
The Effects of Open Self-Explanation
Prompting During Source Code Comprehension

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Vasile Rus
Department of Computer Science, Institute of Intelligent System

University of Memphis, Memphis, TN, USA
{ljtamang, zlshaikh, ntkhynyn, vrus}@memphis.edu

Abstract

This paper reports the findings of an empirical study on the
effects and nature of self explanation during source code
comprehension learning activities in the context of learning
computer programming language Java. Our study shows that
self explanation helps learning and there is a strong posi-
tive correlation between the volume of self-explanation stu-
dents produce and how much they learn. Furthermore, self-
explanations as an instructional strategy has no discrepancy
based on student’s prior knowledge. We found that partici-
pants explain target code examples using a combination of
language, code references, and mathematical expressions.
This is not surprising given the nature of the target item, a
computer program, but this indicates that automatically eval-
uating such self-explanations may require novel techniques
compared to self-explanations of narrative or scientific texts.

Introduction

Computer Science (CS) education is critical in today’s world
where computing skills, such as computer programming,
have become an integral part of many disciplines, includ-
ing the fields of science, math, engineering, and technol-
ogy. Although such skills are in high-demand, and the num-
ber of aspiring CS students is encouraging, a large gap
between the supply of CS graduates and demand persists.
For example, college CS programs suffer from high at-
trition rates (30-40%, or even higher) in introductory CS
courses (e.g., CS1 and CS2) (Guzdial and Soloway 2002;
Beaubouef and Mason 2005; Wilson 2010).

One reason for the high attrition rates in CS1 and CS2
courses is the inherent complexity of CS concepts and
tasks (Du Boulay 1986; Morrison, Margulieux, and Guzdial
2015). Programming is a highly complex process involving a
multitude of cognitive activities and mental representations
related to problem understanding, programming methods,
program design, program comprehension, change planning,
debugging, and the programming environment. (Morrison,
Margulieux, and Guzdial 2015) argue that using textual lan-
guages (to name and keep track of variables and handle re-
lated processes) while at the same time understanding and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

controlling an external agent (i.e., the computer) involves a
level of complexity not seen in science, math, or engineer-
ing. Thus, it is not surprising that many students in introduc-
tory programming courses feel overwhelmed.

This work is part of a project whose aims are to de-
velop effective and engaging instructional interventions to
improve comprehension and learning in introductory Com-
puter Science courses at college level, to reduce attrition
rates and increase retention, and to ultimately produce more
and better-trained graduates. The result will be a win-win-
win situation for aspiring students, CS programs and their
organizations, and the overall economy. Furthermore, the
plan is to incorporate these effective and engaging interven-
tion in advanced education technologies such as intelligent
tutoring systems (ITSs), such as, (Rus et al. 2019).

One of the working hypothesis of our project is instruc-
tional strategies such as eliciting self-explanations will re-
sult in mental models that are more accurate, which in
turn will positively impact comprehension, learning, self-
efficacy, and retention (Chi et al. 1994; Best et al. 2005;
Ramalingam, LaBelle, and Wiedenbeck 2004). The posi-
tive role of self-explanations is well documented for science
learning but less so for computer programming learning.
Therefore, our work fill this gap by answering the follow-
ing broad research questions:
• Role of Self-Explanation: Does self-explanation help in

learning of computer programming? Is there any relation-
ship between the volume of self-explanation generated by
learners and their learning gains? Does self-explanation
as teaching strategy has discrepancy in teaching low and
high prior knowledge student?

• Nature of Self-Explanation: How exactly do students ex-
plain source code? Are there any peculiarities and major
differences compared to self-explanations of, say, narra-
tive or scientific texts?
Understanding the role of self-explanation during source

code comprehension could provide an effective instruc-
tional strategy for addressing the high-attrition rates in in-
troductory computer programming courses. Additionally, by
studying the nature of self-explanations during source code
comprehension instructional activities will enable us to un-
derstand the challenges that need to be addressed in order to

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

451

develop methods to automatically assess student responses
during such code comprehension activities. This in turn will
enable the development of intelligent tutoring systems that
could implement self-explanation elicitation strategies, au-
tomatically evaluate students’ responses based on which
tailored feedback and support could be provided to each
learner. The preliminary results presented in this paper are
the first step towards understanding the effectiveness and the
nature of self-explanations students generate during source
code comprehension activities and for building fully auto-
mated intelligent tutoring systems to help students in intro-
ductory to computer programming courses.

