The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Modeling Procedural State Changes over Time with Probabilistic Soft Logic

Michael Mohler, Sean Monahan, Marc Tomlinson
{michael,smonahan,marc } @languagecomputer.com
Language Computer Corporation
Richardson, Texas

Abstract

Robust natural language understanding involves the auto-
matic extraction and representation of entities, events, and
states from unstructured text. However, a significant portion
of the knowledge required for human-level understanding is
implicit in the text and can only be accessed through in-
ference. In this work, we employ Probabilistic Soft Logic
(PSL) as a framework for leveraging common-sense knowl-
edge to support natural language understanding over procedu-
ral texts. Under this framework, we combine logical consis-
tency constraints with succinct representations of common-
sense knowledge to probabilistically model entity-centric sta-
tive information over time. We demonstrate the feasibility of
using PSL to represent procedural stative knowledge through
a scalability assessment over an in-house, multi-domain, syn-
thetic dataset.

Introduction

The goal of natural language understanding is to convert
textual information into a machine-readable knowledge rep-
resentation in a manner analogous to human reading and
comprehension. Derived knowledge can then be used in
support of automatic question answering (Ostermann et al.
2018), automated planning (McCluskey, Vaquero, and Val-
lati 2017), and other artificial intelligence tasks. While there
have been significant advances in information extraction
(IE) and knowledge base population (KBP) over the past few
decades, explicit information directly extracted from text is
insufficient for driving artificial intelligence tasks on its own.

For example, in an automated planning (or plan recogni-
tion) scenario, it may be necessary to identify which entities
are capable of traveling long distances. In the example sen-
tence “Alice gave Bob a car; then Bob left”, extraction com-
ponents will identify and populate a knowledge base (KB)
with three entities (“Alice”, “Bob”, and “a car”) and two
events (“gave” and “left”) but no explicit stative informa-
tion. The extracted information cannot be used on its own
to answer the underlying question (i.e., who can travel long
distances) and cannot represent the complex facts that both
individuals have possessed the car, but not at the same time.

In order to overcome this limitation, we apply logical in-
ference as a secondary step to expand the content of the

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

515

knowledge base. In particular, we seek to model the evolu-
tion of state information through time by combining a time-
aware knowledge representation with probabilistic inference
rules which correspond to common-sense knowledge. For
this example, it is possible to identify two dimensions of
state associated with the text (i.e., “colocation” and “posses-
sion”) and track changes among those states, for each entity,
throughout the temporal scope of the events. The resulting
state information is shown in Table 1.

States

Possess(Alice, car) =Possess(Bob, car)
Co-located(Alice, Bob, car)

Possess(Bob, car) —Possess(Alice, car)
Co-located(Alice, Bob, car)

Possess(Bob, car) =Co-located(Alice, Bob)

Time
Before “gave”

Between “gave”
and “left”
After “left”

Table 1: Evolution of state information for the sentence “Al-
ice gave Bob a car; then Bob left.”

Our objectives in this work are three-fold. First, we will
describe our representation of common-sense knowledge
and its applicability to modeling entity state across time.
Second, we will show how the inference engine automati-
cally derives probabilistic logic rules from this knowledge
and exploits global consistency to perform entity-focused
state modeling over sequences of events. Finally, we will
address the practical limitations of PSL-based inference over
increasing quantities of realistic data through a two-part
scalability assessment.

Related Work

Amassing and representing common-sense knowledge for
use in artificial intelligence applications has long been re-
garded as a critical path in achieving human-level reason-
ing. WordNet,! the most widely used source of knowledge in
natural language processing, was constructed manually be-
ginning in 1985 with the goal of identifying distinct senses
of nouns, verbs, and adjectives and encoding the hierarchi-
cal (IS-A) relationships between them. The Cyc KB,? which
was also developed by hand over several decades, was con-
structed to formalize common-sense knowledge in a logical

"https://wordnet.princeton.edu/download
“https://www.cyc.com/

framework. More recently, the ConceptNet toolkit (Liu and
Singh 2004) combined crowdsourced knowledge acquisition
with automatic extraction to encode such common-sense re-
lationships as EffectOf, DesireOf, and CapabilityOf.

