The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Learning Picture Languages
Represented as Strings *

David Kubon, FrantiSek Mraz
{dkubon, mraz} @ksvi.mff.cuni.cz
Faculty of Mathematics and Physics
Dept. of Software and Computer Science Education
Charles University, Prague, Czech Republic

Abstract

Analysis of two-dimensional (picture) formal languages is
of similar importance as analysis of their one-dimensional
(string) counterparts but is lacking state-of-the-art algorithms
for their learning. In this paper, we introduce a new repre-
sentation of picture languages based on mapping pictures to
strings. The representation enables to learn picture languages
by applying methods of grammatical inference for string lan-
guages. We propose a learning protocol and evaluate it on
several picture languages.

Introduction

Formal two-dimensional languages are of significant the-
oretical and practical importance, but nevertheless do not
share the extent of knowledge as their one-dimensional
counterparts (Giammarresi and Restivo 1997), even though
they can also be used as formal models of practical prob-
lems such as automatic detection of different shapes (e.g.
road signs) or generally any problem on two-dimensional
data which has some pattern regularity.

These languages can be defined as sets of two-
dimensional pictures with formally exact description. Al-
though they are referred to as picture languages they do not
correspond to pictures in the general sense, as such cannot
be defined mathematically — a set of photos containing dogs
is not a formal picture language. Consequently, while deep
neural networks have remarkable results on recognising ob-
jects in non-formal pictures, they do not perform well on for-
mal languages. However, dedicated tools designed in partic-
ular for formal two-dimensional languages, such as power-
ful models of two-dimensional automata, are typically non-
deterministic and thus inefficient for practical use.

The imbalance between knowledge about one- and two-
dimensional formal languages can be seen also with re-
gards to their learning. While there are known algorithms of
grammatical inference — i.e. the process of learning a gram-
mar for a language based on information about its words —
for some classes of string languages, there is considerably
less knowledge about grammatical inference for picture lan-
guages. Therefore, in this paper, we would like to investigate

“This research was supported by the Charles University Grant
Agency (GAUK) project no. 1198519.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

529

methods for learning two-dimensional languages from posi-
tive and negative samples.

Literature presents us with two types of representation of
pictures and two-dimensional languages — generative and
analytic. Generative representations of a picture (Freeman
1961; Maurer, Rozenberg, and Welzl 1982; Costagliola et
al. 2003) describe how to draw a picture — how to move a
pen over a plane. Analytic representation of a picture works
with a rectangular array of symbols. Each symbol can be in-
terpreted as the colour of a pixel in the image. The set of pic-
tures, a language, is then represented by an automaton that
decides if a given picture belongs to the set or not. Some
automata models, e.g. non-deterministic online tessellation
automaton (Giammarresi and Restivo 1997), more powerful
sgraffito automaton (Prdsa, Mraz, and Otto 2014) or two-
dimensional limited context restarting automaton (2LCRA)
(Krtek 2014), are quite powerful but of high complexity —
the problem of acceptance of a picture by such automaton is
NP-complete.

A greater goal of designing automata for two-dimensional
languages would be to find such classes of picture languages
that would share similar properties and concepts — e.g. being
context-free, closure properties regarding some operations
— like some one-dimensional classes. In an ideal scenario,
a reduction in dimensionality would lead to an analogical
one-dimensional class.The main advantage then would be
the possibility to relate two-dimensional classes to hierar-
chies — e.g. Chomsky hierarchy — as picture languages lack a
similar concept and their taxonomy is more complicated and
lacks a complete description. Following this concept, sev-
eral of the mentioned models representing generalisations
of regular languages into two dimensions when restricted to
one dimension lead back to a regular language. However,
the classes they accept are fairly restricted and the member-
ship problem of a picture belonging to such language is still
NP-complete.

Many attempts have been made with the learning of au-
tomata accepting picture languages, typically experiment-
ing with supervised learning methods. For example (Krtek
2014) learned 2LCRA’s by generating a list of all feasible re-
ductions for every position of the picture and selecting sets
of locally compatible reductions. However, this method is
not very efficient and dedicated heuristics and enhancements
need to be used to obtain results in a reasonable time.

As learning one-dimensional languages has more success-
ful results, we would like to employ it for learning picture
languages, too. In this paper, we propose a new representa-
tion for two-dimensional languages. It combines the gener-
ative and analytic approach by using rectangular arrays of
symbols to represent pictures and string languages to rep-
resent sets of pictures. Its core lies in a function R, which
transforms any two-dimensional word p into a string and a
one-dimensional language L. Then a picture language is de-
fined as the set of all pictures p for which R(p) € L. More-
over, by combining a classical algorithm for inferring reg-
ular languages from positive and negative samples with the
proposed function R we get a protocol for learning picture
languages, which we evaluate in some basic experiments.

