
Energy-Aware Path Planning for Autonomous Mobile Robot Navigation

Renan Maidana,∗ Roger Granada,∗ Darlan Jurak,∗ Maurı́cio Magnaguagno∗

Felipe Meneguzzi,† Alexandre Amory†
School of Technology - Pontifical Catholic University of Rio Grande do Sul – Brazil

∗ {renan.maidana, roger.granada, darlan.jurak, mauricio.magnaguagno}@acad.pucrs.br
† {felipe.meneguzzi, alexandre.amory}@pucrs.br

Abstract

Battery life is yet one of the main limiting factors to a
robot’s total mission time, and efficient energy management
is paramount in a robotic application. In this paper, we inte-
grate energy awareness in the path planning of a mobile robot
performing autonomous navigation. Our contributions are: 1)
The formalization of a planning domain for mobile robot path
planning which accounts for energy consumption and inte-
grates energy actions in the generated plans; 2) A proof of
concept of automatic path planning that avoids high energy
areas in a known environment. We test our approach in sim-
ulation, extending an embedded computer’s total battery dis-
charge time by approximately 42.8%, and in a real ground
mobile robot, achieving a mean energy draw reduction of
52.02%, both compared to conventional path planning.

Introduction
In mobile robotics, state-of-the-art algorithms and methods
are not typically concerned with the robot’s overall energy
consumption, as they require significant computing power
and consider unrestricted access to the robot’s resources
(e.g., sensors, motors, etc). The unconstrained use of these
algorithms reduces a battery-powered robot’s potential op-
erating time, as not all of the robot’s resources are required
at all times. For example, in autonomous navigation, per-
forming localization with all sensors always switched on is
wasteful, as most robots do not need or use all sensors most
of their operating time (e.g., redundant or situational sen-
sors) (Lee and Song 2004).

In this paper, we develop a path planning approach for
mobile robots which produces energy-aware plans. Specif-
ically, we define a planning domain for autonomous nav-
igation containing high energy zones, where additional
resources are required (e.g., additional sensors must be
switched on) for the robot to avoid a potential collision.
Therefore, our approach accounts for actions that affect en-
ergy usage, activating or deactivating sensors according to
the robot’s position with respect to the energy zones. The re-
sulting plans minimize overall energy use by activating sen-
sors only when necessary.

To evaluate our approach, we implement it in a path plan-
ning package for mobile robots, integrated with the Robot

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Operating System (ROS) (Quigley et al. 2009), and perform
autonomous navigation in a simulated world and the real
world using a ground robot, equipped with an embedded
computer powered through an individual battery. Simulation
experiments emulate a sensor connected to the embedded
computer by changing its computational power, while mea-
suring the computer battery’s energy draw. Real world ex-
periments use a laser rangefinder connected to the embedded
computer while executing the approach, once again measur-
ing energy draw. These experiments show that our approach
yields an energy draw reduction of 42.80% and 52.02%, for
simulation and real world respectively, over the course of the
robot’s mission, compared to related approaches.

Related Work
Related research deals with energy efficiency by choos-
ing paths that minimize energy consumption through graph
search (i.e., A* or Dijkstra), without considering different
types of actions such as enabling/disabling hardware de-
vices or computational resources. Thus, planning strategies
attempt to save energy by searching for the shortest path
(Stentz 1994), or avoiding known regions that require more
effort from the robot’s motors and consequently higher en-
ergy consumption (Datouo et al. 2017; Liu and Sun 2014;
Mejri et al. 2017; Niu et al. 2018; Ooi and Schindelhauer
2009). The latter strategy resembles our approach, as we
use planning to avoid areas of greater energetic consump-
tion if possible, and act upon enabling/disabling hardware
resources.

