
Discovering Hierarchy for Reinforcement Learning Using Data Mining

Dave Mobley
Department of Computer Science

University of Kentucky
Lexington, KY 40508
dave.mobley@uky.edu

Brent Harrison
Department of Computer Science

University of Kentucky
Lexington, KY 40508
harrison@cs.uky.edu

Judy Goldsmith
Department of Computer Science

University of Kentucky
Lexington, KY 40508
goldsmit@cs.uky.edu

Abstract

Reinforcement Learning has the limitation that problems be-
come too large very quickly. Dividing the problem into a hier-
archy of subtasks allows for a strategy of divide and conquer,
which is what makes Hierarchical Reinforcement Learning
(HRL) algorithms often more efficient at finding solutions
quicker than more naı̈ve approaches. One of the biggest chal-
lenges with HRL is the construction of a hierarchy to be used
by the algorithm. Hierarchies are often designed by a human
author using their own knowledge of the problem. We pro-
pose a method for automatically discovering task hierarchies
based on a data mining technique, Association Rule Learn-
ing (ARL). These hierarchies can then be applied to Semi-
Markov Decision Process (SMDP) problems using the op-
tions technique.

Introduction

Reinforcement learning (Sutton 1988) is a common ap-
proach to solving sequential decision problems where agents
learn through trial-and-error interaction with their environ-
ment. Guidance is given to the agent through an environ-
mental reward signal, which is a numeric value that repre-
sents how good or bad a state is. As the space of possible
environmental states becomes larger, and rewards become
sparse, reinforcement learning agents can struggle to learn
optimal behavior. In these situations, providing a structured
representation of the task to be completed in the form of a
task hierarchy can speed up learning. This technique of cre-
ating a set of tasks for the agent to take is called Hierarchical
Reinforcement Learning (HRL).

In HRL, the agent is given access to prior knowledge
about the structure of the task to be completed. Often,
these structures are hand-crafted, and can be quite complex.
Learning these hierarchies automatically can be a difficult
task, but has the potential to greatly reduce the burden on
the author to create high quality hierarchies for learning. In
this paper, we introduce a method for discovering task hier-
archies using a popular data mining technique, association
rule learning (ARL).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Association Rule Learning looks at sets of items and finds
commonality between them based on their item composi-
tion. A specific metric that measures how often an item or
itemset exists in the collection of items is called Support. By
applying this technique to an RL trace, an agent can look at
trace sets as collections of items and find subsets of states
that were traversed in those trace sets. By using Support, if
a state or set of states appears in all successful traces, then
the state is likely to be required. These states that are likely
required are known as chokepoints.

There is no guarantee that the state sets found by Support
are actual chokepoints. It is possible that an example might
exist where a specific chokepoint set of states is not needed.
As more traces are sampled without a counterexample, this
becomes less likely, but still exists as a possibility.

ARL chokepoints can be used and ordered as waypoints.
A waypoint is a set states that will be visited by the agent at
some point during the trace. A hierarchy can be created with
those waypoints, where subtasks are the steps to transition
from one waypoint to the next. This collection of subtasks
defines a hierarchy that was successful in the sample set of
traces and can be used to learn a policy for each subtask.
One of the key motivators for discovering hierarchy auto-
matically is that it frees up humans from defining the hierar-
chy.

Background

There are a number of algorithms that currently utilize hi-
erarchies to improve the learning speed of an RL problem.
Examples are options (Sutton, Precup, and Singh 1999),
MAXQ (Dietterich 2000), and abstract machines (Parr and
Russell 1998). Each of these improve on naive Q-learning,
but require the development of a hierarchy of subtasks be-
forehand. There has been work to automate the discovery of
hierarchies through randomly generating options (Stolle and
Precup 2002) and using prior knowledge to find candidate
states for starting and terminal states of options (McGovern
and Barto 2001), or by trying to locate chokepoints, required
pathways, or by using reachability (Şimşek and Barto 2004;
Şimşek, Wolfe, and Barto 2005; Dai, Strehl, and Goldsmith
2008). Although these approaches are each suitable under
their own conditions, we propose a general technique to use

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

392

prior knowledge from past successful attempts and apply
ARL to build a hierarchy of options.

