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Abstract

Computer scientists use causal inference for reasoning. In
causal inference, researchers are interested in finding the re-
lationship between two observable events. In this paper, we
will explore the first step towards finding causality using
probabilistic fuzzy logic (PFL). We will also show that PFL
is more precise than Pearl’s causality model.

Introduction

Benjio, Pearl and Faghihi (Bengio, 2018; Faghihi,
Fournier-Viger, & Nkambou, 2011; Pearl & Mackenzie,
2018) suggest that machines will only be intelligent once
they can reason. Causal reasoning is the use of knowledge
to explain what is already observed in order to predict the
future. Pearl (Pearl & Mackenzie, 2018), for example,
suggests the use of inferential logic, with 3 levels of causal
hierarchy: 1) Association, to identify interrelated phenom-
ena; example: what if we do X?, 2) Intervention, to predict
the consequence(s) of an action; example: How does the
duration of my planned life change if I became a vegetari-
an? 3) Counterfactual (Rubin, 1974, 1977, 1978, 1980), to
reason about hypothetical situations and possible out-
comes; example: Would my grandfather still be alive if he
had not smoked? To introduce counterfactual capability in
computers, Pearl and Mackenzie (Pearl & Mackenzie,
2018) use causal inference which represents causal rules
using causal diagrams. We will explain this using the
Smoke-Tar-Cancer (Figure 1) example from (Pearl &
Mackenzie, 2018). Suppose we would like to study the
effects of Smoking on Cancer. In Figure 1, the direct caus-
es of Cancer are shown as Tar and Smoking Gene. At this
point, we have no way to observe whether a Smoking Gene
does exist. Thus, Smoking is influencing Cancer through
Tar and Gene is not observable, we cannot use the mere
probability methods to solve this problem.

Copyright © 2020, Association for the Advancement of Artificial Intelli-
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Figure 1. A causal diagram of the Smoking and Cancer example
from (Pearl & Mackenzie, 2018), page 225

To do so, Pearl suggests cutting the arrow between
Smoking Gene and Smoke. That is, making the Smoking
(X) constant, which gives us P (y | do(x)) in Figure 2 (see
above).

Furthermore, in order to solve this problem Pearl sug-
gests the following rules:

Rulel: P (Y |do(X), Z, W) =P (Y |do(X), Z)

The probability distribution of a variable Y will not
change after eliminating the variable W, if we observe that
the variable W is unrelated to the variable Y.

Before explaining Rule 2, we need to explain very brief-
ly what is a back-door criterion. In a directed acyclic graph
(DAG) (i.e., Figure 1), a set of variables Z fulfills the back-
door criterion if:

1) We cannot find a node in Z that is a descendent of Xi,
2)Z blocks all paths between Xi and Xj that has an arrow
into Xi. Accordingly, conditional on Z, do(X) is equal to

X:

Rule 2: P (Y| do(X), Z)=P (Y |X, Z)

Furthermore, suppose that X and Y are two disjoint sub-
sets of nodes in Figure 1. Z can fulfill back-door criterion
for (X, Y), if it fulfills the criterion for any pair of (Xi, Xj)
where Xi€ X and X;€ Y. In Figure 2, to prevent back-door
effect on Smoking, the back-door arrow between Smoking
Gene and Smoking is deleted.
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Figure 2. P(y[x) # P(y|do(x), “The probability of a patient having
lung cancer Y =y, given that we intervene and give the person to
smoke a pack of cigarette perday (set the value of X to x ) and
subsequently observe what happens.” (Pearl & Mackenzie, 2018)

Rule 3: P(Y |do(X))=P(Y |X)

When there is no causal path between X and Y, we can
eliminate do(X) from the above formula.

Using the three rules explained briefly above, Pearl
solves the problem demonstrated in Figure 1. For more
details, readers are encouraged to consult (Pearl &
Mackenzie, 2018).

Pearl’s inferential logic uses a probabilistic approach.
Probability theories are associated with events, and these
events can occur or not. Furthermore, the probability deals
with the uncertainty inherent to our knowledge of facts and
whether they are true or false. There is no gradient possible
about the reality of the facts. For instance, to find out
whether smoking will cause cancer, using probability theo-
ries, we must compare people who smoke all the time or
who never smoke. That is, one needs to calculate the con-
ditional probability of having cancer given the presence or
absence of smoking. However, without additional
knowledge of causal structure, probability theories cannot
generalize hypothetical scenarios and interventions. Fur-
thermore, there might be hidden confounders'. Perhaps a
gene corresponding to cancer causes a person to smoke
(Figure 1). Having the gene cancer, the person is more
likely to Smoke and have Cancer. The mere conditional
probability cannot say whether two quantities are causally
related.

Pearl’s approach to causation cannot answer the follow-
ing problem: given that you smoke a little, what is the
probability that you have cancer to a certain degree?

Furthermore, Pearl uses Direct Acyclic Graphs (DAG)
to construct causal models. However, we cannot use DAG
to create real-life problems. For instance, in a network, the
nodes can send and receive data mutually.

