
Query-Based Generation of Trigonometric Identity Problems and Solutions

Meredith Pearce
Furman University

meredith.pearce@furman.edu

Jonathan McKinney
Furman University

jonathan.mckinney@furman.edu

Chris Alvin
Furman University

chris.alvin@furman.edu

Abstract

We propose a technique for generating trigonometric identity
problems (TIPs) and problem templates based on the diffi-
culty of the desired problem. Specifically, given an expres-
sion � and a queryQ describing desired problem components
and a desired measure of difficulty, we explore the space of
tautological expression problem paths using a rule-based sub-
stitution technique. Once a tautological expression r and its
corresponding solution path within the desired level of dif-
ficulty is achieved, a problem of the form � = r is returned
along with an underlying bi-directional solution path. We also
demonstrate that our tool is able to solve a corpus of text-
book TIPs as well as generate problems that extend beyond
the confines of problem structures present in textbooks.

1 Introduction

A trigonometric identity problem is a classic Pre-Calculus
problem that is solved by a student establishing a tautologi-
cal proof between two expressions. In this work we present
techniques for generating, solving, and analyzing the diffi-
culty of high school TIPs based on user query. Among math-
ematics educators, this problem type readily exposes student
strengths and/or weaknesses in algebra skills. Our work em-
pirically shows that TIP is a misnomer since the main set of
skills they test are algebraic, not trigonometric. For example,
a student may find x2 − 1 = (x − 1)2 erroneous, but affirm
that cos2 x − sin2 x = (cosx − sinx)2.
Solving. As an introduction to our technique, we consider

a textbook TIP (Demana et al. 2010):

tan(2 · x) =
2 · cos(π2 − x) · cos(x)

1 − 2 · sin2(x)
. (1)

Demonstrating the validity of such a tautology may require
the application of algebraic tautologies (e.g., x · x = x2,
(1/x)

2
= 1/x2) and trigonometric tautologies which stu-

dents are often asked to memorize (e.g., cosx = 1/ secx,
cos2 x + sin2 x = 1, etc.). Students then decide whether to
fix the left hand side (LHS) of the tautology as the start ex-
pression s with the goal expression g being the right hand
side (RHS) of the tautology (or vice versa). A solution to

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sample solutions to the trigonometric identity
problem from Equation 1.

the TIP is then a sequence of manipulations of the tauto-
logical expressions beginning with s and ending with g.
For example, a student may identify tan 2x (LHS of Equa-
tion 1) as the start expression. Then, as shown in Figure 1
with the solid, downward directed edges, the student may
initiate a sequence of substitutions with the intent to derive
g =

2·cos(π
2 −x)·cos(x)

1−2·sin2(x) . Each tautological expression in the
solution path of a TIP is substantiated using the ‘known’ al-
gebraic or trigonometric tautology that was used as the basis
for a substitution; e.g., applying tan γ → sin γ

cos γ results in
tan 2x = sin 2x

cos 2x in Figure 1.
Difficulty. We measure the difficulty of a TIP by com-

puting the cumulative difficulty of the constituent steps in
a solution path. A solution to a TIP begins with a start ex-
pression, either LHS or RHS and identifies a sequence of
steps from the start to goal (or vice versa). These choices im-
pact perceived problem difficulty. Our first step in measuring
problem difficulty is to assess the difficulty of the individual
expressions in a shortest solution. We first compute domain