To do this, the problem at hand is assumed to be
an MDP. A Markov Decision Process (MDP) is a tuple
(S,As, Ra, Ta), where S is the set of states in the prob-
lem, As is the set of actions available to be taken in a given
state s ∈ S, Ra is the reward that will be received imme-
diately when transitioning to next state, s′ because of action
a ∈ As. For a given episode, a series of states traversed
over discrete time steps until a terminal state is reached in
the problem, we write st for the current state at time step
t of the episode. Markov Decision Processes are stochas-
tic in nature, so there is a transition probability Ta such
that at time t given state st and action at there is a prob-
ability distribution over next states. This can be written as
Ta(st, st+1) = Probability(st+1 = s′|st = s, at = a).

With an MDP, the options technique of hierarchical re-
inforcement learning can be applied (Sutton, Precup, and
Singh 1999). An option has three parts: (i) a set of starting
states, I , (ii) a policy of actions π, (iii) a termination prob-
ability β. To complete some subtask, once an agent enters
a starting state, it must execute until it terminates stochasti-
cally as per β. To consider using options where they can call
other options, the MDP framework must consider variable
time length actions, i.e., a Semi-Markov Decision Process
(SMDP), so that rewards over a time interval can be applied.
States mapped to an option with a single time step are called
primitive options. Because options can call options, this al-
lows the creation of hierarchy.

Our technique creates options based on prior successful
traces, determining chokepoints, and creating a set of op-
tions to be used to learn a global policy for the problem.

Methodology
We use successful traces as prior knowledge about the prob-
lem to infer an initial hierarchy using ARL to be applied
to an options-based HRL algorithm. First we consider ARL
and then provide extensions to ARL that allow us to discover
chokepoints in traces. Our ARL algorithm discovers states
that recur during successful completion of a learning task. It
then uses this state set as the starting point in constructing
the hierarchy, splitting traces into two halves, those states
visited before the chokepoint, and those visited after. It re-
cursively calculates a new set of chokepoints for the prior
and post sets of traces. It does this until no more chokepoints
are found. After ordering this set of chokepoints, we convert
them into options that can be used by an HRL algorithm to
learn a policy for the problem.

Association Rule Learning

As mentioned, ARL is a useful statistical tool that was
originally used to discover relationships between elements
in itemsets. This data mining technique derives rules that
suggest some item or items in a collection of transaction
data are likely to be present given the presence of other
items (Agrawal, Imieliński, and Swami 1993).

An itemset is a subset of items I containing one or more
items of interest. Support is the frequency an itemset ap-
pears in a set of transactions. If the support for an itemset

has a value of 1.0 this means that the itemset exists in every
transaction in the set of all Transactions. Because it exists
in every transaction in the database, it is likely, though not
guaranteed, to be required.

Applying Association Rule Learning for Automatic
Hierarchy Discovery

To use ARL for discovering chokepoints, we generate suc-
cessful traces by random walking the environment. By for-
mulating a trace as a transaction, or collection of itemsets,
it is possible for us to use support to identify chokepoints
in a transaction. Itemsets (states visited) are more likely to
be chokepoints if they have high support. Once chokepoints
have been determined, they can be used as a set of way-
points. Itemsets with smaller numbers of states are preferred
over those with larger sets because they are simpler and
make a more abstract rule.

The algorithm divides the traces, separating them at the
chokepoint. Those before the chokepoint and those after the
chokepoint each form two new sets. The subtraces can now
be mapped into new sets of transactions, forming a database
based on subtraces before the chokepoint and those after the
chokepoint. Each new database of subtasks is recursively
operated on in the same manner. The traces are tested for
a chokepoint. The chokepoint is removed and the pre- and
post-chokepoint traces again form new databases. Once the
recursion finishes, a tree of chokepoints is created which can
be converted to a sequential list.

An extension of the support idea is to consider if multiple
itemsets together form a support = 1. A two-tuple is consid-
ered a weaker itemset than a single element itemset in that
it requires more states to meet the burden of support. It is
weaker in the sense that it forms a weaker constraint on the
agent.

If a set is a chokepoint, then any superset is also a choke-
point, but because the superset is weaker, it should not be
considered as it produces a more complex hierarchy and is
thus less precise. A balance should be considered as to how
many states are used to compose chokepoints. This will have
a direct impact on the effort necessary to calculate a hierar-
chy. The factors that have a large impact on the scalability of
this algorithm are the number of states s and the maximum
size of the itemset of a chokepoint to be considered, k. The
algorithm will need to compute from

(
s
1

)
up to

(
s
k

)
until it

finds a chokepoint or exhausts all possibilities. For the ARL
algorithm for hierarchy generation, this would be

∑k
a=1

(
s
a

)
.

