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Abstract

In this work, we explore the impact of inter-agent variation
in intensity of effort on the ability of a swarm of artificial
agents to achieve a goal. Variation in intensity models bio-
logical phenomena such as individual differences in size and
strength and increased adeptness for a task due to experience.
Focusing on experience, we implement inter-agent variation
in intensity, with dynamic values that increase and decrease
with an agent’s activation or non-activation for a task. Exam-
ining intensity variation alone and in combination with acti-
vation threshold variation, we find that the desynchronizing
effects of variation in thresholds in concert with the increase
in agent efficiency due to experience with a task, dramatically
improves the swarm’s goal achievement.

1 Introduction
Swarm-based systems consist of large groups or swarms of
agents that have a common goal and work collectively to
perform the tasks associated with that goal (Beni 1992). In
general, each agent in a swarm is capable of performing mul-
tiple, perhaps all, of the tasks required of the swarm. There-
fore, the division of labor, selecting which agents perform
which tasks, is neither predetermined nor obvious. A self-
organizing swarm is one in which coordination of the ac-
tivities of agents in the swarm is decentralized. Thus, each
agent in the swarm decides independently if and when to
undertake one of the tasks in service of the global goal. An
important feature of natural swarms is inter-agent variability,
differences in how or when agents select and perform tasks
(Jeanson and Weidenmüller 2014). We introduce variation in
intensity of effort, a form of inter-agent variation that reflects
some agents’ ability to complete more work than others.

In nature, swarms are common, particularly in the insect
world. The tasks individuals perform in pursuit of a global
goal are often critical to survival of the hive or colony. For
example, bee hives are highly sensitive to temperature varia-
tion. Members of the hive act collectively to maintain the
hive’s core temperature in a narrow range, 35 to 37 ◦C.
When the temperature drops, bees intentionally shiver to
generate heat. When the temperature rises, bees flap their
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wings to move air and cool the hive. Additionally, some bees
may move into or out of the core to increase or decrease pop-
ulation density, which also affects core temperature. This lat-
ter action allows for a low-cost method of temperature regu-
lation as it requires a much lower degree of energy expendi-
ture than shivering or flapping. This is important as the hive
has a limited supply of honey, their energy source (Seeley
2010). In another example, some bee species form clusters
as part of their reproductive cycle. Maintaining the cluster,
which is critical for reproductive success, requires that the
swarm change the shape of the cluster in response to en-
vironmental stimuli such as wind or a shaking tree branch.
Individual bees decide when and where to move to achieve
the desired cluster shape (Peleg et al. 2018).

Importantly, the bees’ actions are decentralized: each bee
decides if and when to shiver or flap. If members of the
hive were uniform in their decisions, the hive temperature
would oscillate. For example, when the temperature reaches
a threshold value, all bees would begin to flap and con-
tinue until the temperature dropped sufficiently and all bees
stopped flapping. Then the temperature would rise again and
the process would repeat. This is avoided due to variation
in the bees’ behaviors under the same conditions (Jones et
al. 2004; Weidenmüller 2004). Some bees will, for exam-
ple, begin shivering or flapping before others, for longer or
shorter periods, and with more or less energy.

Artificial swarms consist of some number of computa-
tional agents and are modeled after natural swarms such
as bees or ants. As with natural swarms, artificial swarm
task performance can be improved through inter-agent varia-
tion. Common sources of inter-agent variation in natural sys-
tems include activation thresholds (Jones et al. 2004; Wei-
denmüller 2004) and probability that an agent will activate
(Weidenmüller 2004). As in the bee hive example, variation
in activation thresholds desynchronizes agent actions by pre-
venting simultaneous activation by all agents that will per-
form a task (Krieger and Billeter 2000; Riggs and Wu 2012;
Wu et al. 2012; 2020). A side effect of this variation is that
early activators will work on a task much more frequently
than late activators. This will result in some agents gaining
more experience and, therefore, being much more adept at
the task. In this work, we model this increased experience
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through another form of inter-agent variation: variation in
intensity of task performance.