Within the more constrained space of automated planning
with artificial agents, common-sense knowledge is defined
as “whatever the agent needs to know about how its en-
vironment works in order to achieve its task” and is typi-
cally created by hand. The standard for representing such
knowledge is the STRIPS action language (Fikes and Nils-
son 1971) which is based on propositional logic and defines
(a) the set of actions available to the agent, (b) the precondi-
tions for each action (i.e., what must be true about the envi-
ronment before the action can occur), and (c) the effects of
each action (i.e., how it will change the environment). Our
knowledge representation described in this work is modeled
off of STRIPS with hierarchical and logical components in-
spired by WordNet and Cyc.

Research in the representation and use of dynamic knowl-
edge bases, which track changes in entity state across time,
was pioneered in the development of an Event Calculus
(Shanahan 1999), which uses a logical formalism to rep-
resent the relationships between EVENTS (actions) and
STATES (fluents) over time by encoding the initiating and
terminating effects of known events and ensuring logical
consistency. Within the planning domain, state modeling
proceeds one step at a time, where planners heuristically
model the progress of an agent’s state towards a goal as a
function of an initial state permuted by an action which re-
sults in a new state based on the effects of the action (Frances
and Geftner 2015). In contrast, contemporary work in pro-
cess modeling (Mishra et al. 2018) combines knowledge of
precondition/effect relations with forward- and backward-
propagation through time to result in a “Participant Grid”
showing state for each participant at each point in time. In
this work, we apply PSL to model state evolution in a logical
framework that ensures global consistency subject to small
amounts of common-sense knowledge.

Probabilistic Soft Logic (PSL) has recently been used in
a variety of reasoning tasks due to (a) its approachability
being derived from first-order logic, (b) its defeasibility, (c)
its ability to model uncertainty, and (d) its scalability com-
pared to other logical frameworks. PSL has been applied to
tasks ranging from knowledge base completion (Yang, Yang,
and Cohen 2017) to textual similarity identification(Belt-
agy, Erk, and Mooney 2014) and causal inference (Sridhar
and Getoor 2016). With respect to scalability, Chekol et al.
(2017) have applied both Markov Logic Networks (MLNs)
and PSL to the task of time-aware knowledge base comple-
tion. Using only a small number of hand-crafted rules in a
given domain, they report that MLNs are not capable of scal-
ing up to the size of a real-world knowledge base but that
PSL has better scalability potential. Our goal in this work is
to assess the scalability of PSL on datasets of increasing size
and to identify efficiency bottlenecks moving forward.

Knowledge Representation

Before introducing our inference engine, we first define
three types of primitives which are used in the representation

516

of both extracted and common-sense knowledge — entities,
events, and states. An entity is a particular object, thing, or
person in the real world with distinct and independent exis-
tence. An event is defined as an occurrence which results in
a change in the state of the world. A state is the condition at
some moment in time of an entity, an event, or a collection
thereof. We define the relationship between the three primi-
tives such that (a) all events, by definition, lead to some new
state, and (b) each state or event is grounded by entities (or
other states/events) to fill zero or more type-constrained se-
mantic roles. In this way, we represent knowledge in a way
analogous to semantic frames, where each frame (i.e., state
or event) is grounded with a time parameter. As a part of
this work, we have defined a shallow entity type ontology
(e.g. THING—LIVING_THING—PERSON), which is used
to constrain the arguments of events and states.

In order to model the evolution of state over time, we de-
fine common-sense knowledge in the context of a single di-
mension of state at a time. For instance, the most founda-
tional stative dimension is “existence” — i.e., something ei-
ther “exists” or does not exist, with “before existence” and
“after existence” being distinguished. Each of these three
states has two arguments — a single entity argument (i.e., a
THING which exists or not) and a time argument. There are
three principal events related to the dimension of existence
— “creation”, “destruction”, and “transformation” — which
deterministically result in transitions from one state in this
dimension to another. Each of these two events have, in ad-
dition to a time of occurrence, a pair of arguments — a cause
(an ACTOR/PROCESS) and an object of type THING.