Background and Related Works
Self-explanations are learner-generated explanations of
learning materials (McNamara and Magliano 2009; Crip-
pen and Earl 2004; Van Merriënboer and Sluijsmans 2009;
Roy and Chi 2005). Self-explanations usually include meta-
cognitive statements, e.g., learners’ own judgment of their
level of understanding, and inferences based on the infor-
mation from the learning materials and learners’ own knowl-
edge. According to Roy and Chi (Roy and Chi 2005), sev-
eral cognitive mechanisms are involved: generating infer-
ences to fill in missing information, integrating information
within the learning materials, integrating new information
with prior knowledge, and monitoring and repairing faulty
knowledge. The mix of self-assessment and inference leads
to improved understanding, more coherent mental models,
and better learning compared to activities of learning where
students, for instance, just read the instructional materials.

There are three major types of self-explanations: spoken
or thinking out loudly, typed or written down, and silent re-
flection. The first two types are widely used. In the think-
ing out loudly type of self-explanations, the learner thinks
aloud about the instructional materials presented to them
(McNamara 2009). This type of self-explanation has been
found to benefit proficient readers in general compared to
less proficient readers (Muñoz et al. 2006). For written self-
explanation, learners write down their thoughts while en-
gaging with a particular learning material such as reading
scientific texts to understand and learn target concepts or
while trying to solve a problem(Muñoz et al. 2006). This
form of self-explanation has been found to be more suit-
able for learners who have difficulty with demanding read-
ing tasks such reading of scientific texts that requires a
higher cognitive load (as opposed to less demanding read-
ing tasks such as reading narrative texts). In our case the
instructional material is computer code which we can make
an argument it is more demanding than reading scientific
texts. Indeed, Computer Science is considered even higher
than science and math when it comes to cognitive load. For
this reason that understanding source code requires a high
cognitive load, we opted for the written-down type of self-
explanations. Importantly, written or typed self-explanations
were shown to enable readers to make more inferences, e.g.,
bridging inferences that links a target instructional material
to prior knowledge, as opposed to text-bound processes such
as paraphrases (Muñoz et al. 2006). In particular, when typ-
ing their explanations of science texts less skilled readers

were more inclined to make bridging inference compared to
speaking self-explanations. Typing seems to afford readers
more time to reflect and access and express their thoughts.
Our work here contributes to this line of research by explor-
ing the role of typed explanations for a novel task: source
code comprehension.

Despite the fact that self-explanation are found to improve
the construction of mental models (Chi et al. 1994; Rama-
lingam, LaBelle, and Wiedenbeck 2004), very few studies
have been conducted to investigate the effectiveness in do-
ing so. A series of studies (Recker and Pirolli 1990; Pirolli
and Recker 1994; Bielaczyc, Pirolli, and Brown 1995) found
that self-explanations help learning Lisp programming con-
cepts (their experimental population was undergraduate stu-
dents). While they found that skill improvement had strong
correlation with the amount of self-explanation generated,
they also noted that the type of explanation also accounts
for the improvement in performance: explanations of high
performing students were much more structured into goal-
based episodes compared to those of low performing stu-
dents. This suggests that analyzing in more depth the nature
self-explanations could help us better understand their im-
pact on performance and how that impact is mediated by
other factors such as students’ prior knowledge. We inves-
tigated in the study reported here both the effectiveness of
self-explanations and their nature.

Study with undergraduate(Rezel 2003) and high
school(Alhassan 2017) students found that students who
used self explanations while studying worked out examples
were more successful at a program construction task (Visual
Basic) compared to those who did not apply it. Further
studies for JavaScript(Kwon and Jonassen 2011), HTML
(Kwon, Kumalasari, and Howland 2011) and assembly lan-
guage(Hung 2012) also found that self-explanations helped
in learning programming. Our work contributes to this
line of research on the role of self-explanation in learning
JAVA programming. Furthermore, most notably all of the
programming languages studied in the past are procedural
language while we study JAVA which is Object Oriented
Programming Language. To the best of our knowledge,
there are no studies on the role of self explanations to learn
Java.