For ground robots, the main criterion for energy saving
is to avoid terrain areas with a high friction coefficient and
greater elevation slopes (Datouo et al. 2017; Mejri et al.
2017). Datouo et al. (2017) and Mejri et al. (2017) describe
approaches where the priority is choosing a path with less
energy consumption, avoiding regions of greater friction,
even if the robot has to travel a longer distance relative to the
shortest path. In both studies, the planning algorithm runs of-
fline, using previously built maps and previous knowledge of
the surface’s friction and elevation profile. The approach in
(Datouo et al. 2017) achieves a 7.5% reduction in battery en-
ergy draw, while (Mejri et al. 2017) achieves an reduction of
46%. Ooi and Schindelhauer (2009) present a graph search
approach for path planning, in which the heuristic considers
a robot’s travel distance as well as energy consumption by

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

362

data transmission. The robot travels to a goal while comput-
ing the polynomial increase in energy consumption by data
transmission, proportional to the distance from the robot to
the transmitter. Results in simulation show that choosing
paths near the transmitter reduce energy draw up to 22.1%,
in comparison to the shortest paths.

All the related research discussed above present results
in simulation. Comparable to our approach, only Liu and
Sun (2014) and Niu et al. (2018) present real-world experi-
ments for evaluation of the energy saving strategies. Liu and
Sun (2014), as well as the studies discussed above, use graph
search considering the energy cost of passing through areas
of different coefficients of friction. Their results show a re-
duction of 3.5% in energy consumption, compared to the
shortest path. For marine robots, Niu et al. (2018) describe
an algorithm based on optimal path planning considering
marine current data from an online database. After perform-
ing 15 real-world experimental runs around some Singapore
islands, the authors measured an energy draw reduction up
to 52.84% when compared to the energy consumption when
traveling through the shortest path.

In comparison to our work, none of the related studies
present energy-aware path planning with different types of
actions, using instead graph search with energy minimiza-
tion heuristics to discover the energy-minimal path.

Energy-Aware Planning Domain
In mobile robotics, the problem of path planning for au-
tonomous navigation is typically treated directly as a graph
search problem in a Configuration Space (C-Space). In sum-
mary, given the C-Space representation of a known environ-
ment, the problem is to find the shortest possible route be-
tween the robot position and its goal, while avoiding obsta-
cles (Siegwart, Nourbakhsh, and Scaramuzza 2011).

This approach fits autonomous navigation, since only ac-
tions that take into account the movement are considered.
However, being able to define multiple types of actions is an
advantage, as energy-aware plans can be obtained by con-
sidering both movement and energy actions. To deal with
movement and energy actions, we develop an Energy-Aware
Path Planning (hereafter called EAPP) approach that takes
into account not only the path the robot must follow but also
the energy required to do so. In our approach, we model a
sufficiently complex domain to allow planning in less than
30 seconds. The full domain, formalized in Planning Do-
main Definition Language (PDDL) (McDermott et al. 1998),
is available for download at our ROS package’s GitHub
page1.

Modeling the Environment
We begin developing our domain with the operating envi-
ronment, which we represent as an occupancy grid (Moravec
and Elfes 1985), i.e., a 2D grid where each space can be ei-
ther free or occupied by an obstacle (or a part of one). Four
boundary variables (minx, miny, maxx, maxy) represent
the world’s dimensions in grid cells. Planning is performed
in grid space to reduce planning time, and each obstacle is

1https://www.github.com/rgmaidana/ros enhsp

Figure 1: An obstacle, its clearance, and energy zones. The
distances from the obstacle center to the boundaries of the
red zone are the clearance radii, and the distances to the
boundaries of the blue zone are the energy radii.

described by its grid position (Cx, Cy), where the coordi-
nates indicate the obstacle’s center in the world.