Definitions

The first attempt to study sets of objects using methods for
one-dimensional formal languages were chain codes (Mau-
rer, Rozenberg, and Welzl 1982), where a picture is a set of
unit length lines in the Cartesian plane and words are over
an alphabet IT = {l,r, u, d} representing left, right, up and
down movements. An interpretation of a word is the drawing
obtained by starting at any point with integer coordinates in
the Cartesian plane and moving a pen in the directions in-
dicated by the alphabet symbols — e.g. the letter ‘L’ could
be drawn as uuddr. The set of such drawings is a regular
language (Maurer, Rozenberg, and Welzl 1982).

A picture obtained in this way is clearly connected; a non-
connected picture could be created by considering an exten-
sion of the alphabet IT by symbols 1 and | corresponding to
lifting and lowering the pen above the drawing plane.

Another frequently used definition of a picture reflects
more pictures in the common sense. A picture P over a fi-
nite alphabet X is a two-dimensional rectangular array of
elements from . — see (Giammarresi and Restivo 1997). We
say that P has dimensions (m,n), if it has m rows and n
columns. The set of all rectangular pictures over ¥ of di-
mensions (m,n) will be denoted as """ and the set of all
rectangular pictures over X of any dimension will be denoted
as X**, A picture language is any subset of %%,

Any automaton working on a picture P of dimensions
(m,n) needs to know where is the border of the picture,
therefore the picture is typically surrounded by sentinels #,
where # ¢ 3. Delimited picture P is called a boundary pic-

ture P over © U {#} of dimensions (m + 2) x (n + 2).

Algorithms For Learning Regular Languages

In this paper we experiment with learning from positive sam-
ples only and with learning from both positive and negative
samples.

Let £ > 1 be an integer. The class of k-testable lan-
guages is a subclass of regular languages that is learnable
from positive samples (De la Higuera 2010). A (string) lan-
guage [€ ¥* is called k-testable , if there exist four finite
sets of words: I, F < ¥¢~1, C < £<F and T < ¥ such
that a word belongs to L if it is from C, or its prefix of length
k — 11isin I, its suffix of length £ — 1 is in F, and all sub-
strings of length k belong to T'.

530

Given k and a sufficiently large set of positive samples ST
from L, it is easy to learn L by collecting C' as the set of all
words in ST of length less than k, I as the set of prefixes of
length & — 1 of words in S, F as the set of all suffixes of
length & — 1 of words in S, and T as the set of all factors
of length & of the words in S.

Regular Positive and Negative Inference (RPNI) (Oncina
and Garcia 1992) is a basic example of algorithms for learn-
ing regular languages from positive and negative samples.
RPNI begins by separating the training set S into a set of
positive samples ST, and a set of negative samples S~.
Then a prefix tree automaton is built from all samples in
S*. The states of the automaton correspond to all prefixes
of words from S+, which is a finite language. Next, the al-
gorithm goes through the states of the current automaton and
attempts to merge pairs of states. If no negative sample from
S~ is accepted by the merged automaton, it becomes the
current automaton. Otherwise, the merge is canceled, the
current automaton is not changed and the algorithm tries
to merge the next pair in a predetermined order. This algo-
rithm guarantees to produce a finite state automaton consis-
tent with the samples in set .S.

RPNI does not perform well on sparse data, where it can
almost never be sure that a compatible merge is truly valid
and thus most of its actions are hopeful guesses (Lang, Pearl-
mutter, and Price 1998). The first approach to address this
issue was using breadth-first search for state merging (Lang
1992) in the fraxbar algorithm, with the idea that a valid
merge involving the largest sub-trees in the prefix tree has a
higher probability of being correct than other merges. Later
(De La Higuera, Oncina, and Vidal 1996) suggested to find
evidence and based on it select the best merge candidates,
leading to Evidence Driven State Merging (EDSM) algo-
rithm, which was improved in (Lang, Pearlmutter, and Price
1998).

Like with RPNI, the algorithm starts with a prefix tree
automaton. In each step of the loop, for every pair of candi-
date nodes a merging score is computed and only the high-
est scoring one is performed.To compute the score, it is as-
sumed the two nodes are equivalent and equivalence classes
are computed for all the remaining nodes using the rule that
all children of equivalent nodes are equivalent. Merge score
is then the sum over equivalence classes.

Another version (Juillé and Pollack 1998) called red-
blue extends a connected set of red nodes corresponding to
unique states. Remaining nodes, blue, will either be merged
with red nodes or re-coloured to red. Only heterochromatic
merges are allowed.