Variation in intensity models different abilities of agents
(Dornhaus et al. 2008; Oster and Wilson 1978). From the
biological perspective, this could model factors such as
strength, size and stamina in addition to experience. For ex-
ample, some bees are bigger and/or stronger than others and
may, therefore, shiver or flap more vigorously. Further, an
individual may change their intensity of effort to accommo-
date changes in the needs of the colony (Jeanne 1996).

From an engineering perspective, agent intensity may re-
fer to an agent’s working capacity or efficiency which may
vary due to wear and tear, amount of time active, and the
functional capabilities of the agent. In both cases, variation
in intensity means that agents will have different impacts on
the goal which may affect when and which other agents re-
spond and gain expertise.

Research in the biology community suggests that expe-
rience plays a role not only in individual task efficiency but
also in collective colony performance and individual task se-
lection (Ravary et al. 2007; Langridge, Franks, and Sendova-
Franks 2004). In at least one ant species, individuals that find
early success in foraging activities choose to forage again,
whereas those individuals that were unsuccessful are more
likely to choose to care for young in the nest (Ravary et
al. 2007). In another ant species, task repetition improved
colony performance for emigration, the task of moving the
colony to a new nesting location (Langridge, Franks, and
Sendova-Franks 2004). Efficient emigration is critical as the
entire colony is exposed during the process.

We hypothesize that intensity variation, which differenti-
ates agents within a swarm, facilitates more successful goal
achievement. Further, because intensity variation is not a
form of desynchronization, its effect may be orthogonal to
that of activation threshold variation, allowing the two forms
of variation to perform well in combination. We implement
a model of inter-agent variation and perform experiments
to test these hypotheses. In the remainder of this paper, we
describe our model, the problem on which we test it, the ex-
periments we perform and the results we observe.

2 Our Model
The testbed problem we use is a simple 2D tracker. In this
problem, a target object moves in the plane, either at ran-
dom or according to a predefined path. The agent swarm
pushes a tracker object (such as a box) attempting to trace
the target path in real-time. Agents independently choose to
remain idle or undertake one of four tasks: push north,
push east, push south, or push west.

A run is divided into a number of discrete time steps. Dur-
ing each of these time steps:
• The target moves a fixed number of distance units, creat-

ing frequently changing task demands.
• Each agent chooses and performs a task.
The tracker, pushed by the swarm, may move farther in a
time step than does the target. This allows the swarm to catch
up to the target should it fall behind or even move ahead of
the target. Though the latter is unlikely to be desirable with
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Figure 1: An example random target path (purple) and cor-
responding tracker movement (blue) over 500 time steps.

respect to goal attainment, it reduces constraints on swarm
behavior. An example random path is shown in Figure 1.

In support of the high-level goal of tracing the target path,
the measurable goals of the swarm are:
Goal 1. Minimize the average difference, per time step, be-
tween the target location and the tracker location.
Goal 2. Minimize the difference between total distance trav-
eled by target and the total distance traveled by the tracker.

Both criteria are required to gauge how well the tracker
follows the target since the tracker can remain close to the
target, following the path at a macro level, while performing
poorly at a micro level. For example, the tracker may zigzag
back and forth across the target path. While the difference
in position at any time step is small, the swarm does con-
siderably more work than necessary which is be reflected
in the total path length but not the average difference. Con-
versely, the path lengths may be similar while the tracker
is never very close to the target, taking short cuts in some
places while straying significantly in others.

At each time step, we record the tracker’s distance from
the target. In addition, we record the total distance traveled
by the target, total distance traveled by the tracker, the num-
ber of time steps in which each agent pushes in each direc-
tion, the number of times an agent does not perform a task
(remains idle), and the number of times an agent changes
from one task to another.