For each obstacle, two avoidance zones are calculated: the
clearance radii and the energy radii. The clearance radii (Rc)
specify dimensions in x and y that define an area within
which the robot must not enter to avoid a possible collision.
They are calculated as the distance from the obstacle’s cen-
ter to its outer perimeter, plus the robot’s radius and a safety
margin equal to half of such radius. The energy radii (Re)
define the high-energy zones in x and y, where the robot is
allowed to enter but must operate with additional resources
(e.g., with extra sensors on for added localization accuracy).
The energy radii are calculated the same way as the clear-
ance radii, but with a larger margin. As such, obstacles in
our domain are seen as geometric spaces to be avoided. This
representation is due to computational efficiency, to speed
up the planning time: If we consider every occupied grid po-
sition as an obstacle, the number of objects modeled in our
domain blows up for large environments, severely impact-
ing the planner’s efficiency. The separation between clear-
ance and energy zones is essential, as the energy radii define
zones in which the robot is allowed to go when no other
route is available, albeit at a higher energy cost. Figure 1 il-
lustrates an obstacle, its zones, and sets of radii, where the
blue zones represent the energy radii and the red zones rep-
resent the clearance radii. Formally, each obstacle is repre-
sented as:

Obstacle =

⎧⎨
⎩
Center : (Cx, Cy) ∈ R

2

Clearance Radii : Rcx, Rcy
Energy Radii : Rex, Rey

We model the robot state as a grid position and a variable
e, indicating the robot’s energy requirements at each posi-
tion. If the robot is in a high energy zone, e is increased.
Formally:

Robot =

{
Position : x, y ∈ R

2

Energy : e

363

Modeling Domain Actions
We model the domain actions by defining sets of move-
ment and energy-related actions. Movement actions indicate
the direction to which the robot’s (x, y) coordinates must
be increased or decreased. For example, a move up action
increases the robot’s y coordinate, while a move right in-
creases the robot’s x coordinate. Energy-related actions ac-
tivate or deactivate a resource n (e.g., switches the sensor on
or off), with the effect of increasing or decreasing the robot’s
energy variable e by a set amount, without preconditions. As
there are situations in which a robot must enter high energy
zones (e.g., no other path available, or the goal is within
such a zone), we define two sets of actions for movement
in low and high energy zones, where the latter contains pre-
conditions specific to traversal within the high energy zones.
Separating movement into high and low energy action sets
induces the planner to perform energy-related actions before
entering a high energy zone, where then it uses actions from
the high energy movement set. As we minimize the energy
variable e during planning, the planner selects plans with
fewer actions that increase e, avoiding high energy move-
ment actions. Our domain’s actions are modeled generically
as two sets of m movement actions, for movements inside
and outside the high energy zones, and 2n energy-related
actions (i.e., switching the n resources on and off).

The preconditions for the low energy movement set are:

1. The robot’s next position in x or y must be outside of the
clearance radii (Rcx, Rcy) for all obstacles;

2. The robot’s current position must be outside of the energy
radii (Rex, Rey) for all obstacles;

3. The robot’s energy variable e must be less than or equal
to zero;

The precondition 1 avoids obstacle collision, while 2 and
3 do not allow the movement in high energy zones without
altering the robot’s energy variable. Precondition 3 specifi-
cally ensures that an energy action must be performed be-
fore moving out of a high energy zone (i.e., the robot’s en-
ergy must be decreased). As the robot must sometimes enter
such zones, we specify the high energy movement action set,
where the first precondition also holds. Instead of using the
preconditions 2 and 3 from low-energy actions, the move-
ment in a high energy zone uses the following preconditions:

2. The robot’s current position must be within an energy ra-
dius (Rex, Rey) for at least one obstacle;

3. The robot’s energy variable must be greater than zero;

Two global constraints are added to ensure the robot stays
within the bounds of the operating environment:

(Robotx ≥ minx) ∪ (Roboty ≥ miny) (1)

(Robotx ≤ maxx) ∪ (Roboty ≤ maxy) (2)

A third constraint states that e ≥ 0, to stop the planner
from performing infinite energy decreasing actions, as we
minimize the energy variable at each plan step.

Problem
Generator

Problem
Interface

Planner
Dispatch

Planner
Interface

(Map, Pose,�Goal) problem.pddl

problem.pddl

Domain
model

domain.pddl

domain.pddl
problem.pddl

Plan

Plan

"Success"

Pose

Planner

1 2 3

Figure 2: Pipeline of our energy-aware path planning pack-
age, where nodes are represented in gray and the service in
yellow.