The complexity of this sum is the largest term in the sum-
mation. The assumption is that the state space is very large
and that the number of states that represent a chokepoint is
small, i.e., k < s − k. This gives a complexity on the order
of O(sk). The complexity grows exponentially as the size
of the itemset for chokepoints grows, therefore in the ARL
experiments itemset size is limited to at most three states.

On some problems, like the Rooms problem presented by
(Sutton, Precup, and Singh 1999), the size of the chokepoint
set k may grow very large very quickly. In these scenarios, a
modified version of the algorithm is used. To find reasonable
chokepoints, though not necessarily required chokepoints, a

393

threshold is set and the Support of a given itemset need only
exceed this threshold to be counted. Thus if a set of states
appears in only 80% of traces, if the Support threshold is
only .75, then the itemset is considered.

Experiments

To evaluate the quality of our approach, we compared agents
trained using our hierarchies discovered with ARL against
hand-crafted hierarchies in two benchmark RL problems:
the taxi problem from (Dietterich 2000) and the rooms prob-
lem from (Sutton, Precup, and Singh 1999). We also com-
pared against a variety of hierarchical and non-hierarchical
baselines.

Taxi Experiment

The Taxi Problem is a grid-based environment where the
agent controls a taxi. The grid itself is a 5x5 grid with some
barriers inside the grid. It also contains four sites for pickup
and dropoff of a passenger. Figure 1 shows an example prob-
lem. The agent must perform the task of taking a passenger
to their desired destination. In this problem, movement from
location to location is stochastic where there is an 80% prob-
ability of going in the selected direction and 10% probably
for moving to each of the orthogonal directions.

In the first experiment, a set of 1000 successful traces for
the domain space were used. Association Rule Learning was
applied to the collection of traces, sorting them first into their
distinct variants of the problem. With the passenger possibly
picked up at one of the 4 locations and put down at one of
the 4 locations, there could be 16 variations of the problem.
The goal was to see if specific states would show up in item-
sets 100% of the time. Itemsets of at most 3 elements were
considered.

To gather initial traces, an agent randomly navigates the
environment, limited to 128 moves, where successful traces
were saved. A program takes the trace file and performs the
ARL calculation on it to generate a hierarchy. There are 16
subproblems, so there are 16 collections that are to be pro-
cessed and 16 hierarchies will be created, one for each sub-
problem. The experiment compares the results of ARL with
those of other techniques, including simple Q-learning and
randomly selected options.

A second experiment was used to determine how many
traces were typically needed for the ARL agent to accurately
form a hierarchy of chokepoints. This would give an indica-
tion of how much foreknowledge is required on this specific
problem to develop a good hierarchy. This was done by lim-
iting the number of traces that were available to the ARL
agent and comparing that to the set of chokepoints that a
person recognized as being required in the problem.

Rooms Experiment

The Rooms Problem is also a grid-based environment where
the agent must navigate from its randomly chosen starting
point to a randomly chosen destination. Unlike the taxi prob-
lem, this introduced two key aspects to challenge the ARL
algorithm, specifically the problem is much bigger so that
there are many more than 16 basic types of problems, and

Figure 1: An example of the Taxi Problem. A 5x5 grid with
the agent at location (0,3).

Figure 2: An example of the Rooms Problem. An 11x11 grid
with the agent at location (2,2) in blue and the destination at
(8,8) in red.

also there are examples of the problem where chokepoints
might require itemsets larger than size 3. An example of the
Rooms grid is in Figure 2.

There are 10,816 variations in this problem. If you imag-
ine the start location and the end location are both in one
of the same rooms, such as start at (6,5) and destination at
(8,8), many states would need to be grouped to form an item-
set. Because testing itemsets grows exponentially, we focus
on smaller sets for chokepoints, and thus still limit them to
groups of at most 3 states, but ease up the support require-
ments from being always required, to being mostly required.
A threshold of .75 was used in this particular problem, so
any itemset of states that appeared in a given problem at
least 75% of the time was used as a chokepoint in training.

To compare the ARL algorithm with other solutions, Q-
learning, random options, and a very good hand-crafted set
of options all from the original paper were used as baselines.

Results

The first experiment for the Taxi problem was a compari-
son of the ARL algorithm against Q-learning and random
options. All algorithms have all primitive options available
to them. They each will construct an equivalent number of
their own options which are available to the agent as well.