Within the context of a single stative dimension, we rep-
resent four types of inferential knowledge. The first of these
types are preconditions, which are states that are known (or
expected) to be true immediately before an event occurs.
The state “before existence” is a precondition for a “cre-
ation” event. Second, we represent effects as states which are
known (or expected) to be true immediately after an event
has taken place. The state “existence” is an effect of “cre-
ation”. Taken together, preconditions and effects can be or-
ganized into a graphical structure where states within the di-
mension are represented as nodes and events are represented
as directed edges linking those nodes. An outlink from a
state encodes a precondition while an inlink encodes an ef-
fect. Third, we define sustaining conditions which are states
which must be in effect at a given time for some other state
(in a different dimension) to simultaneously be in effect.
The states “alive” and “dead” are not relevant for entities
which do not exist, so “existence” is a sustaining condition
for “life”. Finally, we define an entailment as an event which
occurs simultaneously with another event (e.g., “running”
and “moving”). A “transformation” event may simultane-
ously entail both a “creation” and a “destruction” event. A
graphical structure corresponding to the dimension of “mar-
ital status” is shown in Figure 1 with “ALIVE” indicated as
a sustaining condition.

Scalable Inference

Our state-focused inference engine has been designed
around Probabilistic Soft Logic (PSL) (Bach et al. 2015),

Alive(A), Alive(B)

Divorced(A,B)

Married(A,B

Widowed(A,B) Widowed(B,A)

Figure 1: At all times, a pair of living PERSON entities are
in exactly one of the marital states — (1) NEVER MAR-
RIED, (2) MARRIED, or (3) DIVORCED - and the life sta-
tus of both persons is a sustaining condition for all three.

which employs the syntax of first-order logic to scalably
and probabilistically drive inference over continuous truth
values. We define three steps in the process of using PSL
for probabilistic reasoning. First, we use the entity ontol-
ogy, event and state definitions, and the precondition/effect
graph structure, sustaining conditions, and other entailments
that have been defined for each stative dimension to auto-
matically generate PSL rules. Second, we ingest relevant
events and states from an existing KB? to populate the inter-
nal PSL database with input facts and time-grounded candi-
date inferences. Third, we employ joint inference with PSL
to compute truth values for all candidate inferences in the
database, while satisfying hard and soft constraints defined
by the rules. Those stative candidates inferred to be true can
then be output to indicate the evolution of state for individual
entities throughout the temporal range of the input facts.

Rule Generation

Our first step in modeling state evolution through time with
PSL is to derive rules using the four types of common-sense,
inferential knowledge encoded for all stative dimensions.*
Before defining rules, however, we must define the cate-
gories of facts which will be available to the rule generation
and reasoning components. Each fact (or atom) consists of
a semantic predicate (e.g., an event or state) and a prede-
termined number of terms, where each term is defined by
reference to a variable name or to an identifier for a known
entity or for another fact.

All fact predicates derived from events and states are cat-
egorized in one of five ways. Three of these categories cor-
respond to event or state types from our common-sense sta-
tive knowledge and enable the system to distinguish and rea-
son about what is happening now (CURRENT), what has
happened before (PERFECT), and what cannot happen in
the future (IMPOSSIBLE). Another category (BETWEEN)
supports reasoning about events and states bounded by

3In this work, the KB is populated manually, but in general, a
KB will be populated through traditional information extraction.

“Note that this module is not dependent upon the size of any
particular input and so is the most efficient from a scalability per-
spective. However, reducing or increasing the number of rules pro-
duced has a significant effect on efficiency as the number of rules
being jointly satisfied during inference changes.

517

known times but which cannot be fixed at a specific point in
time. For example, if a group is known to be ATTENDING
an event at time T1, but not at some later time T2, then it can
be inferred that some DEPART event must have occurred
between T1 and T2. Those states and events which were in
the KB before inference are flagged as (EXTRACTED) and
serve as an input to inference.

In addition to those predicates derived from events and
states, we define two additional categories. The first is an
entity type predicate — e.g. PERSON(X) — which defines
that entity X is of type “person”. Importantly, all distinct
times known to the system can be bound in this way, e.g.,
TIME(T). The second class of predicate enables us to con-
strain reasoning to focus on more localized problems by
modeling temporal adjacency. In particular, we have de-
fined two predicates — NEXT(T,TN) and PREV(T,TP) —
which define respectively the next (TN) and previous time
(TP) associated with time T. These predicate classes serve as
canopies (McCallum, Nigam, and Ungar 2000) and allow us
to significantly constrain the number of rules to be satisfied
by only applying rules with relevant times and compatible
entity typing.’

A PSL rule is a set of atoms joined together using a con-
strained form of the first-order logic syntax, such that the
head of the rule must consist of a set of atom conjuncts and
the body of the rule must consist of a set of atom disjuncts.®
Each rule is defined with an associated weight indicating the
relative cost of violating that rule during joint inference. Infi-
nite weights indicate a hard logical constraint which cannot
be violated without producing a logical contradiction. For
instance, we may define an infinite weighted rule (i.e., pre-
conditions for a marriage event) as shown in Figure 2.