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

445

specific characteristics: such as the depth of nested divisions
(e.g., 1/[1/ sin γ] is depth 2) or the presence of an abso-
lute value or coefficient (e.g., sin 2γ). Second, we compute
characteristics of its syntax tree representation (e.g., height,
width, number of operators, etc.).
The second difficulty step assesses the relative difficulty

of a solver moving from one trigonometric expression (TE)
to another. If a and b are TEs such that a can be derived from
b using a single step (and vice versa), we compute the rela-
tive difficulty as a combination of the difficulty of both ex-
pressions and the substitution step. Last, we assess the over-
all difficulty of a problem as the sum of the transitions in a
corresponding solution.
As an example, consider Figure 1. We label the diffi-

culty of each individual TE node as well as each directed
edge between nodes. Specifically, we observe a difficulty of
tan 2x as 2.0625 and sin 2x

cos 2x as 4.3125. Each edge has a per-
ceived difficulty in the range [1, 5] where 1 is considered
easiest to apply when solving and 5 is most difficult. We
then compute the edge difficulty using a trapezoidal method
1
2 (2.0625 + 4.3125) · 1 = 3.1875 where 1 is the perceived
difficulty of applying tan 2γ ← sin γ

cos γ or tan 2γ → sin γ
cos γ .

Generating problems. Given a query Q defining diffi-
culty threshold (or a default value) for a TE, our approach to
generating TIPs and their solutions exhaustively considers
the set of trigonometric identities and a subset of algebraic
identities common in solving this type of problem. Given a
TE and the set of trigonometric and algebraic identities, we
substitute to construct a set of TEs, repeating this process
until other factors in Q (e.g., maximal number of steps, etc.)
indicates we cease substituting and return a TIP.

2 Limitations of Notable Prior Work

Singh, et al (Singh, Gulwani, and Rajamani 2012) proposed
a technique for generating ‘algebra’ problems. Their tech-
nique consists of abstracting a problem into a query Q (a
structural template). Given the query, they use random test-
ing to generate all permutations of problems with the same
structure. This technique, while noteworthy, does little to
generate unique and interesting problems for students be-
yond standard textbook structures. (Singh, Gulwani, and Ra-
jamani 2012) state that the trigonometric identity problem

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA (2)

leads to 8 similar generated problems. Since each of the 8
TIPs are structurally identical, their corresponding solutions
evidence similar algebraic and trigonometric deductions at
each step. Thus, it is possible for a student to memorize a
solution path inherent in the structure of a problem.
This mastery approach to teaching and learning can be ef-

fective in educating students requiring strong repetition, but
it does not facilitate student learning beyond textbook struc-
ture. Our work attempts to build on (Singh, Gulwani, and
Rajamani 2012), accomplishing three distinct goals with re-
spect to TIPs. First, we generate TIPs with unique structures
and thus unique problem templates (queries in the parlance

Table 1: Known Trigonometric Identities with Examples.
Classification Example Known Identities

Tangent / Cotangent tan γ = sin γ
cos γ

Reciprocal cos γ = 1
sec γ

Pythagorean sin2 γ + cos2 γ = 1

Even / Odd
cos(−γ) = cos γ,
sin(−γ) = − sin γ

Double-Angle
sin 2γ = 2 sin γ cos γ,
cos 2γ = cos2 γ − sin2 γ

Half-Angle sin γ
2
= ±

√
1−cos θ

2

Sum and Difference
cos(γ ± ν) =
cos γ cos ν ∓ sinγ sin ν

Product to Sum
sin γ sin ν =
1
2
[cos(γ − ν)− cos(γ + ν)]

Co-Function cos
(
π
2
− γ) = sin γ

Product to Sum
sin γ + sin ν =
2 sin(1

2
(γ + ν)) cos(1

2
(γ − ν))

of Singh, et al.). Second, our problem generation system op-
erates by way of a query system where the user can input
the level of difficulty, desired trigonometric identities, and
algebra rules. Third, we empirically show that solving TIPs
is strongly related to the algebra skills of the solver.

