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Abstract

We propose to apply deep Graph Convolutional Network
(GCN) for the analysis and prediction of patient health co-
morbidity from sparse health records. Patient health data
are represented in a powerful graph structure. Specifically,
healthcare conditions including health diagnosis categories,
hospitalizations, injury incidents are represented as a type
of graph nodes, and patient attributes including demograph-
ics, aid categories are represented as another type of nodes.
Health records for individuals including diagnostic results,
hospital visits are represented as graph links connecting the
two node types, such that the whole record forms as a sparse
bipartite graph. Our hypothesis is that patient health trend,
disease prognosis, treatment, and their latent correlations can
all be modeled by recovering the missing links in this bipartite
graph (the link prediction problem). Starting with sparse pa-
tient data or incomplete records, graph completion and record
fusion via end-to-end GCN modeling can lead to robust pre-
diction across individual patients and health records. Appli-
cation in estimating health prognosis shows the efficacy of
the proposed method compared to existing approaches.

Keywords: health risk prediction, medical records, health
data, comorbidity, bipartite graph, link prediction, recom-
mendation system, Graph Convolution Network, GCN.

1 Introduction
In medicine, comorbidity—the presence of one or more
mental or physical disorders co-occurring for a patient—
constitutes a challenge for healthcare professionals and the
healthcare system (Valderas, Starfield, and Sibbald 2009).
Many studies (Piane and Smith 2014; Bhattacharya and
Shen 2014) suggest that mental disorders correlate with
chronic conditions, and mental/medical disorders usually
share common risk factors (Antonaci, Nappi, and Galli
2011). From the perspective of public health, understanding
the risk factors and latent relations among disorders and co-
morbidity can lead to early prediction of potential disorders
and timely treatment.

Patient health records and person-specific attributes can
be organized into a graph structure as a powerful representa-
tion for analysis. We focus on two types of attributes for co-
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Figure 1: We formulate health risk prediction as a bipartite
graph matrix completion problem. The input to our approach
is provided as a rating matrix consisting of the health condi-
tions of individual patient records. Each graph link spanning
a patient and a health condition represents a corresponding
health record with a severity condition level.

morbidity modeling and health risk prediction. First, patient
attributes includes demographics, insurance converge levels,
and aid categories can be organized as a type of graph nodes
(one node per patient). Secondly, the healthcare conditions
including physical/mental health, diagnostic results, hospi-
talization reasons, injury incidences of each patient can be
represented as another type of graph nodes. This way, each
health record or insurance events can be represented as graph
links connecting the two types of nodes, such that the whole
health record can be organized as a bipartite graph as shown
in Fig. 1(a). Graph data can be stored as a sparse adjacency
matrix, where edge weight indicates the condition severity
level as shown in Fig. 1(b). Using this representation, co-
morbidity relations can be modelled and latent conditions
can be recovered by predicting the missing links from the
sparse bipartite graph.

Link prediction (Liben-Nowell and Kleinberg 2007) is
a fundamental problem in network science. Conventional
methods rely on parametric statistics, correlation coefficient
among nodes, logistic regression, cliques (of three nodes) as
network topology to predict latent structures (see § 2).

In this paper, we apply Graph Convolutional Network
(GCN) (Kipf and Welling 2016a) to solve the health link
prediction problem. GCN has drawn growing attentions due
to its end-to-end, model-free capability in automatic learn-
ing of complex statistical interactions between features from
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high-dimensional data. We present patient characteristics
along with their health conditions and outcome using undi-
rected bipartite graph. The data is stored as matrix structure,
then apply Graph Convolutional Network (GCN) deep learn-
ing framework to fill in the sparse matrix of data. Subse-
quently we use the obtained relation for individual emerging
or latent health condition prediction, meanwhile predict the
risk of two health outcomes simultaneously, i.e. hospitaliza-
tion and injury incidents. The aim is to predict the severity
risk of each chronic condition for each patient, as well as
the frequency category of hospitalization and other associ-
ated adverse event i.e. injury, given their known conditions
for Medicaid insurers. Fig. 1 shows an example rating matrix
M and a bipartite graph.