Altogether, we define fourteen classes of PSL rules ex-
pressing logical consistency and common-sense knowledge,
with examples and explanations shown in Table 2. These are
derived from the graph structure defined by our stative di-
mension knowledge resources, but are independent of the
particular events and states in any dimension. The first of
these groups, labeled “Logical Axioms”, represent the log-
ical system itself across all dimensions. Rules from this
group have infinite weight, meaning that they cannot be vi-
olated without resulting in a logical contradiction. They de-
fine the excluded middle principle, mutual exclusion among
states in a group, relationships among predicate categories,
and the inference of existential quantification facts (i.e.,
there exists argument X, such that the fact holds).

The second group, labeled “Knowledge-Based Rules”,
are derived from the structure and reachability information
of our stative dimension graphical structures. Rules from
this group include precondition/effect, entailments, sustain-
ing conditions, inferred events (before a time or between
times), and unambiguous state persistence. These rules like-
wise have infinite weight and cannot be violated without

> A canopy (also known as a block) limits the comparison space
between pairs of entities so that only pairs which are within the
same canopy are considered together in any rule.

SThis restriction enables the system of rules to be converted into
a set of Horn clauses which can be satisfied efficiently.

Rule HePd (4 atoms)

Precondition Rule’Body (2 atoms)

J

PERSON(X) A PERSON(Y) A MARRY(X,Y, T.) A PREV(T, TP) — DIVORCED(X,Y,TP) v NEVER_MARRIED(X,Y,TP)

[\

Event'Atom

TypeYConstraints

Time/Canopy

Candidate/State Atoms

Figure 2: Defines the preconditions for a marriage event with entity variables (X, Y) and time variables (T, TP).

Logical Axioms

Law of Excluded Middle

A person must be either ALIVE or —ALIVE, and one implies that the other is false.

Mutual Exclusion Constraints

A pair of persons must be either NEVER_MARRIED, MARRIED, or DIVORCED (and only one of these) at all times they are alive.

Category Definitions

If a person X is ALIVE_CURRENT at time T, then by definition they are also:
ALIVE_PERFECT(X,T); ALIVE_.BETWEEN(X,T,T); and ~ALIVE_IMPOSSIBLE(X,T)

Category Entailments

If a person is ALIVE_PERFECT, they will be ALIVE_PERFECT at all future times.
If a person is “ALIVE_IMPOSSIBLE, they were also ~ALIVE_IMPOSSIBLE at all prior times.
If a person is ALIVE_.BETWEEN in some range, they were also ALIVE_.BETWEEN for all ranges containing that time range.

Existential Quantification
MARRIED (to someone) are also true.

If a person X is MARRIED to person Y, then the facts that person X is MARRIED (to someone) and person Y is

Knowledge-Based Rules

Precondition/Effect

When a person experiences a BIRTH event, they enter the ALIVE state
Before a person experiences a DEATH event, they must have been in the ALIVE state.

Sustaining Conditions

If a pair is MARRIED, DIVORCED, or NEVER_MARRIED, we can infer they are each ALIVE.
If a company is EMPLOYING someone, then the company EXISTS at that time.

Ontological Entailment

If an entity is type PERSON, the entity is also type LIVING_THING.

Inferred Precedents

If a person is ALIVE, they must have once had a BIRTH.
If a person is DIVORCED or WIDOWED, they must have once been MARRIED.

Inferred Between
at some time between T and T2.

If a person is ALIVE at time T, and DEAD at time T2, there must have been a DEATH event

State Persistence

If a person is DEAD, they will be DEAD at all later times.
If a person is ALIVE at time T and ALIVE at time T2, then they are ALIVE at all times between T and T2.

Priors and Assumptions

Category Priors

Assume a state/event does not hold (CURRENT)
Assume states/events have never held (PERFECT=false at final time)

Persistence Assumptions

Assume a state is the same at the next/previous times

Initial Conditions

Assume an initial state holds within a group (e.g., a pair of living persons are NEVER_MARRIED)

Table 2: Fourteen classes of rules which are automatically derived from the graph structure for each stative dimension.

contradiction.