Experimental Setup
Our goal was to study both the role of self-explanations dur-
ing program comprehension tasks as well as the nature of
self-explanations. For this reason, our experiment was so de-
signed to collect self-explanations from all participants. On
the other hand, to study effectiveness of self-explanations,
it was necessary that some participants worked on code ex-
amples with self-explanation and others without it so that
we can see the effect of the strategy on students’ learning.
To balance both needs, we randomly assigned participants
to one of the following two experimental groups.

Self-Explanation First: Participants in this group inter-
acted with an online system that showed them 4 code exam-
ples in Java. For each such code example, participants were
prompted to predict its output and explain their thinking in
writing. Then, they were shown another 4 code examples

452

for which they were simply asked to predict the output of
the code examples (no explanation, just prediction).

Prediction First: Participants in this group followed the
same procedure as the participants in the Self-Explanation
First condition except the order of the prediction and self-
explanation tasks was switched. That is, participants were
asked to just predict the output of 4 code examples first.
Then, they were shown 4 additional code examples for
which they are asked to also explain the shown code exam-
ples.

It should be noted that we focus on open self-explanations
as opposed to supported/scaffolded self-explanations. That
is, we simply encourage students to self-explain while read-
ing code examples without any further support, e.g., we do
not assess their self-explanations and do not provide feed-
back and hints in case they are any misconceptions detected
or the self-explanations are vague and incomplete. We opted
for the open self-explanation because we wanted to explore
the nature of students’ freely generated explanations, i.e.,
when they are simply encouraged to self-explain without
much guidance.

Materials

All participants first provided answers to a background ques-
tionnaire and then took a pretest (6 code examples for which
they had to predict the output). After that, each partici-
pant was randomly assigned to one of the two experimental
groups described above. At the end, all participants took a
posttest (predict the output of 6 Java code examples). The
pretest and postest were not identical but they were equiv-
alent in term of concepts tested and difficulty level. The
posttest was created from the pretest just by altering vari-
ables values or by minimal alternation of certain parts of the
code such as the condition of while or for loops. The main
programming concepts covered by the experiment were: op-
erator precedence, nested if−else, for loops, while loops,
arrays, creating objects and using their methods. Each of
these concepts were present in the code examples used in
the pretest, post-test, and the experimental tasks.

Participants

A total of 26 college students (7 female and 19 male) from
an urban university in Asia took part in the experiment. The
participants were briefed about the goal of the experiment
including the fact that they could solidify their programming
skills by participating in the experiment. The participants
were all volunteers and received a small compensation for
their participation in the experiment. All participants were
in the fourth semester of an undergraduate program in com-
puter science and had undertaken same courses in their prior
semesters. In addition, these participants have fair under-
standing of computer programming concepts as they took
C and C++ courses in prior semesters. However, they have
not taken JAVA course yet. Participants were randomly as-
signed to one of the two experimental groups using a group-
balancing approach (half of the participants were assigned
to one experimental condition and half to the other).

Procedure

The experiment was conducted in a computer lab in the pres-
ence of two experimenters. All the materials were shown
using a web-based system via browser. They were only al-
lowed to ask questions related to the experimental proce-
dure and the use of the web-based system. The participants
were first debriefed about the purpose and nature of the ex-
periment, and given a consent form. Upon their agreement,
they were shown the background survey followed by pretest.
Then, they worked on the main part of the experiment that
showed them prediction tasks and self-explanation tasks in
the order corresponding to the experimental group in which
they were randomly assigned. Finally, they worked on the
posttest. Participants could see all pretest and posttest ques-
tions while working on the corresponding sections. How-
ever, they were shown the prediction or self-explanation ex-
perimental tasks one at a time; they could proceed to the
next task only after they submitted the answer for the cur-
rent task. All participants’ responses and interactions were
automatically logged for post-hoc analysis.