Contribution of this paper is two-fold. (1) We formulate
the health record modeling as a bipartite graph matrix com-
pletion problem, and apply the recent deep graph convolu-
tion methods as an effective solution. (2) The approach is
applied on health risk prediction with superior accuracy out-
performing comparison methods.

The rest of this paper is organized as follows. § 2 sur-
veys fundamentals of graph link prediction, prior arts of ma-
trix completion and Graph Convolutions Network (GCN) in
recommendation systems. § 4 describes our formulation of
patient health and medical records into a bipartite graph rep-
resentation, and how we apply GCN for matrix competition
as a solution for health risk prediction. § 5 discusses a real-
world sensitivity analysis evaluation performed on a large
dataset containing samples of patient claim data. § 6 describe
performance evaluation of proposed approach and compari-
son with baseline methods used in collaborative filtering for
recommendation systems. § 7 concludes this paper and dis-
cuss future directions.

2 Background
Healthcare data analytics. Logistic algorithm is the most
common classification method used in healthcare study that
models the relationship between binary outcome and inde-
pendent variables. The importance of each of the explana-
tory variables is assessed by carrying out statistical tests on
the significance of coefficients. These models rely on prede-
fined heuristics, e.g. assuming little or no multi-collinearity
among the independent variables. Recently, deep learn-
ing techniques have been applied to clinical applications
for outcome prediction, including Autoencoder(AE), Long
Short-Term Memor (LSTM), Restricted Boltzmann Ma-
chine (RBM), and Deep Belief Network (DBN) (Shickel et
al. 2018). However, the applied convolutional operation is
only appropriate for grid structured data. Meanwhile, they
are widely known to be difficult to train and computation-
ally heavy.

Recommendation system is an application where link
prediction algorithms can be directly applied on a graph
structure, for e.g. social network analysis or movie prefer-
ence prediction (Van den Berg, Kipf, and Welling 2017).
Traditional approaches involve the calculation of a heuris-
tic similarity score for a pair of nodes, such as the number
of common neighbors or the shortest path length connecting
the nodes, where pairs of nodes with the highest similarity

scores are considered the most likely edges (Lü and Zhou
2011). Collaborative filtering is a family of algorithms work-
ing with a rating matrix to find similar users or items and
calculate rating based on ratings of similar users. The ma-
trix is typically huge and sparse, with missing values. Data
driven machine learning can be used to learn a function that
predicts utility of items for each user. k-Nearest Neighbors
(kNN) based on cosine or correlation similarity cannot han-
dle sparsity well, as there may not exist enough samples in
the neighborhood. Matrix factorization methods work by de-
composing the user-item interaction matrix into the product
of two matrices (Koren and Bell 2009), with an aim of di-
mension reduction. The advantage of it over KNN is that
even though two users have not rated any same items, it is
still possible to find the similarity between them if they share
the similar underlying latent features.

Matrix completion (Candès and Recht 2009) is the task
of filling in the missing entries of partially observed ma-
trix. The recommendation problem can be posed as a matrix
completion problem, starting with a sparse matrix of known
user-item preferences. The underlying assumption is that a
low-dimensional representation of users and items exists,
which can be modeled via e.g. a low-rank matrix. Popularly
methods in this category includes Alternative Least Square
(ALS), spectral regularization with soft threshold, Alternat-
ing Direction Method of Multipliers (ADMM), etc.

The Graph Convolutional Matrix Completion (GC-
MC) (Van den Berg, Kipf, and Welling 2017) for recom-
mendation systems perform link prediction on graph using a
graph-based auto-encoder framework, building upon recent
deep GCNs. The auto-encoder extracts latent features from
a user preference dataset through a form of message pass-
ing. These latent user-item preference represented on a bi-
partite interaction graph are used to derive the desired rating
through a bi-linear decoder.

