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Abstract

In this paper, we present a novel model-free reinforcement
learning approach for solving a conventional leader-follower
problem using autonomous wheeled mobile robots. Specif-
ically, the proposed learning approach decides the desired
linear velocity and the steering angle (control actions) of a
follower robot to follow the time-varying motion trajectory
of a leader robot. The setup of the online adaptive learning
mechanism does not rely on any dynamical or kinematic in-
formation, i.e., “model-free”, of the car-like robots used in
this work. Bellman’s principle of optimality is employed to
approximate the reward of the control actions determined by
the proposed model-free adaptive learning algorithm. A set of
computer experiments has been conducted to validate the per-
formance of the proposed algorithm under various unplanned
leader-trajectories.

Introduction
The field of multi-agent systems is of a paramount im-
portance in recent years due to its extensive applications
in perimeter surveillance, search and rescue missions, co-
operative localization, and target tracking tasks (Ma 2019;
Kia et al. 2018; Khan, Rinner, and Cavallaro 2018). Multi-
robot formation is one of many active research topics within
the realm of multi-agent systems and cooperative control
theory (Oh, Park, and Ahn 2015). In particular, the leader-
follower problem has received thorough attention to the
robotics community, where mobile robots follow leader
robot(s) satisfying certain geometric constraints, such as
cyclic pursuit (Yu et al. 2019; Marshall, Broucke, and Fran-
cis 2004), circular motion (Ma 2019), and time-varying
communication topologies (Sakai, Fukushima, and Matsuno
2018; Li, Er, and Wang 2019). However, many formation
control strategies which are proposed in the literature to
date rely on mathematical models of various mobile robots,
such as underactuated autonomous surface vehicles (Liu et
al. 2017), nonholonomic wheeled mobile robots (Miao et
al. 2018), unmanned underwater vehicles (Liu, Wang, and
Lewis 2019; Bechlioulis et al. 2019), and unmanned heli-
copters (Kuo, Tsai, and Lee 2019). In some cases, tools of
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computational intelligence are used to solve leader-follower
problems, see (Xiao and Chen 2019; Kuo, Tsai, and Lee
2019), for example, and some references therein, however,
their learning mechanisms still rely on the underlying sys-
tem dynamics. Recently, Miah et al. developed several mo-
tion control strategies (Miah, Kafi, and Chaoui 2019; Miah
and Knoll 2018; Miah et al. 2017; Miah and Gueaieb 2015;
2014) for nonholonomic mobile robots and fixed-base heli-
copters, where partial or full dynamical models are required
for determining the desired control actions.

The current manuscript overcomes some shortcomings as-
sociated with many leader-follower control approaches pro-
posed in the literature by introducing an online model-free
adaptive learning control mechanism. The proposed learn-
ing approach determines the actuator commands of a fol-
lower robot to follow an independent virtual leader. Note
that the actuator commands (control actions) are the linear
speed and steering angle of the follower robot. The learning
mechanism relies on collecting the state information (i.e.,
position and orientation) of motion trajectories generated
from both the leader and follower robots online over a fi-
nite time period. Bellman’s principle of optimality is then
formulated as a model-free reinforcement learning strategy
to determine the optimal linear speed and the steering angle
of the follower robot so that it follows the motion trajectories
of the leader while maintaining a pre-defined safe distance
between them. We emphasize that model parameters of both
the leader and follower robots are unknown. Furthermore,
the effectiveness of the proposed model-free reinforcement
learning approach is validated by taking into consideration
that the leader robot is a physical robot model as opposed
to a simple point robot model, that is considered in many
formation control, trajectory tracking, and leader-follower
problems in the literature (Marshall, Broucke, and Francis
2004).