The last group, labeled “Priors and Assumptions”, are
rules which may be violated without resulting in a contra-
diction. However, they represent either strong (probabilistic)
assumptions or weak priors (with very low weight) on what
to expect when no better information is available. By incor-
porating prior rules into our inference engine, we ensure the
defeasibility of facts in a dynamic setting. If newer informa-
tion results in a previously inferred fact being rejected, the
tendency to assume the weak priors will work to remove in-
ferences derived from the rejected fact, thereby ensuring the
logical consistency of the system overall.

Fact Population

In the second stage, the set of grounded facts which may
be inferred (i.e., the candidate inferences) are ingested into
the PSL database. Initially, the database is seeded with only
the EXTRACTED facts from the KB. Then, it must be popu-
lated with all facts which could conceivably be true to define
a closed world within which reasoning takes place. This step
significantly impacts the scalability of the system by directly
affecting the size of the database and indirectly affecting the
number of grounded rules which must be jointly satisfied in
the inference stage. In order to provide a practical look at
the use of PSL for inference, we describe three alternative
methodologies for fact population that were attempted over

518

the course of this work.

Under the first methodology, we only ingested EX-
TRACTED facts and made use of an option within the PSL
framework itself to lazily add facts to the database whenever
they were inferred. That is, grounding a rule required only
that all facts in the head exist in the database; facts in the
body could be automatically added. This mode resulted in
an iterative inference stage and incurred a significant penalty
to efficiency as the number of iterations before convergence
was substantial and each iteration became less and less effi-
cient.

In the second methodology, we populated the database
with candidate facts such that each predicate was grounded
to all possible entities from the input, with all possible times
from the input — e.g., whether all pairs of people were MAR-
RIED/DIVORCED/WIDOWED at every time step in the in-
puts. This method resulted in a database where the vast ma-
jority of candidate facts were never in danger of being in-
ferred, but whose associated rules must still be satisfied dur-
ing inference.

Ultimately, we worked to automatically identify the most
likely candidate facts as follows. First, we employed the
entity-type ontology to limit the entity groundings for a
given predicate. For instance, the MARRIAGE predicate
does not need to be grounded for a “book” entity. Next, we
employed two different forms of logical canopies to con-

strain the possibilities. Our first canopy was an input entity-
pair canopy which constrained the rules to only consider a
pair of entities together if they participated together in ANY
input fact. We likewise simplified our temporal space by
binding entities to particular times (i.e., all the times that
co-occurred with the entity in the input facts, plus the first
and the last times over all facts), so that no fact would be
defined for an entity if the input made no mention of it at
that time.

PSL Inference

Probabilistic Soft Logic (Bach et al. 2015) is an infer-
ence framework which employs hinge-loss Markov random
fields (HL-MREF) to enable scalable inference over data con-
strained by grounded rules. A grounded rule is an instantia-
tion of a PSL rule over real facts in the database (i.e., ground-
ing). Within a grounded rule, each atom will have been re-
solved such that all variables are replaced with the identifier
of some entity or fact in the database, under the constraint
that all equivalent variables in the rule must be grounded
to the same identifier. Unlike other first-order logic frame-
works where each atom holds a binary truth value, PSL em-
ploys soft logic to enable probabilistic inference and to sup-
port significant scalability gains. This requires an alternative
definition of both truth values and the Boolean operators. In
particular, PSL relaxes truth values to a continuous value
in the [0..1] interval and applies the Lukasiewicz t-norm
and its dual t-conorm to define the logical conjunction and
disjunction operators, respectively. That is, AND(A, B) =
max(0, A+B—1)and OR(A, B) = min(1, A+ B). Like-
wise, logical negation is defined as NOT'(A) = 1— A. With
these definitions in mind, each grounded rule in the database,
after inference, will be considered satisfied if the conjunctive
truth value of the head is less than or equal to the disjunctive
truth value of the body and violated otherwise.

At inference time, the PSL reasoning module iteratively
updates the truth values of all ground atoms, subject to the
rule constraints, so as to induce a joint probability distri-
bution over the set of facts, F, in the database. More for-
mally, the inference module assigns a truth value T'(f) to
each fact f € F' and computes a distance to satisfaction for
each grounded rule » € R as ®(r) = max(0, Theaa(r) —
Thody (7)), where the truth value of the rule heads and bod-
ies are defined via conjunction or disjunction over the facts
which compose them. PSL then defines a probability distri-
bution over R as Py (R), represented as a weighted com-
bination of the distances to satisfaction over the grounded
rules, i.e.:

Py(R) = Leapl— Y, cpwr®(r)

where w, is the rule weight.