3 Healthcare Problem Statement
Our task is to predict the risk of latent comorbidity using ad-
ministrative healthcare claim data. The population included
(N = 750K) are a large subset of individuals who were con-
tinuously eligible for New York State Medicaid in 2017 and
also had a health condition or event (determined by claim
data including physical, behavioral, inpatient admission, and
injury) in the year. For demonstration purpose, a specific
condition or event is identified by invoice type and ICD-10-
CM diagnostic codes. The severity level (i.e. 1,2,3,4) of a
condition or event for each individual is arbitrarily attributed
by the occurrence of corresponding diagnostic codes on ser-
vice claims in the year. e.g. for a patient’s heart disease con-
dition, the severity level is categorized as 1, 2, 3 and 4 when
≤ 2, 3 − 10, 11 − 40, ≥ 40 times of visits with such diag-
nostic codes respectively.

The goal is to predict individual’s missing condition or
event items, e.g. under-reported or emerging items, based on
their existing conditions and past adverse events, adjusted
by demographic characteristics and Medicaid enrollment el-
igibility category. This task can be cast as a Link Prediction
problem, considering both person and item node features. A
total of 42 conditions are considered:
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Figure 2: Node aggregation for link prediction based on neighboring nodes with similar connectivities.

• 10 physical health conditions: Cancer, Chronic obstruc-
tive pulmonary disease (COPD), Cerebral infection,
Heart disease, Obesity, Arthritis, Diabetes, Dyslipidemia,
Epilepsy, Hypertension

• 23 behavior health conditions: Physiological conditions,
Psychoactive substance use (Alcohol, Opioid, Cannabis
related), Non-mood psychotic, Mood, Bipolar, Affec-
tive, Depressive, Anxiety, Reaction to severe stress
(PTSD), Physical, Eating, Personality, Obsessive compul-
sive (OCD), Intellectual disabilities, Pervasive and devel-
opmental disorders, Behavioral and Emotional, Attention-
deficit hyperactivity (ADHD), Conduct, Emotional, Tic.

• 9 conditions related to adverse events: 3 types of inpatient
admissions as well as 6 types of injuries: risk factors, self
harm, suicide attempt, symptoms, homicidal suicidal idea,
other injury.

In our bipartite graph representation, each condition
node stores their corresponding category of conditions or
event type as the node features. Attributes for each pa-
tient node includes the age as the end of the year; gender
(male/female); race/ethnicity (white-non-Hispanic, black-
non-Hispanic, Hispanic or unknown); and Medicaid enroll-
ment aid category (Foster Care, Supplemental Security In-
come - SSI, Temporary Assistance for Needy Families-
TANF, and other).

4 Methods
In principle, the objective of matrix completion (MC) is
to approximate the matrix with a low-rank matrix. i.e.
minx rank(X) s.t. xij = yij , ∀yij ∈ Ω, where X ∈ Rm×n:
the matrix we need to learn; Y ∈ Rm×n: the original ma-
trix (including the known entries and the missing data);
Ω is the set of known entries in Y; where rank(X) is the
maximal number of linearly independent columns of X,
so that rank(X) is minimized when the variables are in a
smallest subspace. However, rank minimization is an in-
tractable problem. Among a few methods (Ying et al. 2018;
Monti, Bronstein, and Bresson 2017) to approximate the so-
lution, the Graph Convolutional Matrix Completion (GC-
MC) (Van den Berg, Kipf, and Welling 2017) framework is

adopted in this study, as it focuses on the inclusion of graph-
based side information, also based on neural message pass-
ing directly on the interaction graph and models the rating
graph directly in a single encoder-decoder step.

Specifically, we apply GC-MC (Van den Berg, Kipf, and
Welling 2017) on the health record represented as a bipartite
graph, and cast the link prediction as a matrix completion
problem. The health record bipartite graph G(U, V,E) in its
initial state consists of links such as (ui, vj) ∈ E (individual
medical records), connecting a patient (user) node ui ∈ U
to a health condition (item) node vj ∈ V . A link weight
r ∈ {1, ..., R} represents ordinal severity levels. In parallel,
a matrix M(|U | × |V |) stores the observed health severity
data for |U | patients and |V | health conditions as nonzero
entries, i.e. Mij represents an observed severity of condition
item vj on patients ui . The matrix completion task is to
predict the unknown or latent entries of M.

The input graph for each weight r is represented by an ad-
jacency matrix Mr where all entry values are binary. A value
of 1 or 0 at row i and column j indicates whether or not a
weighted of r link exists between vertex i and vertex j, re-
spectively. The final input matrix M consists of M1, ...,MR.