After running the agent for 200,000 episodes under each
of the algorithms, the Q-learning algorithm creates a base-
line for reference in Figure 3a. As shown by (Stolle and
Precup 2002), random options outperforms the baseline Q-
learning. Using ARL, it can be seen that ARL quickly jumps
ahead, performing as well as the more basic algorithms in
less than half the episodes, achieving the same results in as
little as 75,000 episodes. The results are based on averages
for all 16 problems over the 200,000 episodes.

For the Taxi Problem, an analysis was done testing the
ARL algorithm such that it chose a random chokepoint as a

394

(a) Random Options, Q-learning Options,
and ARL Options on the Taxi Problem.

(b) Traces required to learn ideal hierarchy
for the Taxi Problem.

(c) Hand crafted, Random, Q-learning,
and ARL Options on the Rooms Problem.

Figure 3: Results for ARL Options.

root of the hierarchy, and then built a hierarchy around that
random chokepoint. If the hierarchy devised was the same
as a logically ideal hierarchy, then it was said to pass. A log-
ically ideal hiearchy in this case is a hierarchy where each
of the chokepoints is logically deduced by a person for the
given subproblem. The algorithm was run on a varying num-
ber of traces and sampled for 100 random starts. Figure 3b
shows the results of 1-state, 2-state, and 3-state chokepoints.
For this particular problem it took between 25 and 50 traces
for the ARL algorithm to correctly create an ideal hierarchy
every time in 100 starts.

Similar to the Taxi problem, the Rooms problem was
also compared against Q-Learning and random options. The
hand-crafted algorithm from the original paper was also
used to compare against a human created solution. Figure
3c shows the initial results after running each algorithm for
4000 episodes. We perform the experiment 20 times on each
algorithm and average the results. In this particular scenario,
random options did not perform as well because we are lim-
iting it to the same number of options as the other algo-
rithms. The random options do not provide enough extra
information and appear to cause the agent to wander be-
fore catching up to Q-learning. It can be seen that as be-
fore, even without Support of 100%, but rather only 75%,
the chokepoints determined were still sufficient to allow it
to learn much faster than the baser algorithms. ARL per-
formed almost as well as the baseline algorithms after only
1000 episodes compared to 4000 episodes for the others.

Hand-crafted options performed significantly better be-
cause the human policy is more abstract, creating two op-
tions for each state, and the terminating states for those two
policies are the two exits in the corresponding room. This
abstraction is very effective because the agent has a choice
to exit the room at each step and learn a way to get to the
destination that much faster.

Conclusion

In this paper we’ve discussed the idea of using prior knowl-
edge through successful past traces as a mechanism to de-
velop an algorithm that can create a hierarchy which can be
used to train a reinforcement learning agent. As shown in

the Taxi and Rooms problems, this approach does outper-
form more traditional algorithms while providing the ben-
efit that a human does not have to create a hierarchy for
the agent. Future work in this area suggests that coming
up with more focused options, like those that humans cre-
ate, could still dramatically improve the performance of the
agent. This could entail the need for incorporating additional
chokepoint identification mechanisms as well as developing
better heuristics to group chokepoints together to overcome
the exponential limitations that result from testing all com-
binations of chokepoints to determine a good itemset.

References
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining asso-
ciation rules between sets of items in large databases. In ACM
SIGMOD Record, volume 22, 207–216. ACM.
Dai, P.; Strehl, A. L.; and Goldsmith, J. 2008. Expediting rl by
using graphical structures. In Proc. AAMAS, 1325–1328.
Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Artificial Intel-
ligence Research 13:227–303.
McGovern, A., and Barto, A. G. 2001. Automatic discovery of sub-
goals in reinforcement learning using diverse density. University
of Massachusetts Amherst Computer Science Department Faculty
Publication Series.
Parr, R., and Russell, S. J. 1998. Reinforcement learning with
hierarchies of machines. In Advances in Neural Information Pro-
cessing Systems, 1043–1049.
Şimşek, Ö., and Barto, A. G. 2004. Using relative novelty to
identify useful temporal abstractions in reinforcement learning. In
Proc. ICML.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying useful
subgoals in reinforcement learning by local graph partitioning. In
Proc. ICML.
Stolle, M., and Precup, D. 2002. Learning options in reinforcement
learning. In International Symposium on Abstraction, Reformula-
tion, and Approximation, 212–223. Springer.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112(1-2):181–211.
Sutton, R. S. 1988. Learning to predict by the methods of temporal
differences. Machine learning 3(1):9–44.

395