Problem Setup
Suppose that a car-like robot (follower) is deployed in a
planar (2D) environment. Therefore, the coordinate (x, y)
is the position of the follower robot with an orientation of
θ ∈ [−π, π) rad with respect to the global X-Y coordinate
frame. Without loss of generality, the action commands of
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Figure 1: Leader-follower problem setup.

the robot are considered to be its linear speed ν and the
steering angle γ. Let qk ≡ [xk, yk, θk]

T denote the pose
(position and orientation) vector of the robot at time t ≥ 0
with t = k Ts, k ∈ N0, and Ts > 0 being the sam-
pling time. The robot follows a leader trajectory defined by
(p

[�]
k )T = [x

[�]
k , y

[�]
k (t)] with the dynamics given in discrete-

time as:

p
[�]
k+1 = p

[�]
k + Ts u

[�]
k , (1)

where u
[�]
k ∈ R

2 is the control input vector of the leader at
time instant k, k = 0, 1, . . . . A standard setup of a leader-
follower problem using car-like mobile robots is shown in
Fig. 1. The leader is supposed to maintain a constant safe
distance d > 0. The robot’s discrete-time model is approxi-
mated by the first-order Euler integration law given as:

xk+1 = xk + Tsνk cos (θk + γk) + ζ1, (2a)
yk+1 = yk + Tsνk sin (θk + γk) + ζ2, (2b)

θk+1 = θk + Tsνk
sin (γk)

l
+ ζ3, (2c)

where γk ∈ (−π
2 ,

π
2 ) is the front wheel steering angle with

respect to the robot’s orientation θk ∈ [−π, π), νk is the
linear speed, l is the distance between the drive wheels of
the robot, and ζ1, ζ2, ζ3 ∈ R are the model uncertainties. It
is assumed that, the left and right wheels of the robot steer
together under a no-slip condition (Corke 2011). The state
error between the follower and the leader is defined such
that

eTk = [xe, ye, θe]
T =[

x
[�]
k − xk − d cos θ

′
k, y

[�]
k − yk − d sin θ

′
k, θ

′
k − θk

]
, (3)

where θ
′
k = atan2

(
y
[�]
k − yk, x

[�]
k − xk

)
. The control

problem can then be formally stated as follows: Find νk and
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Figure 2: Typical framing of an RL scenario.

γk such that ek → 0 as k → ∞ subject to (1) and (2).
The optimization goal is to let the follower robot asymptot-
ically follow the leader robot while maintaining a safe dis-
tance d > 0 regardless of motion trajectories with various
complexities generated by the independent leader. It is em-
phasized that, the current model-free reinforcement learning
mechanism determines the control actions νk and γk based
on the error vectors ek (data collected over a finite-time in-
terval) as k → ∞. Before illustrating the proposed learning
algorithm, let us briefly revisit the preliminaries of reinforce-
ment learning in the next section.

Preliminaries of Reinforcement Learning
Reinforcement learning (RL) highlights a class of problems
in the field of multi-agent systems, where an agent deter-
mines sequential decisions (control actions) while learning
from its associated environment. That is, an agent takes into
account its learning experience from the environment and
the cumulative reward to optimize decision (François-Lavet
et al. 2018). The RL technology is described by four finite
state tuples (S,Ω,R,A), that are environment (s ∈ S),
agent (w ∈ Ω), reward (r ∈ R), and action (a ∈ A) as
illustrated in Fig. 2. As pioneered by Barto et al. in (Barto,
Sutton, and Anderson 1983), an agent determines its action
in environment s0 ∈ S by collecting information via agent
w0 ∈ Ω. Since the learning process is a sequential time
based process, therefore, at each time step k, an agent deter-
mines the action ak ∈ A following three cascaded phases:
(i) obtaining a reward rk ∈ R, (ii) state transitions from
agent state sk ∈ S to sk+1 ∈ S, and (iii) the agent obtains
an observation wk+1 ∈ Ω. The leader-follower problem ad-
dressed in this paper is formulated using a model-free rein-
forcement learning approach as follows:

1. Environment: It is a 2D planar space where agents
(leader and follower) interact with each other.

2. Agent: Agents considered in this work are two robots
(leader robot and follower robot). The robot mo-
tion behaviors are modeled using kinematics described
by (1) and (2). The follower robot mimics the behavior
of the leader robot.