As an option, the node Features of patient or health con-
dition can be conceptualized in the form of vectors xk for
node k where 1 ≤ k ≤ |U | + |V | = N , such that the in-
put matrix X = [xT

1 , ...,x
T
N ]T containing the node features

for the graph convolution layer is then chosen as an identity
matrix, with a unique one-hot vector for every node in the
graph. In such way, the graph-based node information can
be incorporated seamlessly.

The detailed system architecture is describe in the fol-
lowing subsections. In summary, firstly graph convolutional
encoder, a variant of collaborative filtering auto-encoder
(Salakhutdinov, Mnih, and Hinton 2007), takes the input
graph formulated as matrix M, and an optional node fea-
ture matrix X, then produces patient and health condition
item node embeddings (or latent representations) zui (zvj ) for
a single patient i (item j). They are done through a form
of message passing on the bipartite interaction graph. In the
second phase, the patient and health condition item embed-
ding pairs are used to reconstruct the the links for each edge
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type (rating) through a bi-linear decoder M̃ = g(Zu,Zv).
Fig. 2 demonstrates GCN model underlying prediction ar-
chitecture.

4.1 Graph Auto-Encoder
The conventional autoencoder (VE) is an unsupervised arti-
ficial neural network that learns how to efficiently compress
and encode data to a lower-dimensional representation (em-
bedding), then learns how to use the embedding to recon-
struct the original input. A variational autoencoder (VAE)
embeds the input to a regularised distribution, then new data
or a random sample is generated from the distribution.

Variational graph autoencoder (VGAE) is a framework
for unsupervised learning on graph-structured data based
on the variational auto-encoder (VAE). It achieves com-
petitive results on many link prediction tasks. For a non-
probabilistic variant of the VGAE model, the embeddings Z
and the reconstructed adjacency matrix Â as follows (Kipf
and Welling 2016b):

Â = σ(ZZT ),with Z = f(X,A). (1)

The graph encoder model above takes feature matrix X
and a graph adjacency matrix A, and produce an N × E
node embedding matrix Z = [zT1 , ..., z

T
N ]T . In our bipartite

graph G = (W, E ,R) setting, the encoder is analogously
formulated as [U, V ] = f(X,M1, ...,MR), where Mr ∈
{0, 1}Nu×Nv is the adjacency matrix for rating or severity
type r ∈ R, such that Mr contains 1’s for those elements
for which the original rating matrix M contains observed
ratings with value r. U and V are now matrices of patient
(Nu × E) and item (Nv × E) embeddings, respectively.

4.2 Graph convolutional encoder
For a graph G, convolutional methods represent a node em-
bedding is generated based on local neighborhood and the
node features with aggregation algorithms. Nodes have em-
beddings at each layer, where the number of layers is arbi-
trary. In a transductive setting, the convolution results in link
or rating specific type messages r passing from item j to pa-
tient i to be formulated as μj→i,r = 1

cij
Wrxj . Here, cij is

a normalization constant
√|N(ui)||N(vj)|, and N(ui) de-

notes the set of neighbors of node i, Wr is an link-type spe-
cific parameter matrix, and xj is the initial feature vector of
node j. The accumulated messages at every node i for each
rating type r can be expressed as

hu
i = σ[accum(

∑
j∈Ni(ui)

μj→i,1, ...,
∑

j∈NR(ui)

μj→i,R)] (2)

where accum() denotes a stack accumulation opera-
tion, σ() denotes an element-wise activation function
ReLU(.)=max(0,.), such that patient i and health condition
item j embedding are expressed as ui = σ(Wuhi) , vj =
σ(Wvhj) respectively.

4.3 Bi-linear decoder
In general GCN settings, decoder model Ã = g(Z) takes
pairs of node embeddings (zi, zj) and predicts respective en-
tries Ã in the adjacency matrix, corresponding to graph link

reconstruction. Here, a bi-linear decoder is applied to treat
each rating level a separate class in the bipartite interaction
graph. Specifically,

p(M̃ij = r) =
euT

i Qrvj∑R
s=1 e

uT
i Qsvj

, (3)

where Qr a trainable parameter matrix of shape E × E
and E is the dimensionality of hidden user or item rep-
resentations ui(vj). The predicted rating is computed as
M̃ij = g(ui, vj) = Ep(M̃ij=r)[r] =

∑
r∈R p(M̃ij = r).

