distorted signal experiments produced stronger results than
the clean signal experiments. This is likely due to the inter-
action between the guitar pickups and the overdrive pedal,
which alters the pickups’ tonal characteristics when en-
gaged. By comparison, the pairwise test of the two hum-
bucking guitars produced strong identification results 95%
(SMO, and MLP, clean), 83% (SMO, distorted), and 86%
(MLP, distorted). Apparently, the tonal characteristics of
Axis and Gibson humbuckers are sufficiently different to be
easily identifiable by the classifiers.
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Table 2: Classification accuracies.

Guitars SMO Ac.curacy MLP Ac.curacy
(Clean/Distorted) | (Clean/Distorted)
12-String — Axis 100% / 100% 100% / 100%
12-String — Blackmore 88%/91% 98% / 98%
12-String — Cordoba 94% 95%
12-String — Fender (USA) 91%/ 87% 99% / 98%
12-String — Asama 96% / 97% 99% / 98%
12-String — Gibson 89% / 89% 98% / 96%
Axis — Blackmore 92% /93% 98% / 96%
Axis — Cordoba 100% / 100% 100% / 100%
Axis — Fender (USA) 95% / 85% 98% / 73%
Axis — Gibson 95% / 83% 95% / 86%
Axis — Asama 94% / 95% 94% / 94%
Blackmore — Asama 57% / 83% 74% / 83%
Blackmore — Cordoba 96% / 96% 98% / 99%
Blackmore — Fender (USA)|  82%/94% 91%/97%
Cordoba — Fender (USA) 86% / 87% 94% / 96%
Cordoba — Gibson 97% / 96% 96% / 98%
Cordoba — Asama 98% / 99% 98% / 99%
Gibson — Asama 91% / 94% 96% / 100%
Fender (USA) — Asama 69% / 98% 75% /97%
Fender (USA) — Gibson 82% /61% 87% / 82%
Fender (U_S:S)a;lBaIaCkm"re 57% / 83% 74% / 84%
Axis—Fender USA)= | g100/70% | 86% /75%
Ax1s(USCZ§d_olé?ibS£§nder 95% 91%
AXIS(USCZ;d_O]é;bSEEHder 87% 79%
All electrics guitars 61%/51% 74% / 64%
All seven guitars 59% /49% 76% / 70%

The all-electric-guitars and the all-guitars tests produced
lower accuracies. An examination of the confusion matrices
reveals that this is due primarily to the misclassifications be-
tween the different Stratocaster models and between the
Fender (USA) and the humbucking Gibson and Axis guitars.

As can be readily seen from Table 2, in almost all exper-
iments the MLP classifier outperformed the SMO classifier,
in some cases by a wide margin. However, the MLPs took
significantly longer to train compared to the SMOs.

The results reported in this study are fairly consistent with
other reported results in the literature. Closest to our work is
that of Johnson and Tzanetakis (2015), who presented a
study of the timbral properties of fourteen acoustic and three



electric 6-string guitars. All guitars in that study used steel
strings and were recorded clean, with no effects. Johnson
and Tzanetakis used support vector machines (SVM) and k-
nearest neighbor (kNN) classifiers trained on linear predic-
tive cepstral coefficients (LPCC) and MFCC. The authors
reported results in the 50% accuracy range, with one exper-
iment producing an accuracy in the upper 70% range. Their
best results were obtained using an SVM classifier.

The primary difference with our work is our emphasis on
emulating the human experience of identifying guitars. To
that end, we used a more diverse (though smaller) set of gui-
tars including a classical nylon string guitar and a 12-string
dreadnought, an overdrive pedal, and no professional studio
recording equipment. To further recreate the human experi-
ence, we focused exclusively on MFCCs. Instead of kNN,
we used SMO and MLP classifiers that produced stronger
results, especially in the pairwise guitar comparisons.

4. Conclusion and Future Work

In this paper we presented an empirical study of guitar iden-

tification from recorded single-instrument audio. The results

of the experiments confirm that guitar identification can be

successfully carried out by a computer and provide insights

into the timbral characteristics of different types of guitars.

The study raised numerous additional question:

- How much effect do the structural materials (wood, plas-
tic, metal parts) have the tonal characteristics of guitars?

- To what extent does the choice of strings materials or
gauge affect guitar identification?

- Can better results be obtained from recordings of alternate
tunings or more advanced chords (9’s, 11°s, sus-2, etc.)?

- To what extent do effects alter the tonal characteristics of
the instruments and how is identification impacted?

- Is guitar identification affected by the choice of amplifier?

- Will an ensemble classifier produce stronger identifica-
tion results even for large guitar collections?

In addition to addressing the questions above, we intend
to expand our experimentation to include additional string
instruments (violins, cellos, ukuleles, banjos, etc.). We are
also working on a methodology for extracting single-instru-
ment sound signals from a polyphonic mix, to allow us to
extract large collections of sounds from numerous instru-
ment makes and models without having to carry out individ-
ual instrument recording. This will not only provide more
data for accurate training of the machine learning classifiers
but will also make the process of identifying instruments
closer to the experience of a human listener.
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