ROS Package
In order to integrate our energy awareness planner with a
mobile robot to perform autonomous navigation in a known
environment, we developed a package using the Robot Oper-
ating System (ROS) robotics framework. The package wraps
a numerical planner called Expressive Numeric Heuristic
Search Planner (ENHSP2) (Scala et al. 2016), which sup-
ports numerical expressions (e.g., Euclidean distance), con-
straints and energy minimization as described in our domain.
The package contains 3 ROS nodes and one service, whose
tasks are:

• Problem Interface (node): Obtains the robot’s current po-
sition, its goal position, and the operating environment’s
map, calls the problem generator service to create a new
PDDL problem, and publishes the problem in a topic;

• Problem Generator (service): Called by problem inter-
face, generates PDDL problems;

• Planner Interface (node): Gets the domain and newly gen-
erated problem, calls the ENHSP planner, obtains the plan
of actions and publishes it in a topic;

• Planner Dispatch (node): Parses and executes the plan
published by the planner interface;

Our package implements the pipeline illustrated in Fig-
ure 2, where dashed lines represent published topics and the
solid lines represent data obtained through files (e.g., PDDL
domain) or passed directly between the nodes. Initially, the
Problem Interface (1) reads the map, the pose of the robot
and a goal position informed by the user or an external node,
and calls the Problem Generator service, passing these three
parameters. The Problem Generator builds a PDDL prob-
lem (problem.pddl) based on its inputs and publishes this
problem in a topic. As soon as the problem is published, the
Planner Interface (2) reads it and executes the ENHSP plan-
ner as a subprocess, which uses the domain description (do-
main.pddl) and the problem description (problem.pddl) to
compute an action plan for the robot. The Planner Interface
publishes this plan as a topic, which is read by the Planner
Dispatch (3). This node reads the plan, parses the movement

2https://gitlab.com/enricos83/ENHSP-Public

364

actions into a path, based on the robot’s current position, and
executes it in the robot. When the robot reaches the goal po-
sition, a message of “success” is published as a topic. The
Planner Interface reads the “success” message and may ei-
ther stop the process or set a new goal for the robot. For this
package, we formalized a PDDL domain with 8 movement
actions (up, left, right, down and the diagonals in-between),
in each of the two movement sets, and 2 energy actions for
turning a sensor on and off, totaling 18 actions.

Experiments and Results
In order to measure the efficiency of our energy-aware path
planning approach (i.e., the reduction in energy draw), we
perform experiments in a simulated world and the real world
using a Turtlebot 2 mobile base3 (with a radius of 0.2 meters)
and an NVIDIA Jetson TX2 embedded computer4, powered
by an individual 11.1 Volts 2300 miliampere-hour Lithium-
Polymer (LiPo) battery. The Jetson TX2 was chosen because
it contains built-in power sensors connected to the board’s
power supply. Experiments in the simulated world allow us
to ensure that our domain and package are correctly de-
signed, as well as to measure the efficiency of our EAPP
approach. In the real world experiments, we compare the
energy draw from the Jetson’s battery with a laser sensor
connected to the embedded computer when using our pack-
age and a conventional path planning package. The energy
draw E (in Joules) is calculated by measuring and logging
the battery’s instant power draw through the Jetson TX2’s
internal power sensor, and by integrating the measurements
over time. Formally, the energy can be described in continu-
ous and discrete-time.

E =

∫ T

0

P (t) dt =
T∑

i=0,k,2k...

P [i] (3)

where P (t) and P [i] are the instant power in Watts, at
continuous and discrete-time respectively, T is the total ex-
periment time, and k is the discrete sampling time. As a Watt
equals to Joules per second (i.e., W = J/s), integrating the
power eliminates the seconds and gives us the total energy
in Joules over a time period T .