3 Representation

3.1 Expressions, Problems, and Solutions

We assume a mathematical expression is consistent with the
rules of algebra (i.e., associativity, distributivity, etc.) over
the standard mathematical operators: multiplication, divi-
sion, addition, subtraction, and exponentiation. We consider
an individual TE such as tan 2x in Figure 1.
Definition 1 (Trigonometric Expression). A trigonometric
expression is a mathematical expression explicitly or implic-
itly involving a trigonometric function (sine, cosecant, etc.).
Both the LHS and RHS of Equation 2 are TEs explicitly

using trigonometric functions. Whereas, non-coefficient in-
teger constants such as 1 implicitly define a TE and occur
in isolation (e.g., sinγ +cos2 γ = 1) or in many ‘standard’
identities such as 1/ sin γ or 1 + tan2 x = sec2 x.

As described in Section 1, a TIP consists of two tautolog-
ical TEs stated using the overloaded equals operator: � = r.
A solution then derives a sequence of tautological steps be-
tween � and r by applying known trigonometric identities
and algebraic tautologies. We will refer to this set as known
identities; trigonometric examples are given in Table 1. Most
TIPs have many solutions of varying perceived levels of dif-
ficulty; therefore, we define such a problem alongside a so-
lution.
Definition 2 (Trigonometric Identity Problem). A trigono-
metric identity problem is a tuple 〈�, r〉 expressed as a state-
ment of the form � = r where � and r are tautological
trigonometric expressions.
Definition 3 (Trigonometric Identity Problem Solution). A
solution to a trigonometric identity problem p = 〈�, r〉 is
a sequence of tautological expressions �, t1, . . . , tn, r or the
reversed sequence r, tn, . . . , t1, �.

446

Two adjacent TEs in a solution are tautological rewritings
of one another; thus, each rewriting is bi-directional. Hence,
a student might solve the TIP in Equation 1 using any of
the four solution paths depicted in Figure 1; there are other
solution paths not depicted. We can capture all solutions to
a given TIP (and more) in a graph.
Definition 4 (Trigonometric Expression Graph). A trigono-
metric expression graph G is a directed graph G = (T,E)
where T is a set of TEs and each edge (a, b) ∈ E is mapped
to a known identity facilitating the rewriting from a ∈ T to
b ∈ T : π : E → K where K is the set of known identities.
We link Definition 3 and Definition 4 noting that a solu-

tion to a TIP is a path in a corresponding graph; we omit
proofs to our lemmas as trivial.
Lemma 3.1 (Solution and Path Correspondence). For a
trigonometric identity problem p = 〈�, r〉 and a solution to
p consisting of n+2 nodes S = �, t1, . . . , tn, r is a bijection
onto a path in a trigonometric identity graph G = (T,E).

Definition 4 defines a super-structure that may contain
many TIPs. We define a more restrictive structure contain-
ing only tautological expressions.
Definition 5 (Tautological Trigonometric Expression
Graph). A tautological trigonometric expression graph G is
a trigonometric expression graph in which all trigonometric
expressions corresponding to nodes in G are tautologies.
We make two claims about the relationship between a

trigonometric expression graph (TEG) and the more restric-
tive tautological TEG due to the fact that tautological ex-
pressions form an equivalence class.
Lemma 3.2. Each disconnected component of a trigono-
metric expression graph is a tautological trigonometric
expression graph. A tautological trigonometric expression
graph consists of a single strongly connected component.
We build on the previous definitions to incorporate per-

ceived complexity of TIPs by annotating TEGs. We say that
a difficulty descriptor d ∈ D is an aggregate structure com-
posed of values describing elements of assessed difficulty. A
difficulty-based trigonometric expression graph G = (T,E)
is a trigonometric expression graph in which all nodes in T
map to a difficulty descriptor: δT : T → D. Similarly, all
edges in E map to a difficulty descriptor: δE : E → D.

4 Difficulty Model

4.1 Difficulty of Trigonometric Expressions

We compute a perceived difficulty of a TE as an average of
four measures in the range [0, 10]; each measure is bounded
above by 10 so one measure does not skew the overall diffi-
culty of a TE.
Measure 1: Trigonometric Function Count. Each of the

basic trigonometric functions (sine, cosine, tangent) are as-
signed a weight of 2 for each occurrence while reciprocal
functions (cosecant, secant, and cotangent) are perceived to
be more complex and receive a weight of 3 for each occur-
rence. We compute the sum of the weights for a TE t. For
example, tan 2x from Equation 1 has measure 2 for one oc-
currence of tangent.