Agents know the values of Δx = target.x− tracker.x and
Δy = target.y − tracker.y. In addition, each agent has the
following relevant attributes:
• an activation threshold value for each task
• an intensity multiplier value for each task
For this problem, each threshold value represents the maxi-
mum acceptable Δ between the target and tracker in the di-
rection specified for that task. If the Δ exceeds the threshold,
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Parameter Values
Population Size 200
Time steps 500
Target step length 3
Tracker step multiplier 2
Task selection Random
Threshold distribution Constant 0.5

Gaussian
Uniform

Intensity variation Off
On

Intensity dynamic Off
On

Intensity multiplier range N (1.0, 0.09)
N (1.0, 0.0625)
N (1.0, 0.0275)

Intensity increment 0.15
Intensity decrement 0.05

Table 1: Parameter values for the experiments we perform.

the agent may activate for that task. To illustrate by example,
if agent ai has a push north threshold of 0.7 and Δy is
0.8 (the target is 0.8 units north of the tracker), then ai could
activate for push north, whereas if the target is only 0.5
units north of the tracker ai could not activate for that task.
If none of an agent’s activation thresholds are met, the agent
remains idle. If multiple of an agent’s thresholds are met, the
agent chooses from those tasks at random. Note that, for this
problem, at most two thresholds can be met at once.

As indicated previously, intensity variation can model at
least two natural phenomena: differences in an agent’s phys-
ical ability (strength, stamina, size) and differences in an
agent’s adeptness (experience). Dynamic intensity values,
per task gains or losses in intensity due to activation or non-
activation for a task, allow us to model either phenomenon.

If dynamic intensity is enabled, an agent’s intensity multi-
plier for a task increases each time the agent activates for that
task and decreases each time the agent activates for another
task or remains idle. Thus, an agent’s intensity multiplier for
a task will decrease more often than it increases. For this
reason, the magnitudes for increasing and decreasing dy-
namic intensity multipliers are asymmetric. Intensity multi-
pliers are applied to the base intensity value of 1.0. Thus, an
agent with an intensity multiplier of 1.5 pushes 50% harder
than an agent with an intensity of 1.0. Figure 2 illustrates
changes in dynamic intensities over the course of a run.

3 Experiments
We perform a number of experiments to gauge the effect of
variation in intensity of effort on a swarm’s ability to achieve
a goal. To explore this, we run experiments with the follow-
ing intensity values:

• Static, homogeneous intensity multipliers of 1.0

• Static, heterogeneous intensity multipliers set according
to a Gaussian distribution
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Figure 2: This histogram tracks changes in agent intensity
values for task push north over the course of a run for
target path s-curve. The intensity range has been partitioned
into 10 uniformly-sized bins. Height represents the number
of agents in a bin at a given time step. Intensity multipliers
increase with bin number.

• Dynamic, heterogeneous intensity multipliers, set accord-
ing to a Gaussian distribution, and that vary within a spec-
ified range

Figure 3 provides a comparison of these experiments for one
of our target paths.

The Gaussian distributions used to determine initial in-
tensity multiplier values appear in Table 1. The resulting in-
tensity ranges are approximately: [0.1, 1.9], [0.25, 1.75], and
[0.5, 1.5]. We also test dynamic intensities with constant ini-
tial values of 1.0. We note that use of this alternatives makes
virtually no difference in achievement of the swarm’s goal.
Thus, we report results only for initial intensity values set
according to the Gaussian distributions.

To gauge the interaction between variations in activation
thresholds and intensity, our experiments include three dis-
tributions for threshold values: constant = 0.5, Gaussian
N (0.5, 0.0275), and uniform in [0, 1]. Constant threshold
values allow us to gauge the effect of intensity variation with
no variation in activation thresholds, while the uniform and
Gaussian distributed thresholds allow evaluation of the com-
bined effect of the two forms of variation.