Y In statistics, a confounder (also confounding variable, confounding
factor, or lurking variable) is a variable that influences both the depend-
ent variable and independent variable, causing a spurious association.
Confounding is a causal concept, and as such, cannot be described in
terms of correlations or associations” Wikipedia
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An alternative to what Pearl is suggesting is probabilistic
fuzzy logic (Yager & Zadeh, 2012). In fuzzy logic, a set of
elements always belongs to a degree of membership which
fits into an interval between [0,1]. Probabilistic-fuzzy logic
(PFL) processes sources of uncertainty which are: 1) ran-
domness, or 2) probabilistic uncertainty, and fuzziness. By
representing “degrees of being” as well as degrees of cer-
tainty (e.g., probabilities of being a little or a lot toxic,
etc.), PFL can both manage the uncertainty of our
knowledge and the uncertainties inherent in the world’s
complexity (Yager & Zadeh, 2012).

Probabilistic-Fuzzy Logic (PFL)

What we propose is to keep Pearl’s association, interven-
tion and counterfactual, but with fuzzification of each of
these steps. 1) Fuzzy association: for instance, events A
and B can each have a qualitative value such as “a lot of
A”, “a little bit of B”, “a lot of A and B at the same time”,
and so on. Then, we will make quantitative fuzzifications
of these qualitative values, relying on the judgment of the
experts in the domain, assigning values to the variables, so
that event A might have a fuzzy value of .5, or .8 and so
on. Then, the fuzzy dependency between fuzzy event A
and fuzzy event B will be calculated using fuzzy implica-
tion rules such as, for example, the Lukasiewicz implica-
tion rule. This way, the associations between events will be
fuzzified (Yager & Zadeh, 2012). 2) Fuzzy intervention
rule can be built as min (1, 1-A+B), which is Lukasiewicz
implication rule and which corresponds to a fuzzy version
of Pearl’s do(x): in other words, what will happen to fuzzy
B if we apply fuzzy C to the relation between A and B?
For example, given that a lot of A produces a little bit of B,
what happens to B when we add an important amount of C
to A? 3) Fuzzy counterfactual rule can be calculated as a
fuzzy Lukaziewicz (Yager & Zadeh, 2012) conjunction of
not A and B, that is min (1-A, B), which corresponds to the
occurrence of B from a cause that is different from A. That
is, B can occur but without the occurrence of A, an alterna-
tive cause like D would have done the causal job required
for the occurrence of B.

This “not-A and B” situation is more technically called
the dual operator of the conditional “If' A, then B”. This
way, alternative causes get fuzzified by fuzzy duals in
fuzzy causation. So, the system resulting from these opera-
tions will be causal chains in which every node and every
segment of dependency between these nodes will be fuzzi-
fied (Yager & Zadeh, 2012). After the establishment of this
fuzzy system, it can be made probabilistic using Bayes
rule, as Pearl does in (Pearl & Mackenzie, 2018). Applying
Bayes rule to each of our fuzzy conditional relations will
make a system more flexible than Pearl’s. It will result in
a Probability Fuzzy Logic (PFL) system in which any new



event can be taken into account and will provide learning.
Learning occurs by modifications to any of the constituents
of the system. When the system converges to satisfying
conclusions on a given case, it will defuzzify these conclu-
sions in order to provide crisp decisions for actions.

Probabilistic Fuzzified Version
of the Smoke-Cancer Problem

Roughly speaking, to solve a problem with fuzzy logic one
can apply three steps 1) Fuzzification, 2) Defuzzification,
3) Application of probability methods. In order to create
our model for the Smoke-Cancer problem in Figure 1, we
use fuzzy logic rules explained in the previous section. The
data for the following discussion comes from (Doll & Hill,
1950).

1) Fuzzification

From Figure 1, we have a fuzzification model for Smok-
ing, Smoking Gene and Tar. The fuzzification is the pro-
cess of mapping a given value by a human to a value be-
tween [0,1]. That is, every fuzzy value belongs to a mem-
bership interval. For instance, in Figure 3, there are three
colored Gaussian functions in a rectangle representing the
mapping of the smoking scale variable on an interval be-
tween [0,1] on the y-axis. The blue line represents the
‘little smoking’ membership function. The smoking scale
for little smoking on x-axis is between [7.5,0] which is
mapped to [0,1] interval on the y-axis. The orange line
represents ‘often smoking’ with the smoking scale on the x-
axis [2.5, 10, 17.5] which is mapped to [0,1,0] interval on
the y-axis. The green line represents ‘foo much smoking’.
Its smoking scale on the x axis is between [12.5, 20] which
is mapped to the [0,1] interval on the y axis. The same
steps apply for the fuzzification of Tar and Cancer nodes.
For instance, if someone has Tar with value 4, in Fuzzy
logic, the Tar value can be /ittle and average at the same
time. This can be demonstrated by mapping value 4 to y-
axis which gives us a minimum value of 0.38 (/ittle), and a
maximum value of 0.6 (offen). So, fuzzy values can be
assigned as an interval in which there is a minimum value
and a maximum value. This gives us great flexibility in
dealing with unknown situations. As can be noticed, FL
embeds the causal diagrams that Pearl discusses in (Pearl
& Mackenzie, 2018). That is, Smoking Gene values can
influence directly or indirectly the fuzzy values of the
Smoking or Cancer nodes or both nodes. The dual rules of
PFL will result in assigning minimum value to the Smok-
ing Gene node. Thus, this implies that it does not influence
any node in Figure 1.
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Figure 3. The fuzzification of smoking in the smoking-cancer
example
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Figure 4. Doll, R. & Hill, A.B. (1950)