Table 2: Sample crowdsourced difficulty measures: [1, 5].

Measure 2: Multiple Angles. We consider a scalar s in
a TE such as tan sγ. If s < 0 (e.g., sin(−γ)), we assess a
score of 2 since a known odd / even identity (see Table 1)
may need to be applied. If s is power of 2 (i.e., s = 2n for
some integer n >= 1), then the TE such as cos 2γ is ex-
pandable by a double-angle identity (Table 1). In this case,
we assess a score of 2s. Similarly, if s = 2n for some inte-
ger n < 0, then a half-angle identity (Table 1) applies: we
assess a score of 1

2s . If |s| < 1 and is not a power of 2, the
expression is considered to already be in simplest form and
is measured at 2. For |s| > 1 where s is not a power of 2, we
may use a multiple-angle identity or sum / difference iden-
tity (Table 1) assigning a weight of 2s. For example, we may
rewrite cos 6γ as cos(2 · 3γ) or cos(2γ + 4γ).
Measure 3: Algebraic Functions and Operators. TIPs

and their solutions may include absolute value or exponen-
tials. We count the number of occurrences n of absolute
value and weight n = 1 ⇒ 5, n = 2 ⇒ 8, n = 3 ⇒ 9,
n = 4 ⇒ 9, and n ≥ 5 ⇒ 10. For exponentials of the
form sins γ, we base the weight on the value of s. Specifi-
cally, squaring is common (s = 2 ⇒ 2) while square roots
(s = 1

2 ⇒ 6) are less common. For all other cases, if s > 1,
the expression results in a score of 5; if s < 1, it scores 10.
Measure 4: Trigonometric Expression Structure. We

represent each TE as a syntax tree maintaining operator
precedence and associativity. We first average the height and
width of the syntax tree. Second, we sum the number of
operands (tree leaves) and the depth of nested divisions. For
example, 2·cos(π

2 −x)·cos(x)
1−2·sin2(x) contains 7 operands and a nested

division depth of 2 since π
2 is a subtree of two operands

rooted with division. The two values are then averaged as
the overall measure of TE structure.

4.2 Step-Based Problem Difficulty

A solution to a TIP is a sequence of tautological steps; each
transition (step) with a perceived level of difficulty. For a
difficulty-based TEG G = (T,E) with (a, b) ∈ E, we com-
pute the difficulty transitioning from a to b using a trape-
zoidal area method: δE((a, b)) = 1

2 [δT (a) + δT (b)] ·d(a,b)
where d(a,b) refers to a perceived difficulty measure; exam-
ples of perceived difficulty are given in Table 2 and are de-
scribed in Section 7. As depicted in Figure 1, we compute
δE

(
tan 2x, sin 2x

cos 2x

)
= 1

2 (2.0625 + 4.3125) · 1.0 = 3.1875.
Due to perceived difficulty, it is not always the case that
d(a,b) = d(b,a): cos2 γ + sin2 γ → 1 is common while it
is counter-intuitive when to apply 1 → cos2 γ + sin2 γ.

447

Figure 2: Syntax of the query language.

Solution Difficulty. Let p = 〈�, r〉 be a TIP along with
a corresponding difficulty-based trigonometric expression
graph G = (T,E). Also let S be a shortest path solution
to p in G consisting of n − 1 steps: S = t1, . . . , tn where
� = t1 and tn = r. We compute the overall difficulty of
p with shortest solution S as a sum of the difficulty of the
edges in S: δ (p, S) =

∑
1≤i<n δE((ti, ti+1)).