We test our model on four different target paths: ran-
dom, sharp, s-curve (sinusoidal), and zigzag (sawtooth). s-
curve, and zigzag are reasonably self explanatory. The ran-
dom path, calculates an angle change, in radians, at every
time step. The change is Gaussian N (0.0, 1.0). Sharp is a
randomized path in which a new heading and probability
p of changing direction are chosen in every time step. The
heading is chosen uniformly in [0, 360] and p is in [0.1, 0.5].
Thus, turns are sharper than in the random path.

Experiments are run for 500 time steps with a population
size of 200. With a target step length of 3, the target path
length is 1500 units in all cases. We execute 50 runs for each
of 60 different experiments: 4 paths ∗ 3 activation threshold
distributions ∗ 5 intensity variations.

The relevant parameters and the values used during the
experiments reported here appear in Table 1.
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4 Results and Analysis
The experiments performed test our hypothesis: inter-agent
variation in intensity of effort on individual tasks improves
a swarm’s success in goal achievement. In this section we
report these results:

• the combination of heterogeneous activation thresh-
olds and heterogeneous intensities dramatically improves
swarm performance

• choice of intensity range for a given threshold distribution
significantly impacts results

• static intensity variation performs no better than homoge-
neous intensities

• with dynamic intensities modeling experience, agents
specialize and a relative few do much of the work

Figure 4 provides an overview of the results. Data pre-
sented are averaged over 50 runs for each experiment. Re-
sults are grouped by target path.

Twenty-four experiments combine dynamic, heteroge-
neous intensities with uniform or Gaussian activation thresh-
olds. Significantly, all 24 outperform all but 2 of the 36
experiments in which at least one of the forms of vari-
ation (thresholds or intensities) is absent. The only out-
liers are uniformly distributed thresholds with homoge-
neous intensities (uniform-no intensity) and uni-
formly distributed thresholds with static, heterogeneous in-
tensities (uniform-no dynamic) for the random target
path only. These were slightly better than only one combi-
nation of threshold and intensity variations: uniformly dis-
tributed thresholds with dynamic, heterogeneous intensities
in [0.1, 1.9] (uniform-0.1-1.9). This is unsurprising
since, as discussed below, uniform thresholds work best with
dynamic, heterogeneous intensities in a smaller range. In all
other cases and for all target paths, combinations of thresh-
old variation with intensity variation outperform the absence
of one or both forms of variation.

Threshold variation alone improves swarm performance
while intensity variation alone does not. Together, the two
forms of inter-agent variation produce dramatic improve-
ment. These results strongly confirm the hypothesis that a
combination of these two forms of inter-agent variation sig-
nificantly improves swarm success.

We observe that the choice of activation threshold dis-
tribution for a given intensity multiplier range makes a
significant difference in performance. The effect is eas-
ily seen in Figure 4. When all results are sorted by aver-
age difference, for each of six possible threshold distribu-
tion / intensity range combinations ({uniform, gaussian} ×
{[0.1, 1.9], [0.25, 1.75], [0.5, 1.5]}), the results for the four
target paths are consecutive. Uniform activation thresholds
with intensity range [0.5, 1.5] are best followed by Gaussian
activation thresholds with intensity range [0.1, 1.9].

This highlights the interaction between intensities and ac-
tivation thresholds. As intensity multipliers increase with
experience, accurate tracking requires fewer agents to acti-
vate. Uniform activation thresholds result in about the same
number of agents at the extremes of the threshold range as
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Figure 3: Target paths (purple) and tracker paths (blue) for
s-curve. With homogeneous intensities (a) and static, hetero-
geneous intensities (b), the tracker follows the target well
except for shortcuts in the turns. With variation in activation
thresholds and intensities (c) and (d), the swarm tracks much
closer to the target. With uniform thresholds in particular,
the target and tracker paths are nearly indistinguishable.

near the middle. Thus, lower intensity multipliers are desir-
able. Conversely, with Gaussian activation thresholds, low
thresholds are in the tail of the distribution resulting in few
agents with these thesholds. With this smaller number of
agents activating, we need a larger intensity range to allow
agents to push harder. This effect also explains why with
uniformly distributed activation thresholds and a large inten-
sity range of [0.1, 1.9], we see a dramatic increase in tracker
path length. Notably, with either threshold distribution, we
observe strong results with at least one intensity range.