3. Action: The actions are the linear velocity and steering
angles of the follower robot. Robots’ state-transition task
is performed using the control actions applied to their ac-
tuators. The main parameters that agents use to interact
with the operating environment are the current position
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and orientation, speed, steering angle, and distance be-
tween the robots.

4. Reward: The goal here is to determine how follower
robot can learn the leader robot’s behavior to keep the
minimum distance at any time and location to adjust its
speed and distance. Therefore, follower robot will obtain
reward rk ∈ R at time instant k if the distance between
the follower and the leader is close to a safe distance d.
Herein, robots’ state error is formulated as in (2). Hence,
once the error ‖ek‖ is minimized at time instant k, the
follower robot will obtain reward V, which is a modeled
solving value function. This will be detailed out in the fol-
lowing section.

Proposed Model-Free RL Approach
The solution of the leader-follower formation problem is re-
alized using a reinforcement learning approach. It employs
model-free strategies for solving a temporal difference equa-
tion developed herein. This solution is equivalent to solving
the underlying Bellman optimality equation for the dynami-
cal error model (3). The relative importance of the states in
the error vector ek and the control decisions (linear velocity
and steering angle) of the follower-robot are evaluated using
the performance (cost) index:

J =
∞∑
k=0

1

2

[
eTk Qek + uT

k Ruk

]
, (4)

where Q ∈ R
3×3 and R ∈ R

2×2 are symmetric positive
definite weighting matrices. The objective of the optimiza-
tion problem, following (Lewis and Liu 2013), is to find an
optimal sequence of control polices {u∗

k}∞k=0 that minimizes
the cost index J along the state-trajectories (1) and (2). Mo-
tivated by the structure of the convex quadratic cost func-
tional (4), let the solution of the tracking control problem
employ the value function V (ek,uk) defined by

V (ek,uk) =
∞∑

κ=k

1

2

(
eTκ Qeκ + uT

κ Ruκ

)
.

This structure yields a temporal difference form (i.e., Bell-
man equation) as follows

V (ek,uk) =
1

2

[
eTk Qek + uT

k Ruk

]
+ V (ek+1,uk+1).

Applying Bellman’s optimality principle yields the optimal
control policies u∗

k, k ≥ 0, such that (Lewis, Vrabie, and
Syrmos 2012)

u∗
k = argmin

uk

[
1

2

[
eT
k Qek + uT

k Ruk

]
+ V (ek+1,uk+1)

]
.

Alternatively, this optimal policy form is equivalent to u∗
k =

argminuk
[V (ek,uk)] . Therefore, the underlying Bellman

optimality equation follows

V ∗(ek,u
∗
k) =

1

2

[
eT
k Qek + u∗T

k Ru∗
k

]
+ V ∗(ek+1,u

∗
k+1),

where V ∗(·, ·) is the optimal solution for Bellman optimality
equation. This temporal difference equation is utilized by
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Figure 3: Critic neural network structure for approximating
value function.

reinforcement learning process which solves the following
temporal difference approximation form

V̂ (zk) =
1

2
zTk P̄ zk + V̂ (zk+1), (5)

where zk = [ek,uk]
T ∈ R

5, V (ek,uk) ≈ V̂ (zk),
and P̄ is a symmetric block-diagonal matrix formed using
(Q,R), i.e., P̄ = blockdiag(Q,R). The approximation of
the solving value function V̂ (zk) employs a quadratic form
so that V̂ (zk) = 1

2z
T
k Pzk, where P ∈ R

5×5 is a positive
definite matrix. Hence, the optimal control strategy u∗

k can
be expressed as follows

u∗
k = argmin

uk

[
V̂ (zk)