Assessment

Each question/task was scored 1 if the answer was correct;
otherwise 0. This means the maximum score was 6 for the
pretest, 4 for the self-explanation tasks, 4 for the prediction
tasks, and 6 for the posttest. For each participant, we also
calculated the learning gain score as suggested by (Marx
and Cummings 2007). If posttest>pretest, gain = (posttest-
pretest)/(6-pretest). If posttest <pretest, gain = (posttest-
pretest)/pretest. If posttest=pretest= 0 or 6, drop the cases.
If posttest=pretest, gain = 0.

Results

Out of 26 participants, we dropped data from 3 participants
because they had a perfect score in both pretest and posttest.
Overall, participants had an average of 1.7 (SD/stddev = 1.5)
years of programming experience, 0.07 (SD = 0.31) years
professional programming experience, a score of 3.3/6 (SD
= 1.9) in pretest, and 3.87/6 (SD = 1.63) in postest. We also
computed their scores for the main experimental tasks. The
average score was 2.2 (SD = 1.53) for the 4 prediction tasks,
1.61 (SD = 1.37) and a learning gain score of 0.31 (SD
= 0.42), calculated as suggested by (Marx and Cummings
2007). More detailed analysis are presented below. All the t-
test applied below in our study met the standard assumptions
of t-test (continuous scale for dependent variable, random
sampling, independence of observations, normal distribution
and homogeneity of variance).

Role of Self-Explanation

The goal of our study was to test the hypothesis that self-
explanation helps both program comprehension and learn-
ing. Furthermore, we investigated whether the more partici-
pants self-explain the more they learn or not.

Does Self-Explanation enhance learning of core com-
puter programming concepts? To answer this question, we
first check equivalency between Prediction First and Self
Explanation First group in terms of their prior knowledge

453

Group N Mean SD t-val Sig.
Self Explanation 13 2.9 1.91 -1.31 0.20Prediction 10 3.9 1.92

Table 1: Independent sample t-test result of pretest scores
between Self-Explanation First and Prediction First groups.

Group N Mean SD t-val Sig.
Self Explanation 13 2.54 1.67 2.17 0.042Prediction 10 1.30 1.06

Table 2: Independent sample t-test result for the prediction
score for self-explanation first and prediction first group.

i.e. pretest score, by applying independent sample t-test.
The result in table 1 shows that groups are equivalent.
Now, to answer our question, we performed an independent-
sample t-test between Self-Explanation First and Predic-
tion First group to compare their prediction scores. The
results in table 2 shows that there is a statistically sig-
nificant difference in prediction score for self-explanation
first(M=2.54, SD=1.67) and prediction first group(M=1.3,
SD=1.06; t(20)=1.62, p=0.042). The magnitude of the dif-
ference in the means (mean difference = 1.24, 95% confi-
dence interval: 0.05 to 2.43) is large (Cohen’s d = 0.9) as
suggested by (Sawilowsky 2009).

Participants in Self-Explanation First group performed
(2.54-1.3)/4*100=31% better, as measured by prediction
score, than participants in the Prediction First group. An
analysis of covariance (ANCOVA) with experimental con-
dition as the grouping/factor variable and pretest score as
covariate also indicated that there was significant differ-
ence (F(1, 20)=5.093, p=0.035) in mean learning gains be-
tween the Prediction First and Self-Explanation First groups
while adjusting for pretest scores (prior knowledge). The
effect size is small (0.20). The order of the self explana-
tion can explain 20% of variance in learning gain.The bet-
ter performance of the former group can be attributed to
the Self-Explanation learning strategy. The participants in
Self-Explanation group first self-explained four tasks before
working on prediction tasks. The use of self-explanations
had both improved their learning and comprehension of
source code with positive effects on the prediction tasks. On
the other hand, the Prediction First group only used the self-
explanation strategy after they finished working on the pre-
diction tasks.

Is there a relationship between the amount of self-
explanation generated and learning gains? For this ques-
tion, we first analyzed the relationship between count of
content words (the most informative words such as nouns,
verbs, adjectives, and adverbs) and learning gains. The scat-
ter plot in figure 1 indicates a positive relationship between
content word count and learning gains. The relationship be-
tween self-explanation (as measured by content word count)
and learning gains was further investigated using a Pearson
product-moment correlation coefficient. We found a strong,
positive correlation between them, r = 0.62, n = 23, p =
0.001, with higher count of content words associated with

Figure 1: Scatter plot for content word and learning gain.