Since S is a solution to p, it follows that the reversed se-
quence Sr = tn, . . . , t1 is also a solution. Due to perceived
difficulties, it is unlikely δ (p, S) = δ (p, Sr). For example,
the left path in Figure 1 has ‘downward’ difficulty 50.7035
while it has a reversed difficulty of 53.5745.
Problem Difficulty. A TIP may have multiple shortest

path solutions; Figure 1 depicts two bi-directional shortest
path solutions.We say the difficulty of a problem p, δ (p),
is the minimum difficulty across all shortest path solutions
(and their reversals) to problem p.

5 Query Language

The space of tautological TEs is infinite; therefore, we define
a query language to prune the space and focus generation of
problems that are more likely to be of interest to the user.
As shown in Figure 2, a query Q is a tuple consisting of (1)
a TE (terminal te in the grammar), (2) a set of known iden-
tities or expressions to be included in the resulting problem
(InclConstrs), (3) a set of known identities or expres-
sions to be omitted from a problem solution, and (4) a set
of difficulty-based constraints (DConstrs), The result of
such a query will be a TIP.
The first element in a query Q is a fixed trigonometric

expression te that will be used as stimulus for problem gen-
eration. If the user does not provide an expression, an ex-
pression will be drawn from existing database of TEs. For
example, any of the TEs in Figure 1 could be used to gener-
ate the TEG containing the problem in Equation 1.

Q can state which known trigonometric identities may or
must be involved in the TIP (InclConstrs). A Must re-
quest may come with a cost. If a user requires a known iden-
tity k be used in a problem, it requires that all solution paths

Figure 3: λ pattern matching k ≡ cos(γ − ν) →
cos γ cos ν + sin γ sin ν to TE t = cos

(
π
2 − x

)
resulting

t′ = cos π
2 cosx + sin π

2 sinx.

contain the use of k. For example, all solutions to the TIP in
Equation 1 use the known identity tan γ = sin γ

cos γ . Hence,
Equation 1 could be generated if Q contained tan γ =
sin γ
cos γ in the InclConstrs.Must list. Whereas Equation 1
could be generated if Q contained cos

(
π
2 − γ

)
= sin γ in

the InclConstrs.May list. To facilitate solution genera-
tion of a particular TIP p, the user can include both the LHS
and RHS of p in InclConstrs.Must.
Since a tautological TEG is a strongly connected compo-

nent, a non-empty InclConstrs.Must set of constraints
can be difficult to enforce in practice. Instead, Q can define
a list of known identities that may appear in a shortest path
solution to the problem, InclConstrs.May.

Similarly, the user can specify known identities that may
(May) or must (Must) be excluded (ExclConstrs). In
addition, the user also has the ability to request that a par-
ticular algebraic structure may be omitted in a problem. For
example, the user might specify that factoring a quadratic
expression or simplifying nested division should not be re-
quired. Since our techniques target mastery of trigonometric
identities, we do not allow the user to define algebraic con-
straints that must not occur in the resulting problem.

Q allows the user to define difficulty-based constraints
(DConstrs) as a means of pruning the space of TIPs by
specifying problem-based constraints. If the user fails to de-
fine these constraints, default values are enforced (indicated
using ← in Figure 2). For example, the user can restrict the
number of known algebraic identities or trigonometric steps.

6 Problem and Solution Generation

We generate problems on-demand with an input query Q.
We segment Q into two types: TEG generation information
(Q.TrigExpr, Q.Dconstrs) and problem generation in-
formation (Q.InclConstrs, Q.ExclConstrs).
Applying known identities. Generating a TEG relies on

an operation that takes a TE t and transforms it into TE t′
by way of applying a known identity. We do so using a tech-
nique similar to applying transformations in λ-calculus. For
example, we may apply the known identity k ≡ sin γ

cos γ →
tan γ to t = sin 2x

cos 2x . However, applying k requires we must
recognize γ in k corresponds to 2x in t. The result of this
pattern matching operation is t′ = tan 2x.
In general, our structural, λ-pattern matching algorithm

for applying known identities to TEs proceeds as follows.