]
= −P−1

uu Pue ek, (6)

where Puu and Pue are sub-blocks of symmetric matrix P.
A two-step solution mechanism that is based on policy

iteration is employed to solve the temporal difference equa-
tion (5) using the policy (6). First, the adaptive critics are
used to approximate the solving value function V̂ (·) using
a multi-layer critic neural network as shown in Fig. 3. Sec-
ond, the policy evaluation step of this process updates the
critic weights ω in real-time without acquiring any forma-
tion about the dynamics of the leader or follower dynamical
systems (the calculation mechanism of the critic weighs ω
is explained later on). This is done to search for a strictly
better policy. Note that, the policy iteration computational
setup rearranges the temporal difference expression (5) such
that

zTk Pzk − zTk+1 Pzk+1 = zTk P̄ zk. (7)
This equation is utilized repeatedly in order to evaluate a
certain policy during at least η ≥ n̄, n̄ = (3+2)(3+2+1)/2
evaluation steps (i.e., the lowest evaluation interval spans
k to k + n̄ calculation samples) in order to update the
critic weights vector ω = vec(P), which consists of
connection weights between the neurons of the hidden
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layer and the output layer of the critic neural network
shown in Fig. (3). The operator vec(P) forms the columns
of the P matrix into a column vector ω of dimension
n̄ = 15 since the matrix P is a symmetric matrix. The
left hand side of (7) is expressed using the following critic
approximation form V̂ (zk) − V̂ (zk+1) = ωT ρ̃(zk,k+1),
where ρ̃(zk,k+1) = ρ(zk) − ρ(zk+1) ∈ R

15×1, ρ(zk) =(
zqk ⊗ zhk

)
(q = 1, . . . , 5, h = q, . . . , 5), and ωT =

[0.5P 11, P 12, P 13, P 14, P 15, 0.5P 22, P 23, P 24, P 25,
0.5P 33, P 34, P 35, 0.5P 44, P 45, 0.5P 55]T ∈ R

1×15 (P ij

is the ijth entry of matrix P). The critic weights ω are
updated using a gradient descent approach, where the
tuning error εk at each computational instance k follows
εk = ωT ρ̃(zk,k+1) − vk, where vκ = 1

2z
T
k P̄ zk. As

detailed earlier, it is required to perform at least η ≥ n̄
evaluation steps before updating the critic weights ω (i.e.,
finding the new improved policy). Hence, it is required to
minimize the sum of square errors such that

δc =

η−1∑
κ=0

1

2
(ωT ρ̃(zk+κ,k+κ+1)−vk+κ)

2 =
1

2
‖v−Λω‖2

=
1

2
(v −Λω)

T
(v −Λω) ,

where Λ = [o0,o1, . . . ,oη−1]
T ∈ R

η×15 with oκ =
ρ̃T (zk+κ,k+κ+1) ∈ R

1×15 and v = [v0, v1, . . . , vη−1]
T ∈

R
η with vκ = 1

2z
T
k+κ P̄ zk+κ for κ = 0, 1, . . . , η−1. There-

fore, the update law of the critic weights using the gradient
decent approach for at least n̄ samples is given by

ω[r+1] = ω[r]−
c ∂δc
∂ω

= ω[r]−
c
(
−ΛTv +ΛTΛω[r]

)

= ω[r] − 
cΛ
T
(
Λω[r] − v

)
, (8)

where 0 < 
c < 1 is a critic learning rate and r is the up-
date index of the critic weights. The newly computed critic
weights ω are used to reconstruct the matrix P (i.e., updat-
ing the solving value function and hence calculating the as-
sociated policy) such that

P =

⎡
⎢⎢⎢⎣

2ω1 ω2 ω3 ω4 ω5

ω2 2ω6 ω7 ω8 ω9

ω3 ω7 2ω10 ω11 ω12

ω4 ω8 ω11 2ω13 ω14

ω5 ω9 ω12 ω14 2ω15

⎤
⎥⎥⎥⎦ ∈ R

5×5,

where ωi is the ith entry of the weight vector ω. The com-
plete policy iteration solution process for the leader-follower
problem is detailed out in Algorithm 1.

Computer Experiments and Results
In the sequel, computer experiments are conducted to val-
idate the performance of the proposed model-free adaptive
learning algorithm in real-time. The results of computer ex-
periments highlight the dynamics of the tracking errors and
the convergence characteristics of the proposed algorithm
(i.e., updating the critic weights). This will judge the ability
of the follower robot to track independent motion trajectory

Algorithm 1: Model-free reinforcement learning us-
ing the policy iteration solution.