Group N Mean SD t-val Sig.
High Prior 11 0.36 0.58 0.49 0.63Low Prior 12 0.27 0.21

Table 3: Independent sample t-test result between the learn-
ing gains of high vs. low prior knowledge groups.

higher learning gains. Content word production helps to ex-
plain nearly 38 per cent of the variance in learning gains.

Is self-explanations biased towards students prior
knowledge? We divided the participants into two groups,
high and low prior knowledge, using the mean pretest score
of 3.3 as the cut-off value. Table 3 shows that the difference
in learning gain is not statistically significant for the groups;
thus, we did not found any such evidence of discrepancy of
the strategy based on student’s prior knowledge.

Nature of Self-Explanation

We found that nature of self-explanation in program compre-
hension varies a lot in terms of amount of self-explanation
generated by participants and how they talk about the code
examples shown. As indicated in table 4, participants on
average generated 3.52 sentences, 61.35 words, and 34.52
content words per self-explanation task. The amount of self-
explanation generated varies a lot; while some participants
did not self-explain at all (0 sent count - they simply pre-
dicted the output), others wrote 17 sentences, 148 content
words and 296 word.

Indeed, self-explanations vary widely. For instance, the
first self-explanation in Table5 in row 1 is very detailed and
long as opposed to the one shown in the row 4 which sim-
ply explains the execution of the code using a mathemati-
cal expression. In the latter case, the student succinctly in-
dicates that time is equal to 10 and therefore less than 12
which in turn (this is implied) should lead to the execution
of a certain branch of the if statement in the code. In other
words, the explanation is correct but incomplete, if only the
explicit parts should be accounted for. However, since the
student correctly predicted the output the implied parts can
be assumed to be correctly considered (but not articulated
verbally) by the student.

454

Word Count Content
Word Count

Sent Count

Mean 61.35 34.52 3.52
SD 74.2 37.92 4.48
Max 296 148 17
Min 0 0 0

Table 4: Summary statistics of self-explanation per task (all
self-explanations from all participants).

ID Self-Explanation Examples
1 Factorial of 4 is 24. In main we see that num is 4.

We also have a method named factorial that takes
in an int number and multiplies it by itself minus
one again and again until n is one. That number
that is multiplied is what factorial returns. In our
case we sent to it the number 4. 4is not 1, so 4 is
multiplied by a number that is returned from fac-
torial. So, 4multiplied by (4-1) multiplied by (3-
1) multiplied by 2-1 multiplied by 1.Going back-
wards, 1 multiplied by 2 multiplied by 3 multiplied
by 4 results in24

2 The for loop keeps iterating as we add one to i
until i is greater than 10. Once it is, we exit and
print out the result of sum divided by i which is
64 divided by 11 which is 5 (because the variables
are ints)

3 n(n 1)/2 = in this case, 55, and we divide it by
10,the last value of i. 55/10 is 5.5, but since these
are ints, the decimal is truncated off and we are
left

4 time=10<12
5 0 plus 1 plus 2 plus 3 plus 4... plus 10 equals 45.int

45 divided by int 11 is int 4.

Table 5: Examples of self-explanations.

The second explanation and the fifth indicate students
who understand the code but make simple computation er-
rors and therefore incorrectly predict the output. Both stu-
dents compute the sum of the integers from 1 to 10 being
64 and 45, respectively, instead of the correct value of 55,
even though semantically they understand the purpose of the
loop. The two explanations, which are about the same code
example, reveal two different ways to explain loops. Expla-
nation 2 in Table 2 describe the loop succinctly while expla-
nation 5 describes the loop in its “unwrapped” or sequence-
of-iterations form.

Explanation 3 is also about the same code example as ex-
planations 2 and 5 and this is a clear example of students
not paying close attention to the code. The value of the iter-
ation variable i is 11 after the loop ends and not 10 (the loop
condition is i <= 10). While the student understands that
the main idea of the loop is to add numbers, it does not pay
attention to the details of the loop.