448

Let k be a known identity with a corresponding syntax
tree representation for the LHS and RHS, stLHS(k) and
stRHS(k), respectively. Let t be a TE with syntax tree stt.
We traverse the internal (non-leaf) nodes of stt seeking a
node c that equates to the root of stLHS(k) (e.g., cosine root
nodes in Figure 3). Once c is found, our goal is then to tra-
verse simultaneously both stLHS(k) and the subtree rooted
at c in stt as long as nodes containing non-free variables
directly correspond; when correspondence fails, applying k
fails. Once we encounter a node in stLHS(k) corresponding
to a free variable (e.g., γ in Figure 3), we bind that free vari-
able to the corresponding subtree in stt. In Figure 3 we bind
γ to π

2 and ν to x. Once our free variables are bound, we
can perform the substitution on bound variables in stRHS(k)

acquiring t′ = cos π
2 cosx + sin π

2 sinx in Figure 3.
Trigonometric Expression Graph Generation.We con-

struct a TEG G using a breadth-first approach beginning
with a stimulus TE ts = Q.TrigExpr being the the ‘cen-
ter’ of G. If ts = nil, we look up a TE in a database. We
expand outward from t radially using the distance, r, from t,
until the radial distance is half the maximum number of steps
specified by Q.max steps = Q.max algebra steps
+Q.max trig steps. Our main iteration step takes a pair
(t, r) consisting of a TE in G and its distance from ts from
a worklist of unprocessed pairs. We then sequentially apply
all known identities, k ∈ K using our λ pattern matching
to t. If applying k to t results in a TE t′ not filtered out by
Q, we (1) add t′ one radial distance away from t to G (with
appropriate edges) and (2) add the same pair to the worklist.
Generation. Let G be a TEG. Our first step in problem

generation identifies the set of tautological TEGs (strongly
connected components) of G, G. Problem generation then
chooses any two non-adjacent nodes in any Gt ∈ G (guar-
anteeing all problems require at least two steps to solve).
Assume a query Q is defined with restrictions on problem
generation: steps, difficulty, etc. For a tautological TEG Gt

we compute the difficulty of all nodes and edges resulting in
a difficulty-based tautological TEG, Gdt. Then, for Gdt, so-
lution generation identifies the set of shortest path solutions
S among all non-adjacent pairs of nodes in Gdt. We then
filter S according to the constraints defined by Q.

7 Experiments

We are foremost interested in demonstrating the utility of
our approaches by solving and analyzing the difficulty of
problems found in textbook. Second, we describe some
queries and results for problem generation. We first describe
our difficulty-related experimental assumptions.
Crowdsourced Step Difficulties. As described in Sec-

tion 4, difficulty of each step in a TIP solution is based on
the perceived difficulty of applying a known trigonometric
identity to a TE. To generate these perceived difficulties, we
constructed a survey consisting of 46 known trigonometric
identities (a sample is shown in Table 1). The survey pre-
sented each known trigonometric identity twice, once for
each direction in a randomly permuted order as � → r or
r ← �. Each of the 24 faculty (3) and undergraduate stu-
dents (21) participants who satisfactorily completed the sur-

Figure 4: Problem number compared to problem difficulty.

Table 3: Statistics of our 90 problem corpus.

n = 90
Alg.
Steps

Trig
Steps

Total
Steps

Prob.
Diff.

Avg.

Prob.

Diff.

Abs.

Cumul.

Change

in Diff.