Simulation
In order to test our energy aware planner in an autonomous
navigation application, we conducted two experiments using
a simulator. We use the Stage (Vaughan 2008) robot simu-
lator, and run the Turtlebot 2 packages in the Jetson TX2
and Stage in a separate networked computer, emulating the
setup of a real Turtlebot 2 driven by the embedded board.
Figure 3a illustrates the simulated world, where the black
circle represents the robot, black squares represent obstacles
and red circles represent the waypoints for autonomous nav-
igation (P1..5), which are followed sequentially (i.e., P1 to
P5 in a cycle). As described in Figure 1 the red zone rep-
resents the clearance radii and the blue zones represent the
energy radii.

3https://www.turtlebot.com/turtlebot2/
4https://developer.nvidia.com/embedded/buy/jetson-tx2

P1

P2

P3

P4

P5

(a)

Turtlebot

(b)

Figure 3: (a) Map used in simulation, where the red cir-
cles indicate the five waypoints. (b) Path planning consid-
ering the energy metric (green path) and ignoring the energy
metric (red path). The simulated world consists of obstacles
(black squares), the robot (black circle), and each obstacle’s
clearance and high energy zones (red and blue areas respec-
tively). The walls also have these zones, omitted here for
clarity.

The first simulation checks if the energy minimization
metric significantly changes the plan produced by ENHSP.
Using the robot’s initial position in the map and an arbi-
trary goal position inside a high energy zone, we execute
the planner with and without the metric. The plans’ move-
ment actions are translated into paths between these points,
as shown in Figure 3b. Both plans avoid obstacles correctly,
staying away from the clearance zones (red areas). As EAPP
without the minimization metric is not concerned with the
overall energy draw, the plan (red path) cuts into an obsta-
cle’s high energy zone (blue area). On the other hand, when
we set EAPP to minimize the energy draw, it steers clear of
such zones (green path). Thus, energy minimization serves
its intended purpose, inducing the planner to choose a low-
energy path when possible. We can see this result by veri-
fying the number of energy actions in each plan. There are
two energy actions in the green path: As the goal position
lies within a high energy zone, the robot must activate its
resources to enter it. Once it reaches the goal, the second
energy action is performed, as the robot is stopped and its
resources can be freed or deactivated. The red path contains
four resource transitions: One at the goal, plus three when
going in or out of high energy zones.

In the second simulation, we execute an autonomous nav-
igation task, first with EAPP and then with the standard ROS
navigation stack5, measuring the computer’s battery volt-
age and power at 1-second intervals with the Jetson’s inter-
nal sensors. We power the Jetson with its individual LiPo
battery, and execute the navigation task continuously un-
til the battery dies, cycling between the waypoints in Fig-
ure 3a, for the ROS navigation stack and our package sep-
arately. The objectives are to compare the energy draw for
both approaches over one hour (with a sampling time of 1

5http://wiki.ros.org/navigation

365

0 1 2 3 4 5

Tim e (s)

10.0

10.5

11.0

11.5

12.0

12.5

B
a

tt
e

ry
 v

o
lt

a
g

e
 (

V
)

ROS nav. stack

EAPP

Figure 4: Battery discharge for the ROS navigation stack and
the EAPP approach.

second), and how long the Jetson’s battery life is extended
by using our EAPP approach. As in simulation we do not
have a real laser rangefinder connected to the board, we set
the operating mode of the Jetson TX2 to emulate the bat-
tery consumption of a real sensor. In our experiments, we
set two modes of operation: high performance (also called
Max-N by NVIDIA) and high efficiency (also called Max-Q
by NVIDIA). In high performance mode, the Jetson board
uses two dual-core Denver 2 processor and four quad-core
ARM Cortex-A57, both operating at 2.0 GHz frequency. In
high efficiency mode, the board uses only the four quad-core
ARM Cortex-A57 operating at 1.2 GHz. When the experi-
ment starts, the Jetson TX2 computer is set to the high effi-
ciency mode.