Finding the soft-truth values of every fact in the database,
F, so as to minimize the value Py (R) of the weighted con-
straint violations across all grounded rules is equivalent to
inferring the most probable explanation (MPE) for the input
facts. This can be formulated as a convex optimization prob-
lem, which is solved under PSL using the Alternating Direc-
tion Method of Multipliers (ADMM) (Bach et al. 2012) and
scales linearly with the number of grounded rules. Once in-

519

ference is complete, the database can be queried to identify
the truth values for all candidate facts —i.e., all states associ-
ated with entities at any point in time — to build up the final
model of state evolution. For the purpose of interpretabil-
ity, the soft-truth values of ground atoms can be seen as a
posteriori confidences in the truth of each possible fact.

As a side-effect of performing global inference with PSL,
it is possible to detect inconsistencies in the input (KB) data.
Although, the PSL inference module attempts to assign val-
ues to each fact without violating any constraints (rules), it
will prefer to violate constraints with lower weight — first pri-
ors, but then rules defining the truth of the original KB facts.
Therefore, violated input constraints are often indicative of
facts in the KB which result in a contradiction. In an oper-
ational system, these can be resolved by other downstream
components or provided to the user for further analysis.

Experiments

In order to benchmark PSL inference for scalability, we have
manually defined predicates and common-sense knowledge
associated with 13 stative dimensions including “existence”,
“life”, “marriage”, “injury”, pa-
per publication”, “paper topic inclusion”, “process stages”,
“event attendance”, “employment”, “interpersonal associa-
tion”, and “gender”.” On average, knowledge engineering
for each dimension required 15-25 minutes of manual effort.

Using this knowledge resource, we developed a synthetic
KB as follows. First, we defined a set of entities of various
types — people, objects, processes, etc. Then, we automati-
cally generated 100 events or states associated with our most
foundational domain (i.e., EXISTENCE). These were gen-
erated by randomly selecting one of the predicates (events or
states) defined in this dimension to produce a fact. We then
randomly filled the non-temporal arguments of the fact with
an entity of its required type or with an existential quantifier.
Finally, we randomly selected a date between 1970 and 2015
to be associated with the fact. From these 100 grounded
facts, we then manually selected 15 to 30 in such a way as
to ensure the logical consistency of the resultant KB (e.g.,
an entity cannot EXIST before it was CREATED). This pro-
cess was then repeated iteratively for each added dimension,
resulting in a dataset of 244 atoms covering 60 state types,
61 event types, and 18,235 derived PSL rules — about 150
rules per predicate.

We have used this dataset in two experiments to track the
growth in the size of the database and in the time spent in in-
ference as a function of the number of input facts. The first
was an iterative experiment where, for each iteration, we ap-
pend input facts for a single new stative dimension, perform
inference, and analyze the size and efficiency characteristics
of the iteration. This experiment measures the growth in la-
tency as problem complexity increases and is summarized in
Table 3.

For our second scalability experiment, we made use of all
13 stative dimensions but randomly sampled only a subset

CEINNT3

”, “damage”, “knowledge”,

"These dimensions were selected to be representative of phys-
ical, mental, and social constructs that can be used for inference
over open-domain data.

Domain | States | Events | Transitions | Entailments | Rules | Entities | Input Atoms | Output Atoms (k) | Grounded Rules (k) Time
1 dimension 3 2 4 2 572 16 21 6.6 27.6 9s
5 dimensions 18 17 41 10 | 4,816 38 117 715 2,808 | 11m36s
9 dimensions 45 41 95 42 | 11,236 60 212 4,615 16,351 | 1h27m
13 dimensions 60 61 134 58 | 18,235 73 244 8,107 28,052 | 2h46m
Table 3: Scalability results when adding additional complexity.
Input Atoms (IA) | Entities | Output Atoms (k) | Grounded Rules (k) Time | Output Atoms/IA | Grounded Rules/IA Time/TA
10% 26 24 332 1,446 | 3ml6s 12,769/fact 55,615/fact | 7.5s/fact
25% 66 43 1,143 4,773 | 11m44s 17,318/fact 72,318/fact | 10.7s/fact
50% 133 63 3,019 11,916 | 41mb6s 22,6997/fact 89,593/fact | 18.5s/fact
75% 200 69 5,423 20,537 | 1h24m 27,115/fact 102,685/fact | 25.2s/fact
100% 244 73 8,107 28,052 | 2h46m 33,225/fact 114,967 /fact | 40.8s/fact

Table 4: Scalability experiment adding input facts with complexity (i.e., number of stative dimensions) held constant.

of the individual input facts from the synthetic dataset. We
sampled the dataset from 10% to 100% of its total size to
determine the impact of increasing size (but not complexity)
on PSL-based inference. This experiment closely resembles
a natural increase in facts over the life span of a knowledge
base and is summarized in Table 4.