A New Representation for Picture Languages

We propose a new representation for picture languages con-
sisting of two parts: a function R : ¥** — (' U {#})*
which maps any two-dimensional picture over X into a string
over I' U {#} and a (string) language L < (T'u {#})*. Then
(R, L)-picture language is the set of all pictures P € ¥**
such that R(P) is in L. We say that a string language L°
R-represents a picture language LY, if for each picture P it
holds that P € LF if and only if R(P) € LS.

Clearly, there are multiple ways how to map a picture into
a string. We can represent any rectangular picture P € ¥%*
by arranging all symbols (i.e. colours of pixels) row-by-
row into a string. However, in such representation, the in-
formation about the dimensions of the picture is lost. This
can be addressed by using delimiter # to mark ends of
rows, e.g. the language L} of all non-empty pictures filled
with b’s will be represented by the (string) language L7
{("#)™ 1™ | m,n > 0}, which is evidently a context-
sensitive but not a context-free language. Nonetheless, not
all words over {b, #} represent pictures and we would like to
have a representation that enables us to represent simple pic-
ture languages (like LY by simple (e.g. low in the Chomsky
hierarchy) string languages. Fortunately, the sample picture
language L} can be also represented by the string language
defined by the regular expression (b #)*b™.

However, regular representation of many elementary
picture languages, like the language LY, of white pictures
containing a single black column, is not possible with
the above representation. Nevertheless, the language LY,
could be represented using a function R rewriting the
picture into a string column-by-column, as opposed to
row-by-row. To generalise this idea instead of allowing
multiple reading strategies, we use a reading window of
size 3-by-3. The function R,, scans a picture P with
this window row-by-row and rewrites the window con-
tents row-by-row into a string, intuitively preserving the
information about neighbouring rows and columns of the
picture. E.g. the picture of dimensions 2-by-3 containing
a’s in the first and last column and b’s in the middle
column will be rewritten into the string (the vertical lines
were added to clearly separate the contents of the window
at different positions and are not present in the actual string):

#A###abftablt##abaaba 4 #babat |
Fabstab###|abaaba# ## baFbaF #

Experimental Results

In order to verify the suitability of our new representation of
picture languages for their learning, we conducted a series
of experiments with 10 picture languages over the binary
alphabet {o, s} corresponding to white and black pixels, re-
spectively (see Fig. 1 for sample pictures):

L, is the set of all white rectangles containing a black diago-

nal till the border of the picture.

L is the set of all white pictures of dimensions at least (3, 3)

with a black border of one pixel width.

Ls 1is the set of all pictures with a positive number of black

rows followed by a positive number of white rows.
Ly
Ls

is the set of all pictures with a regular chessboard pattern.

is the set of all white pictures containing one black vertical
line, which can be shorter than the height of the picture.

Lg is the set of all white pictures containing two black ver-
tical lines, which must not touch and can be shorter than

the height of the picture.

531

L

Lg

Ly
Lyg

1=

- au

CHMEHERNE

Figure 1: Sample pictures from languages L, ...

=

. L1o.

is the set of all white pictures containing one horizontal
line, which can be shorter than the width of the picture.

is the set of all white pictures containing two horizontal
lines, which must not touch and can be shorter than the
width of the picture.

is the set of all white pictures containing one black pixel.

is the set of all white pictures containing two black pixels,
which must not touch (even diagonally).

In our experiments, we have generated training and testing
sets of positive and negative sample pictures of sizes 100,
200, 400, 800 and 1600 words, for each sample language.
Samples contained pictures of dimensions between 3 and 8
such that each training set contained approximately the same
number of positive and negative samples with one exception:
for experiments using learning of k-locally testable (string)
languages we have used only positive training samples.

In each experiment, we first rewrite each picture into a
string by applying the function R,,, with window size 3-by-
3. Then for each set S of sample strings, we learn a deter-
ministic finite-state automaton consistent with S. For that
we have used one algorithm learning from positive samples
only and two versions of state merging algorithms:

a) Learning k-locally testable languages from positive ex-
amples using implementation in MATLAB from (Akram
et al. 2010).

b) A program traxbar which implements a version of
breadth-first Trakhtenbrot-Barzdin’s state merging algo-
rithm (Lang 1992).

¢) An EDSM program red-blue by Juille (Lang, Pearl-
mutter, and Price 1998).

Afterwards, we tested each resulting automaton on an in-
dependent test set of pictures (rewritten into strings by the
function R,). Each learned finite automaton correctly rec-
ognizes its training set of pictures, however, it need not ac-
cept/reject correctly all pictures from the test set.