Integrating the current draw over one hour (3600 seconds)
using Equation 3, we see that autonomous navigation with
EAPP draws 2053.65 Joules from the battery, a 44.18% re-
duction compared to the 3678.87 Joules drawn when using
the ROS navigation stack. Figure 4 shows the battery dis-
charge when executing the ROS navigation stack (blue line)
and our approach (red line). The battery voltage ranges from
12.4 Volts to 10.8 Volts, at which point it is considered to
be discharged. Our package executes the path planning for
approximately 5 hours, while the ROS navigation stack ex-
ecutes for 3.5 hours. Thus, our EAPP approach extends bat-
tery life by 1.5 hours or 42.8% compared to the standard
approach.

Real World
After performing simulations using our approach and the
ROS navigation stack, we perform experiments in the real
world using a Turtlebot 2, to measure energy draw and to
check if the EAPP approach is capable of successful au-
tonomous navigation in a real environment. In this exper-
iment, we demonstrate the management of a different re-
source, controlling the activation of a Hokuyo URG-04LX-
UG016 scanning laser rangefinder. In the EAPP approach,
the laser is activated when the robot enters in energy zones
or stops at the goal position, in which case the laser scans the

6https://www.hokuyo-aut.jp/search/single.php?serial=166

P1

P2P3

P4 P5

Figure 5: Map of the real world experiment environment,
created with the SLAM package. The squares with black
borders represent obstacles, red circles represent waypoints,
and the green cross represents the center of the map, where
the robot is initially positioned.

environment to update its current position and avoid odome-
try drift over time. To physically activate and deactivate the
laser, we use a modified USB hub whose USB ports’ power
lines are controlled by a 5-channel relay driver circuit, which
is controlled by the Jetson TX2’s GPIO ports. When the laser
needs to be activated, a GPIO port’s state is set to “high”, and
vice-versa.

Before performing path planning, a map of the environ-
ment must be created using the laser scanner. Using the
gmapping ROS slam package7, we create a map of the field
containing three obstacles, as shown in Figure 5. With the
map, we set five waypoints (P1...5) to which the robot nav-
igates autonomously. The robot navigates sequentially from
waypoints P1 to P5 and then cycles back to P1. With fully
charged batteries, we set the robot at the center of the map
(indicated as a green cross in Figure 5) and start the path
planning task. We execute the EAPP and ROS navigation
approaches five times each, once again measuring the power
draw at 1-second intervals over one hour, and later obtaining
the energy draw with Equation 3.

Figure 6 presents the energy draw for the conventional
path planner and our EAPP approach, for each of the five ex-
perimental executions, along with their standard deviations
represented as error bars. The mean energy draw for EAPP
is 6243.49 Joules in one hour, a reduction of 52.02% rela-
tive to the mean 13011.69 Joules from the conventional path
planner. The EAPP’s slightly larger standard deviation is due
to variations in the obstacle coordinates, depending on the
quality of the map produced by the gmapping SLAM pack-
age. For example, in execution 3, the obstacles centers are
slightly offset because of variations in the generated map.
As some of the obstacles’ high energy zones overlap, the
planner needs to turn on the laser sensor when crossing be-
tween them, slightly increasing the overall energy draw. The
opposite happens in execution 4, and the overall energy draw
is decreased. With EAPP, the laser sensor was active for
40.45% of the one hour experiment time (i.e., spent 59.55%

7http://wiki.ros.org/gmapping

366

1 2 3 4 5

Experim ent run

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
n

e
rg

y
 d

ra
w

 (
J)

1e4

ROS nav. stack

EAPP

Figure 6: Energy draw with standard deviation for five ex-
perimental executions of the ROS navigation stack and the
EAPP approach respectively, performing autonomous navi-
gation for one hour in each execution.

of the time deactivated). Finally, in regards to successful au-
tonomous navigation, EAPP is capable of providing plans to
safely navigate through the five waypoints in Figure 5.