4.4 Model training and loss function
The training objective is to minimize loss function, imple-
mented as the negative log likelihood of the predicted ratings
M̃ij :

L = −
∑

i,j;Ωij=1

R∑
r=1

I[Mij = r] log p(M̃ij = r). (4)

Ω is used to filter out the unobserved ratings for the op-
timization. In order to minimize over-fitting, we randomly
drop out all outgoing messages of a particular node with a
probability pdropout.

For the GAE model implementation, we use sparse matrix
multiplications with complexity O‖E‖ . The graph convolu-
tional encoder can be vectorized as[

U
V

]
= f(X,M1...,MR) = σ(

[
Hu

Hv

]
WT ) (5)

with
[
Hu

Hv

]
= σ(

R∑
r=1

D−1MrXWT
r ), and M =

( 0 Mr

MT
r 0

)

5 Experiment
The proposed GC-MC approach is applied to a large sam-
ple of New York State Medicaid enrollees who (1) has full
year of coverage in 2017 and (2) has received a behavior
health diagnose or medication. The diagnoses of each con-
taining 9 physical or 23 behavioral health conditions dur-
ing the year for each patient are classified as ratings of
{1, 2, 3, 4}. The rating of 4 indicates most frequently di-
agnosed. More than one diagnoses can be recorded on one
claim or visit. As event items, inpatient admissions for men-
tal health, substance use, and physical health reasons, as
well as 6 types of injuries are also classified on the same
scale set of 1 through 4 according to their frequencies. The
datasets contain 596, 475 patients or users, and 42 items, and
their respective user-item interaction graphs when applica-
ble. Among all examined physical health conditions, most
of prevalent is COPD (23.1%), then followed by Obesity
(16.3%). 14.3% had a ADHD diagnosis, and 15.2% had an
anxiety issue.

In order to obtain optimized hyper-parameters, we apply
80/20 train/validation method and split the original training
set, where interactions of randomly selected testing users are
cross validated to estimate the performance of recommen-
dation on unseen ratings. We compare the performance of
the model with and without node features or characteristics,
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Figure 3: (a) RMSE (b) Loss (dropout= 0.7, accum = stack,
includes node features), red: training, blue: validation.

Table 1: Number of patient and rating frequencies used in
the experiments. There are 42 conditions. Rating levels are
1,2,3,4.

Dataset Patients Ratings Density

Full Training/
Validation 596475 1389244 0.055

(80:20)
Testing 157877 347311 0.052

Sub 1 Training/
Validation 228304 277848 0.029

(80:20)
Testing 65835 69462 0.025

Sub 2 Training/
Validation 388798 555697 0.034

(80:20)
Testing 125380 138924 0.026

such as age and gender for patient node, health category for
item node. Both types of models are trained for 250 full-
batch epochs. For model evaluation, we compute average of
(Root Mean Square Error) RMSE 1 and Cross-entropy loss
on the testing data resulting from 5 runs. Table 1 summarizes
the dataset statistics.

Parameter settings in our experiments included: 1) Accu-
mulation function, set as stack or sum (as explained in the
methods). 2) Dropout rate is tested at multiple values, but set
at 0.7. 3) Learning rate is set to 0.01 for the Adam optimizer.
4) Basis weight matrics is set to 2 for decoder’s weight shar-
ing. 5) Layer sizes of 500 and 75 for the graph convolution.
Fig. 3 and Fig. 4 shows RMSE and loss scores at each epoch;
training vs. validation (dropout = 0.7, accum = stack). The
only difference is that nodes attributed are included or not.

Additionally, we conduct sensitivity analysis to access the
model stability. The experiments described above are re-
peated on randomly selected sub-samples, the final results
are comparable in terms of average RMSE and Loss, which
are displayed and compared in the Table 2.

6 Evaluation
To evaluate the proposed GC-MC approach, we compare the
average of RMSE scores obtained from the model and other

1RMSE =

√∑N
i=1(ri−r̃i)2

N
.