Min 1 0 2 10.43 3.24 0.5
Median 3.5 2 6 36.42 6.84 4.78
Max 10 6 14 128.63 11.1 10.63
Mean 4.11 2.36 6.47 44.28 6.67 4.83
Std Dev 2.10 1.34 2.83 26.21 1.85 2.51

vey were asked to classify each known identity transition on
a scale of 1 being the easiest to recognize and apply while
5 is the most difficult. We averaged the survey responses as
the perceived difficulty of known, directional trigonometric
identities; see Table 2.
Known Algebraic Identities. Solutions to most TIPs re-

quire algebra to solve. For example, showing 1 − 2 sin2 x
is a tautology with (cosx − sinx)(cosx + sinx) requires
factoring a difference of squares: algebraically, γ2 − ν2 =
(γ −ν)(γ+ν). As our goal is to assess the relative difficulty
of applying known trigonometric identities, we fixed the dif-
ficulty of all known algebraic identities to be 2, admittedly
losing some nuance in assessing difficulty.
Solving. As a baseline, we verified that our techniques

successfully solve textbook problems. Using a corpus of
90 TIPs from seminal mathematics textbooks (Demana et
al. 2010; Stewart, Redlin, and Watson 2015), we defined a
query Q with maximum problem steps 14, maximum prob-
lem difficulty 130, maximum trigonometric steps 8, and a
subset of size 30 known identities of the 46 from Table 1. In
order to focus the search of the solution space, for each in-
dividual problem p = 〈�, r〉, we defined Q.TrigExpr and
executed Q with either � or r chosen randomly (with both �
and r as elements of InclConstrs.Must). With this set
of constraints, we successfully identified a shortest path for
all 90 TIPs; Table 3 gives summary statistics of our corpus.

We enumerate some interesting pedagogical results with
respect to our corpus of textbook problems. (1) One prob-
lem did not require any trigonometric identity to solve. (2)
With mean 4.11 algebra steps compared to 2.36 trigonomet-
ric steps per TIP, we state with confidence that TIPs assess
student algebra skills more thoroughly than their knowledge

449

of trigonometry. (3) Students and educators often align their
view of textbook problem difficulty with problem number:
the later the problem appears, the more difficult it will be rel-
ative to the previous problems. To investigate, we took an or-
dered sequence of 51 problems from one section of (Demana
et al. 2010) and plotted their problem numbers against their
difficulty as shown in Figure 4. We note that these 51 prob-
lems were taken from two non-adjacent ‘groupings’ of prob-
lems in the text; however, the instructions indicated a con-
tinuation thus it was fair to investigate the problems a sin-
gle grouping of problems. Although the distribution shows a
positive correlation, it is not strong; this implies some refine-
ment of our difficulty model is required and / or sequencing
TIPs based on difficulty is not likely to be the case. (4) The
absolute cumulative change in difficulty in Table 3 refers to
the sum of the (absolute) changes between the difficulty of
each TE in a shortest solution path. Figure 4 indicates that
the distribution of absolute change is approximately normal
(mean 4.83 and median 4.78). We observe Figure 1 solves a
‘typical’ problem and has absolute change 4.1875 and thus
conclude that most TIP solutions have changes in difficulty
commensurate with Figure 1.
Problem generation. Using the average textbook prob-

lem number of steps 6.47, we executed a sequence of 10
queries with Q.TrigExpr set to different stimulus expres-
sions such as cscx − sinx and tan x

sec x and the maximum
number of steps set to 6. The result was an average of
1844 (std. dev. 1028.54) problems. As an example, from
tan x
csc x ,

tan x

(1
cos2 x

−tan2 x)· 1
sin x

was generated. While the struc-

ture of the resulting expression does not conform to textbook
structures, the problem is reasonable in terms of difficulty
(16.17) taking only 3 steps. Such unique problem structures
is not a strength of textbook problems. Coupling together
our techniques to generate problem templates with Singh, et
al. (Singh, Gulwani, and Rajamani 2012) would generate an
abundant number of problems.