Conclusion
In this paper, we developed a path planning approach that ac-
counts for high energy zones and integrates energy-changing
actions in the generated plans. Our approach could be ap-
plied in disaster scenarios, in which using paths with less
battery discharge represents more mission time. In simula-
tion, we saw that our approach indeed avoids high energy
zones by choosing actions which minimize the energy at
each step. When compared with the ROS navigation stack,
our EAPP approach extends battery discharge time by ap-
proximately 1.5 hours (42.8%) and reduced the consumption
by 44.18% over one hour. In real-world experiments, we ex-
ecute EAPP with a laser sensor connected to a ground robot.
Comparing our results with the ROS navigation stack, we
observed a reduction of 52.02% in energy draw.

Our approach has three main limitations. First, although
we achieve a lower energy draw and extended battery dis-
charge time, the ROS navigation stack outperforms our
package in terms of planning time. Second, the ROS navi-
gation stack performs dynamic obstacle avoidance by using
a local planner, currently not a concern in the EAPP pack-
age. Third, our domain does not model the energy cost of
movement (as there is an individual power supply for the
robot computer), and thus the planner does not consider such
information. The advantage in modeling this cost is, for ex-
ample, if the energy-minimal path is a significant detour to
a goal due to high energy zones, and it may be overall less
costly to choose the shortest path, regardless of the high en-
ergy zones.

As future work, we intend to improve the physical hard-
ware and software for activating and deactivating sensors
to avoid or reduce failures related to sensor shutdown. Sec-
ondly, we will power the Jetson TX2 and its sensors through
the Turtlebot 2’s power supply, allowing us to measure and
model the cost of movement, which will then be integrated

in our planning domain. Finally, we plan on testing EAPP
in different platforms (e.g., Unmanned Surface Vehicles or
Unmanned Aerial Vehicles) with different energy actions, to
verify if the energy draw reduction holds.

Acknowledgments
The authors acknowledge support from CNPq under project
numbers 407058/2018-4 and 305969/2016-1, FAPERGS
process number 18/2551-0000500-2 and CAPES under the
project 88887.115590/2015-01, Pro-Alertas program. We
also would like to thank the NVIDIA Corporation for the
donation of the Jetson TX2 embedded computer used in this
work.

References
Datouo, R.; Motto, F. B.; Zobo, B. E.; Melingui, A.;
Bensekrane, I.; and Merzouki, R. 2017. Optimal motion
planning for minimizing energy consumption of wheeled
mobile robots. In ROSBIO 2017, 2179–2184.
Lee, S., and Song, J.-B. 2004. Robust mobile robot localiza-
tion using optical flow sensors and encoders. In ICRA 2004,
1039–1044.
Liu, S., and Sun, D. 2014. Minimizing energy consump-
tion of wheeled mobile robots via optimal motion planning.
IEEE/ASME Transactions on Mechatronics 19(2):401–411.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language. AIPS-98 Competition
Committee.
Mejri, E.; Kelouwani, S.; Dube, Y.; Trigui, O.; and Ag-
bossou, K. 2017. Energy efficient path planning for low
speed autonomous electric vehicle. In IEEE-VPPC 2017,
1–6.
Moravec, H., and Elfes, A. 1985. High resolution maps from
wide angle sonar. In ICRA 1985, 116–121.
Niu, H.; Lu, Y.; Savvaris, A.; and Tsourdos, A. 2018. An
energy-efficient path planning algorithm for unmanned sur-
face vehicles. Ocean Engineering 161:308–321.
Ooi, C. C., and Schindelhauer, C. 2009. Minimal energy
path planning for wireless robots. Mobile Networks and Ap-
plications 14(3):309–321.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
ECAI 2016, 655–663.
Siegwart, R.; Nourbakhsh, I. R.; and Scaramuzza, D. 2011.
Introduction to Autonomous Mobile Robots. The MIT Press,
2nd edition.
Stentz, A. 1994. Optimal and efficient path planning for
partially-known environments. In ICRA 1994, 3310–3317.
Vaughan, R. 2008. Massively multi-robot simulation in
stage. Swarm Intelligence 2(2):189–208.

367