All shown explanations in Table 5 and in fact all 92 ex-
planations we collected from the 23 students (4 explanation
tasks per participants), exhibit a combination of language,
code references, and mathematical expressions. This has sig-

nificant implications for any automated methods to assess
such self-explanations and therefore any intelligent tutoring
system that uses scaffolded self-explanation as a key instruc-
tional strategy. Such systems need to automatically evalu-
ate self-explanations in order to provide adequate feedback.
Novel assessment methods will need to be developed as we
are not aware of any such methods to automatically evalu-
ate self-explanations generated in the context of source code
comprehension activities like those shown in Table 5.

Discussion and Future Work
Self-explanation is a promising learning strategy that could
help students improve their source code comprehension
skills and learn complex programming concepts as our pre-
liminary work here has demonstrated. Indeed, our experi-
ments with open self-explanation prompting provides sup-
port for the positive role of self-explanation for source
code comprehension and learning. We also found no evi-
dence of biases of the strategy with student’s prior knowl-
edge. Like(Recker and Pirolli 1990; Pirolli and Recker 1994;
Bielaczyc, Pirolli, and Brown 1995), we also found that
learning gains is strongly correlated with the amount of gen-
erated self-explanation. We also found that learners self-
explain in different ways in terms of the amount of details
they provide. Furthermore, the self-explanations include ref-
erences to code, mathematical expressions, and natural lan-
guage which poses new challenges for automatically assess-
ing these self-explanations.

Because of small sample size(n=23) and sample popula-
tion from Asia, the finding of this study may not be general-
ized to student in USA or other part of the world. Students
from two continent might perceive knowledge under same
learning strategy differently; which is not taken considera-
tion during this. Furthermore, this study only covered few
basic concepts of JAVA such as operator precedence, nested
if − else, for loops, while loops, arrays, creating objects
and using their methods; thus, the study should be further
investigated in the context of more examples and broader
topics if we are to claim about entire JAVA learning using
self explanations.

There are a number of future work directions we envision.
First of all, a study that would compare spoken versus typed
self-explanations for source code comprehension task would
be useful to investigate whether there are any relevant differ-
ence in terms of comprehension and learning of computer
programming concepts. While such studies have been per-
formed for regular texts, there are no such studies reported
for source code comprehension. Furthermore, a source code
reading skill assessment instrument is needed in order to
assess learners’ source code comprehension level. We also
plan to run an experiment when students are shown code
examples one line at a time and prompted to explain their
thoughts at any new line of code. Exploring all these new di-
rections in the future will further reveal details about source
code comprehension processes as well as create necessary
instruments to assess code comprehension skills. Finally,
we plan to annotate self explanations and develop machine
learning model for automatic grading of self-explanations.
Self explanations in the context of programming varies a

455

lot,so, it is not possible to compare them with reference an-
swer and simply apply similarity method (Maharjan et al.
2017); thus, seeks novel approach of assessment.

Acknowledgments

This work was supported by the National Science Founda-
tion under grant number 1822816. All findings and opinions
expressed or implied are solely the authors’. We also like
to thank Bikash Balami, Allen Nembang and Bijay Rai for
support during experiment.