2) Defuzzification

The defuzzification function, takes as input a scalar value
between [0,1] (from the y-axis) and its corresponding
fuzzy set which, is one of the three following vectors:
[1,0,0] which corresponds to ‘a little cancer’, [0,1,0] which
corresponds to ‘medium cancer’ and [0,0,1] which corre-
sponds to ‘much cancer’. Using the centroid and the first
maxima methods (Yager & Zadeh, 2012), FL. computes the
defuzzified value corresponding to each node in Smoke-
Cancer example. For instance, a scalar value 0.4 on the y-
axis, corresponds to the ‘little cancer’, [1,0,0] vector on the
x-axis. According to (Doll & Hill, 1950), the centroid
method will output number 19.25. In order to eliminate the
back-door effect of the Smoking Gene on Smoking, our
model uses fuzzy dual (counterfactual) rule min (1-A, B).
This is because the Smoking Gene is the confounder for
the nodes Smoking and Cancer in Figure 1. In order to
calculate the influence of Smoking on Tar our model has a
cause_function that takes a scalar value between [0, 20]
(Figure 4) for Smoking and Tar and applies the fuzzy dual
rule w(x,y)= (x,y)=(1-x,y) (explained in the Probabilistic-
fuzzy logic section). In addition to Smoking Gene, we also
considered pollution as another hidden element that can
influence the risk of having cancer in a patient. To do so,
we used the fuzzy dual rule min (1-A, B). This is imple-
mented as the reverse_function in our code (see 2) which
approximates the causal effect of external unobserved
variables such as pollution on cancer. For instance, if the

2 https://github.com/joseffaghihi/FUZZY -Causal-Models



current value of Cancer in Figure 1, is 80 with the Smoking
and Tar values of 8 and 6 respectively, the estimated ef-
fects of the Smoking Gene would be 6.6 and 8.4 for the
pollution factor respectively.

Results

In this section, we used the dataset that Pearl discussed in
(Doll & Hill, 1950) which contains the observation (Figure
4) of the values for the Smoking-Cancer problem in Figure
1. Figure 4, has four columns: 1) shows the observation of
the average number of cigarettes the patients smoked per
day, 2) the number of patients, 3) whether the patients have
cancer and, 4) the results of the diagnosis.

It must be noted that in Figure 4, smoking a lot starts
from 0.6338. As opposed to Pearl’s assumption in (Pearl &
Mackenzie, 2018) that Tar can be observed, in this experi-
ment the Tar values are missing. Fuzzy logic has a solution
for the missing data. We used the Godel t-conorm rule
which is p(x, y) = max(x, y) to model the causal effect of
the smoking on Tar. In Table 1, the values in the Tar col-
umn correspond to the average Smoked Cigarettes column.

Avg Smoked Cigaretes | Tar
0 0

0 0

3 0.39
3 0.39
10 0.8
10 0.8
20 1.0
20 1.0

Table 1. Tar value estimation using Godel t-conorm rule

We then used Fuzzy association rules pu(x, y) = (X, y) =
(1-x, y) explained in the previous section to compute the
influence of Smoke on Tar. To compute the influence of
unobserved nodes such as Smoking Gene or pollution on
Smoking and Cancer in Figure 4, our model used the fuzzy
dual (counterfactual) rule which is min (1-A, B).

To create the probabilistic fuzzy logic model from data
in Figure 4, we applied probabilistic methods to the fuzzy
logic model that we have created in the previous section.
For instance, to compute P(cancer = ¢ | smoking = s) in

Figure 4:
P(cancer=c|smoking=s)= (P(smokingNcancer)/P(smoking))
For instance to compute P(c=1| smoking= little)

=19/(19+29) =0.3958.
Unfortunately, this database has only 400 rows. Thus,
we could not use part of it as a test for predictions.
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Conclusion

In this paper, we showed the first step toward using proba-
bilistic fuzzy logic (PFL) as an alternative to Pearl’s infer-
ential logic. To construct the causal model, we can use the
Fuzzy logic (FL) fuzzification method. After the fuzzifica-
tion step, one can apply the conditional probability method
to fuzzy logic to make it a probabilistic fuzzy (PFL) model.
Using PFL, we conclude that this method is more accurate
than Pearl’s one when it comes to finding possible causes.
Furthermore, Fuzzy logic deals with intervals. Calculating
the probability of intervals for both outcomes and treat-
ments is completely different from the simple probability
approach. Our next step is to implement more complex
causal models Pearl discussed in his book. Furthermore,
we are aiming at applying our PFL causal model to other
domains.
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