8 Related Works

Etzioni, et al. (Clark, Etzioni, and et al. 2019; Koncel-
Kedziorski et al. 2015; Seo et al. 2015) have worked toward
NLP understanding, diagrammatic reasoning, and solving of
problems in Aristo. In (Clark, Etzioni, and et al. 2019) they
describe their path toward addressing their grand challenge
of passing Grade 8 NewYork Regents science exam. Our ap-
proach does provide a means of solving TIPs via our query
language. However, our central contribution is a template
generation procedure via substitution along with problem
and solution generation. We also propose a schema for clas-
sifying the difficulty of a particular class of problems based
on user sentiment of rules as opposed to crowd-sourced dif-
ficulties for a specific corpus of problems.
O’Rourke et al. (O’Rourke et al. 2019) proposed an an-

swer set programming (ASP) model to generate practice
problems and intelligent explanations of problems requir-
ing students to solve algebraic equations. In some respects,
edges in our TEGs mimic the underlying if-then production
rules of the O’Rourke model thus providing a foundation for
future work. Our goal is not to generate step-by-step expla-

nations, although that is possible, our goal is to foster greater
diversity in generated TIPs. We feel (O’Rourke et al. 2019)
lays the groundwork for ASP models with more complex
problems. Trigonometry is a richer area since it relies on
such algebraic knowledge, but prohibits using solving tech-
niques (mixing the LHS and RHS of a TIP). TIPs are solved
via a path of substitutions; the decision making surrounding
those substitutions often being complex.

9 Conclusions and Future Work

Using a rule-based substitution technique, we have gener-
ated trigonometric identity problem solutions and problem
templates based on user query. We have formalized a trape-
zoidal model for computing step-based difficulty in prob-
lems in concert with crowdsourced perceptions of difficulty.
Our query-based approach proved to be efficient and effec-
tive in solving TIPs and generating such problems. Our tech-
nique can be used to assist educators with greater variety in
problem structures thus assisting students in their learning.
We believe our technique is applicable beyond the class of
TIPs extending to any problem solvable using a strict, rule-
based rewriting system. Future work includes abstracting
our approach to a difficulty-based meta-model using Knuth-
Bendix completion (Knuth and Bendix 1983).

10 Acknowledgements

This work was supported by the Furman University Depart-
ment of Computer Science and The Furman Advantage.

References

Clark, P.; Etzioni, O.; and et al. 2019. From ’F’ to ’A’ on
the N.Y. regents science exams: An overview of the aristo
project. CoRR abs/1909.01958.
Demana, F.; Waits, B.; Foley, G.; and Kennedy, D. 2010.
Precalculus: Graphical, Numerical, Algebraic. Pearson, eighth
edition.
Knuth, D. E., and Bendix, P. B. 1983. Simple Word Problems in
Universal Algebras. Berlin, Heidelberg: Springer Berlin Hei-
delberg. 342–376.
Koncel-Kedziorski, R.; Hajishirzi, H.; Sabharwal, A.; Et-
zioni, O.; and Ang, S. D. 2015. Parsing algebraic word
problems into equations. TACL 3:585–597.
O’Rourke, E.; Butler, E.; Tolentino, A. D.; and Popovic, Z.
2019. Automatic generation of problems and explanations
for an intelligent algebra tutor. In Artificial Intelligence in Ed-
ucation - 20th International Conference, AIED 2019, Chicago, IL,
USA, June 25-29, 2019, Proceedings, Part I, 383–395.
Seo, M. J.; Hajishirzi, H.; Farhadi, A.; Etzioni, O.; and Mal-
colm, C. 2015. Solving geometry problems: Combining text
and diagram interpretation. In EMNLP, 1466–1476.
Singh, R.; Gulwani, S.; and Rajamani, S. K. 2012. Auto-
matically generating algebra problems. In AAAI.
Stewart, J.; Redlin, L.; and Watson, S. 2015. Precalculus:
Mathematics for Calculus. Cengage Learning, 7th edition.

450