References

Alhassan, R. 2017. The effect of employing self-explanation
strategy with worked examples on acquiring computer pro-
graming skills. Journal of Education and Practice 8(6):186–
196.
Beaubouef, T., and Mason, J. 2005. Why the high attri-
tion rate for computer science students: some thoughts and
observations. ACM SIGCSE Bulletin 37(2):103–106.
Best, R. M.; Rowe, M.; Ozuru, Y.; and McNamara, D. S.
2005. Deep-level comprehension of science texts: The role
of the reader and the text. Topics in Language Disorders
25(1):65–83.
Bielaczyc, K.; Pirolli, P. L.; and Brown, A. L. 1995. Training
in self-explanation and self-regulation strategies: Investigat-
ing the effects of knowledge acquisition activities on prob-
lem solving. Cognition and instruction 13(2):221–252.
Chi, M. T.; De Leeuw, N.; Chiu, M.-H.; and LaVancher, C.
1994. Eliciting self-explanations improves understanding.
Cognitive science 18(3):439–477.
Crippen, K. J., and Earl, B. L. 2004. Considering the efficacy
of web-based worked examples in introductory chemistry.
Journal of Computers in Mathematics and Science Teaching
23(2):151–167.
Du Boulay, B. 1986. Some difficulties of learning to pro-
gram. Journal of Educational Computing Research 2(1):57–
73.
Guzdial, M., and Soloway, E. 2002. Teaching the nin-
tendo generation to program. Communications of the ACM
45(4):17–21.
Hung, Y.-C. 2012. Combining self-explaining with com-
puter architecture diagrams to enhance the learning of as-
sembly language programming. IEEE Transactions on Edu-
cation 55(4):546–551.
Kwon, K., and Jonassen, D. H. 2011. The influence of re-
flective self-explanations on problem-solving performance.
Journal of Educational Computing Research 44(3):247–
263.
Kwon, K.; Kumalasari, C. D.; and Howland, J. L. 2011.
Self-explanation prompts on problem-solving performance
in an interactive learning environment. Journal of Interac-
tive Online Learning 10(2).
Maharjan, N.; Banjade, R.; Gautam, D.; Tamang, L. J.; and
Rus, V. 2017. Dt team at semeval-2017 task 1: Semantic
similarity using alignments, sentence-level embeddings and

gaussian mixture model output. In Proceedings of the 11th
international workshop on semantic evaluation (semeval-
2017), 120–124.
Marx, J. D., and Cummings, K. 2007. Normalized change.
American Journal of Physics 75(1):87–91.
McNamara, D. S., and Magliano, J. P. 2009. Self-
explanation and metacognition: The dynamics of reading.
In Handbook of metacognition in education. Routledge. 72–
94.
McNamara, D. S. 2009. The importance of teaching reading
strategies. Perspectives on language and literacy 35(2):34.
Morrison, B. B.; Margulieux, L. E.; and Guzdial, M. 2015.
Subgoals, context, and worked examples in learning com-
puting problem solving. In Proceedings of the eleventh an-
nual international conference on international computing
education research, 21–29. ACM.
Muñoz, B.; Magliano, J. P.; Sheridan, R.; and McNamara,
D. S. 2006. Typing versus thinking aloud when reading: Im-
plications for computer-based assessment and training tools.
Behavior research methods 38(2):211–217.
Pirolli, P., and Recker, M. 1994. Learning strategies and
transfer in the domain of programming. Cognition and in-
struction 12(3):235–275.
Ramalingam, V.; LaBelle, D.; and Wiedenbeck, S. 2004.
Self-efficacy and mental models in learning to program. In
Proceedings of the 9th annual SIGCSE conference on Inno-
vation and technology in computer science education, 171–
175.
Recker, M. M., and Pirolli, P. 1990. A model of self-
explanation strategies of instructional text and examples in
the acquisition of programming skills.
Rezel, E. S. 2003. The effect of training subjects in self-
explanation strategies on problem solving success in com-
puter programming.
Roy, M., and Chi, M. T. 2005. The self-explanation prin-
ciple in multimedia learning. The Cambridge handbook of
multimedia learning 271–286.
Rus, V.; Brusilovsky, P.; Fleming, S.; Tamang, L.;
Akhuseyinoglu, K.; Barria-Pineda, J.; Ait-Khayi, N.; and
Alshaikh, Z. 2019. An intelligent tutoring system for source
code comprehension. In The 20th International Conference
on Artificial Intelligence in Education, June 25-29, Chicago,
IL, USA.
Sawilowsky, S. S. 2009. New effect size rules of thumb.
Journal of Modern Applied Statistical Methods 8(2):26.
Van Merriënboer, J. J., and Sluijsmans, D. M. 2009. To-
ward a synthesis of cognitive load theory, four-component
instructional design, and self-directed learning. Educational
Psychology Review 21(1):55–66.
Wilson, C., S. L. A. S. C. . S. M. 2010. Running on empty:
The failure to teach k-12 computer science in the digital age.
New York, NY: The Association for Computing Machinery
and the Computer Science Teachers Association.

456