The data also demonstrate that static, heterogeneous in-
tensity multipliers (no dynamic) do not improve swarm
performance compared to homogeneous intensity multi-
pliers fixed at 1.0 (no intensity). With both uniform
and Gaussian activation thresholds, no intensity and
no dynamic intensity multipliers are clustered in the mid-
dle of the pack (see Figure 4). Tracker path lengths in these
cases are significantly below the target path length. Thus,
variation in intensity values improves performance only
when the values are dynamic, changing to reflect agents’
increased adeptness for a task. Figure 5 illustrates the role
of experience. The data are sorted by activation threshold.
Agents with low thresholds for a task activate more fre-
quently for that task and, therefore, gain experience, increas-
ing their intensity multiplier. Modeling the limits of experi-
ence for improving efficiency, intensity values are bounded.

Figure 2 shows changes in the swarm’s intensity values
for task push north throughout a trial for target path s-
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Figure 4: Average values over 50 runs for average difference (bars) and tracker path length (blue line) grouped by the four
target paths. Data are sorted by average difference. The gray line shows the target path length. Error bars represent the 95%
confidence interval. The experiment labels indicate: threshold distribution-intensity range. Dynamic, hetero-
geneous intensity values with heterogeneous activation thresholds achieve the best performance.

curve. The number of highly adept agents (bin 9) pushing
north decreases when the target changes direction to east or
south, as agents lose experience, and rebounds when the tar-
get begins moving north again, as agents gain experience.

Figure 3 illustrates the implications this has for goal
achievement. The runs depicted in (3a) and (3b) use homo-
geneous and heterogeneous, static intensities, respectively.
There is considerable variation between target and tracker
paths. With heterogeneous, dynamic intensities, shown in
(3c) and (3d), performance is considerably improved. When
Gaussian activation thresholds are used (3c), improvement
is delayed, resulting from the higher intensity values re-
quired for each agent due to fewer agents with low activa-
tion thresholds from that distribution. With uniform activa-
tion thresholds, the swarm’s path is very close to the target.

5 Conclusions and Future Work
In this work, we explore the effect of variation in intensity
of effort on task completion in a swarm of artificial agents.
We experiment with intensity variation in isolation and in
combination with activation threshold variation. While both
forms of variation are known to exist in natural swarms, such
as in bees and ants, only activation thresholds have been
extensively studied in artificial swarms. We find that vari-
ation in intensity, when combined with variation in activa-
tion thresholds, dramatically improves swarm performance.

While variation in activation thresholds significantly im-
proves swarm performance in the absence of intensity varia-
tion, introducing dynamic, heterogenous intensities dramat-
ically increases the effect.

Variation in activation thresholds is known to desynchro-
nize the actions of agents in a swarm, allowing for better
task completion in many domains. We find that variation in
intensity further differentiates agents within a swarm, im-
proving swarm performance beyond the effects of threshold
variation, when intensity values are dynamic, changing with
agent activation. Such dynamism in intensity values models
natural agents becoming more adept at a task with repetition.
These results mirror findings in nature.

In future work, we plan to test our model in a more com-
plex domain problem. We also plan to explore additional
forms of inter-agent variation such as response probabil-
ity and response duration. Activation probability models the
scenario in which an agent fails to perform a task despite
its activation threshold for that task being satisfied. Duration
of task performance models agent stamina or focus. With
four forms of inter-agent variability implemented, we will
explore which combinations are most complementary.
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Figure 5: Intensity range, activation count, and activation threshold values for all agents from one run on a random target path.
Maximum value for activation count is the number of time steps since agents choose one task per time step. The task represented
is push north. This illustrates that most of the work is done by a relatively small number of agents with high intensity multipliers.
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