Discussion

Altogether, the results of these experiments substantiate our
novel approach towards using PSL to jointly model the evo-
lution of state information across time at a small scale. In
addition, by scaling up towards real-world dataset sizes and
analyzing the atoms and grounded rules in the database, we
have identified several bottlenecks for which time does not
increase linearly with the number of input facts. First, it was
found that BETWEEN predicates (with two time parame-
ters) represent a significant percentage of the total size, and
so linear increases in the number of distinct time parameters
result in quadratic increases in inference latency. Likewise,
it was discovered early on that over-populating the database
with all potential facts (e.g. with all combinations of enti-
ties) significantly impairs the ability of the system to scale
up.
Moving forward, we plan to remove BETWEEN-style
fact types from the PSL-based inference components in fa-
vor of deriving such knowledge offline after an initial infer-
ence stage. In addition to our use of canopies described in
this work, we plan to apply additional canopies, such that all
facts and only those facts associated with a given entity (or
entity pair) will be linked in any sequence of grounded rules,
thereby reducing the inter-connectedness of the grounded
rules and reducing time spent on highly unlikely inferred
facts. Indeed, we propose in future work to explore the possi-
bility of employing an initial “light-weight” inference mod-
ule which greedily applies precondition, effect, entailment,
and other inference across time. We will then only apply
PSL when initial inference detects a potential contradiction
or ambiguity which needs to be resolved through more com-
plex joint reasoning.

Acknowledgments

This research is based upon work supported by the Defense
Threat Reduction Agency under Contract No. HDTRA1-17-

520

C-0056.

References

Bach, S.; Broecheler, M.; Getoor, L.; and O’leary, D. 2012. Scaling
MPE inference for constrained continuous markov random fields
with consensus optimization. In NIPS, 2654-2662.

Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L. 2015.
Hinge-loss markov random fields and probabilistic soft logic. arXiv
preprint arXiv:1505.04406.

Beltagy, L.; Erk, K.; and Mooney, R. J. 2014. Probabilistic soft
logic for semantic textual similarity. In ACL (1), 1210-1219.

Chekol, M. W.; Pirro, G.; Schoenfisch, J.; and Stuckenschmidt, H.
2017. Marrying uncertainty and time in knowledge graphs. In
AAAI, 88-94.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence 2(3-4):189-208.

Frances, G., and Geffner, H. 2015. Modeling and computation in
planning: Better heuristics from more expressive languages. In Int.
Conf. on Automated Planning and Scheduling.

Liu, H., and Singh, P. 2004. ConceptNet—a practical common-
sense reasoning tool-kit. BT technology journal 22(4):211-226.

McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. In Proc. of ACM SIGKDD conference on Knowledge
discovery and data mining, 169-178. ACM.

McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. Engi-
neering knowledge for automated planning: Towards a notion of
quality. In Proc. of the Knowledge Capture Conference, 14. ACM.
Mishra, B. D.; Huang, L.; Tandon, N.; Yih, W.-t.; and Clark, P.
2018. Tracking state changes in procedural text: a challenge dataset
and models for process paragraph comprehension. arXiv preprint
arXiv:1805.06975.

Ostermann, S.; Roth, M.; Modi, A.; Thater, S.; and Pinkal, M.
2018. Semeval-2018 Task 11: Machine comprehension using com-
monsense knowledge. In Proc. of SEMEVAL Workshop, 747-157.
Shanahan, M. 1999. The event calculus explained. In Artificial
intelligence today. Springer. 409-430.

Sridhar, D., and Getoor, L. 2016. Joint probabilistic inference of
causal structure. In Proc. of ACM SIGKDD, Workshop on Causal
Discovery.

Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable learning
of logical rules for knowledge base completion. arXiv preprint
arXiv:1702.08367.