Table 2: Comparison of average RMSE and loss scores over
5 runs for 80/20 training/test dataset splits, with and without
node features.

Sample Feature No Feature Feature No Feature
RMSE RMSE Loss Loss

Full 0.8622 0.8590 1.0634 1.0750

Sub 1 0.8594 0.8596 1.0577 1.0649

Sub 2 0.8442 0.8382 1.0282 1.0151

Figure 4: (a) RMSE (b) Loss (dropout= 0.7, accum = stack,
without node features), red: training, blue: validation.

baseline methods using the same training set. Table 3 shows
comparison results.

6.1 Baseline methods
We perform comparison experiments using the following 3
baseline methods that are commonly used in recommenda-
tion systems

Association Rules (AR): AR has the ability to efficiently
identify what items appear together in the same session. It
has been widely used in recommendation system. Items that
are frequently present together are connected with a link in
the graph. Rules mined from the interaction matrix should
have at least some minimal support and confidence. Support
refers frequency of occurrence, and confidence means that
rules are not often violated.

K-nearest-neighbor (KNN) graph is a standard method
of collaborative filtering (CF), which can be performed
based on the users or the conditions on the bipartite graph.
The user-based models the ratings with an n × m matrix,
where user ui, i = 1, ..., n and conditions pj , j = 1, ...,m.
The goal is to predict the rating rij if target user i did not
rate a condition j. The process is to calculate the similarities
between target user i and all other users, and select the top
X similar users. The weighted average of ratings from these
X users are calculated as:

rij =

∑
k similarities(ui, uk)rkj

total ratings
, (6)

where similarity score can be calculated using Pearson Cor-
relation or Cosine Similarity. Analogously, for condition-
based, two items are similar when they received similar rat-
ings from a same user, so that we can make prediction for
a target user on a condition by calculating weighted average
of ratings on most X similar items from this user.
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Table 3: Comparison of average RMSE of a sample of train-
ing set, with and without node features.

Model RMSE Feature

AR (Agrawal and Srikant 1994) 1.92 No

MF (Singh and Gordon 2008) 1.86 Yes

Proposed method (GC-MC) 0.86 Yes

Collective Matrix Factorization (MF): a method that
decompose the original sparse matrix to low-dimensional
matrices with latent factors/features and less sparsity. The
goal is to find a set of latent features, with align with a user
and an item. The non-negative factorization has a loss func-
tion that is non-convex, that can be solved by a few popular
algorithms e.g Stochastic Gradient Descent (SGD), is to take
derivatives of the loss function with respect to each variable
in the model and update feature weights one individual sam-
ple at a time, until convergence; Alternative Least Square
(ALS) is alternatively to hold user or item factor matrix con-
stant, adjust item or user factor matrix by taking derivatives
of loss function and setting it to 0, and then hold item fac-
tor matrix constant while adjusting user factor matrix, repeat
until convergence.

Table 3 shows that the proposed GC-MC produces better
link predictions of healthcare data with smaller RMSE, in
comparison with baseline methods. Note that we have also
applied KNN in our comparison experiment, but no results
are produced due to its limited scalability issue.

Discussion: This end-to-end GCN framework has re-
cently emerged as a powerful deep learning-based approach
for link prediction. It learns a target node’s representation
by propagating neighbor information in an iterative manner
until a stable fixed point is reached. It’s supported by a large
body of recent work to apply the novel approach over simple
patient and health condition network.

7 Conclusion
In this paper, we apply a graph link prediction technique on
health records for health risk prediction, as an application
in public healthcare. Patient records from NYS Medicaid
public health data are formulated as a bipartite graph, and a
recent deep Graph Convolutional Matrix Completion (GC-
MC) network is applied to generate risk predictions. Perfor-
mance are evaluated and compared with three baseline meth-
ods, demonstrating the efficacy of the proposed method.

Future work of this study includes the generation of
more dynamic and refined predictions by leveraging the tem-
poral or semantic/causal components of the multi-session
health conditions and records. Among the others, subject-
specific and explainable predictions are desired properties
of health risk and prediction and prevention.
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