Input: Sampling-time Ts, Q, and R
Output: Error trajectory ek, for k = 0, 1, . . .

1 begin
2 k = 0, r = 0 /* Discrete time and

policy indices */
3 η = (n+m)(n+m+ 1)/2

4 Initialize P[0] /* Positive definite */
5 Set offset distance d
6 Given approximate initial poses of leader and

follower, compute e0 using error model (3)
7 Compute follower’s input u[0]

0 using policy (6)
8 repeat/* Main timing loop */
9 Find ek+1 using (3)

10 Compute policy u
[r]
k+1 using (6)

11 if [(k + 1) modulo η] == 0 then
12 r ← r + 1/* Evaluate policy */
13 Solve for the critic-weights ω using (8)
14 Construct matrix P[r] using vector ω
15 k ← k + 1
16 until Tracking errors are zero

of the leader robot under two different independent leader-
motion trajectories. The computer experiments are real-
ized using MATLAB simulation environment. The weight-
ing matrices are set to Q = diag[0.01, 0.01, 0.005] and
R = diag[10−6, 10−6], where the operator diag[a1, . . . , an]
represents a diagonal matrix with entries a1, . . . , an start-
ing from its upper left corner. The learning rate 
c is set to
0.0001. The sampling time Ts is set to 0.08 sec . The desired
distance offset between the leader and the follower is set to
d = 0.5 [m] for all scenarios.

In the first scenario, the leader trajectory motion
is described by a unicycle model so that ẋ[�](t) =
ν[�](t) cos θ[�](t), ẏ[�](t) = ν[�](t) sin θ[�](t). Initially, the
leader’s position is set to be the same for a short period of
time with ν� = 0, γ� = 0. Then it starts to move on a hori-
zontal line with ν� = 0.1 [m/s], eventually the leader starts
to move on an inclined path with ν� = 0.2 [m/s], γ� = 45◦.
The leader is initially placed at (x, y) = (5, 2) [m] with an
orientation of θ = 0◦, while the follower is initially placed at
(x, y) = (0, 0) [m] with an orientation of θ = 0◦. Note that
during this scenario, the critic weights converge rapidly and
the tracking errors decay till the follower tracks the leader.
The trajectory phase plan plot, tracking error states, control
signals, and tuning of critic weights are shown in Fig. 4.

A relatively unplanned complex trajectory-tracking sce-
nario is considered. The leader moves according to a sinu-
soidal trajectory so that x[�](t) = α(t) ∈ [0, 10π], y[�](t) =
5 sin(αt), and θ[�](t) = cos(αt). The leader robot was ini-
tially placed at (x, y) = (0, 0) [m] with an orientation of
θ = 0◦ while the follower robot was initially placed at a
random position around (x, y) = (0, 0) [m] with a random
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Figure 4: First scenario (rectilinear trajectory): (a) leader-follower trajectories, (b) state tracking errors, (c) linear speed and
steering angle of the follower, and (d) critic weights.

orientation. The simulation results are summarized in Fig-
ure 5. It is observed that the critic weights take more time
to converge compared to the earlier scenario, which is reluc-
tant to the complexity of the independent trajectory of the
leader. This result emphasizes the adaptability of the pro-
posed adaptive learning mechanism to different scenarios.
Further, the follower starts to move away from the leader at
the beginning of the simulation before it finally converges to
the leader where the tracking errors are bounded by a safe
distance d.

Conclusion
A novel policy iteration mechanism based on a model-free
reinforcement learning approach is presented for solving a
conventional leader-follower formation problem using car-
like mobile robots. The proposed approach does not rely on
model parameters inherent in the mobile robots employed
in this work. The follower robot is able to follow the leader
robot that navigates along unplanned trajectories of various
complexities while maintaining a nonzero safe distance be-
tween them. This work is the first milestone of its kind where
a model-free policy iteration based reinforcement learning
approach is employed in a multi-robot formation control
problem. The future work is going to extend the learning
algorithm for solving a time-varying formation control prob-
lem using networked robots.
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