Learning k-locally testable languages requires to set up
the window size k. For that, we have conducted a series
of experiments with different values for k between 2 and
18 (i.e. two times the area of the scanning window 3-by-3
used by R,,). The obtained results differ for different lan-
guages. The worst accuracy — at most 0.9 — was obtained
for language Lo even for the largest training sets. Based on
these experiments, we have chosen 9 as the best value for k.
Fig. 2 presents the accuracy of the learned automata for all
sample picture languages and for all sizes of training sets.

Further, we have used the state merging algorithms for
learning from both positive and negative samples imple-
mented in programs traxbar and red-blue. The ac-
curacy of the learned automata with respect to the size of

Accuracy for k=9

e —— ——]
—_— —— Diagonals
0.9 —— Upper part
—— Border
§ 0.8 —— Chessboard
5 —— Vert. line
o
2 0.7 —— Two vert. lines
—— Hor. line
—— Two hor. lines
06 One dot
—— Two dots
0.54 T

T T
400 1600

Size

T T
100 200

Figure 2: The accuracy of automata learned as automata for
9-locally testable languages L1, . .., L1o with respect to the
size of the training set. Note that for L; to L, the accuracy
was exactly 1.0 for all sizes of training sets in our tests.

Accuracy of red-blue

1.0 —
—— Diagonals
091 —— Border
- —— Upper part
S 0.8 4 —— Chessboard
S —— Vert. line
153
£ 0.7 —— Two vert. lines
—— Hor. line
—— Two hor. lines
0.6
One dot
—— Two dots
0.5 4

T T T T T
800 1000 1200 1400 1600

Size

T T T
200 400 600

Figure 3: The accuracy of automata learned by red-blue
state merging algorithm.

the training set when using the slightly better performing
red-blue is depicted in Fig. 3.

Surprisingly, the best accuracy was achieved by using
learning from positive samples only. This is caused by the
fact, that the sample picture languages L1, ..., Ly, are ev-
idently local (Giammarresi and Restivo 1997), i.e. the lan-
guage is fully characterized by the set of tiles (contents of
the scanning windows used by R,.,) that can appear in the
bordered picture. This can be clearly seen in Fig. 2 where
the accuracy of the learned automata for Ly, ..., Ly is 1.0.
The remaining sample languages are not local, but often an
inspection of the set of tiles in an input picture enables us to
classify the picture correctly.

On the other hand, the automata learned from both pos-
itive and negative samples by state merging methods have
worse accuracy. Evidently, each of our sample languages can
be R, -represented by a regular (string) language. However,
neither traxbar nor red-blue was able to learn such
regular language. This can be caused by small training sets
or the fact that the training sets are sparse. The lengths of all
words in training sets were multiples of 9.

532

Conclusions

Our new representation of picture languages can be used for
learning picture languages. As it is composed of transform-
ing a picture into a string and then checking membership for
a string language, any method of grammatical inference for
string languages can be employed.

We experimented with one such transformation repre-
sented by the function R, that rewrites the picture by
storing the contents of a scanning window of size 3-by-3
when scanning given picture row by row. For learning, we
have tried learning 9-locally testable languages from posi-
tive samples only and two methods based on state merging
from both positive and negative samples.

The obtained results seem to be promising, but we are not
satisfied with the achieved accuracy. For better accuracy of
the learned automata in our future research, we will modify
the employed state merging algorithms and possibly also use
different transformations from pictures to strings.

References

Akram, H. I.; De La Higuera, C.; Xiao, H.; and Eckert, C. 2010.
Grammatical inference algorithms in matlab. In ICGI 2020, 262—
266. Springer.

Costagliola, G.; Deufemia, V.; Ferrucci, F.; and Gravino, C. 2003.
On regular drawn symbolic picture languages. Information and
Computation 187(2):209-245.

De La Higuera, C.; Oncina, J.; and Vidal, E. 1996. Identifica-
tion of DFA: Data-dependent versus data-independent algorithms.
In International Colloquium on Grammatical Inference, 313-325.
Springer.

De la Higuera, C. 2010. Grammatical inference: learning au-
tomata and grammars. Cambridge University Press.

Freeman, H. 1961. On the encoding of arbitrary geometric configu-
rations. IRE Transactions on Electronic Computers EC-10(2):260—
268.

Giammarresi, D., and Restivo, A. 1997. Two-dimensional lan-
guages. In Handbook of Formal Languages: Volume 3 Beyond
Words. Berlin, Heidelberg: Springer. 215-267.

Juillé, H., and Pollack, J. B. 1998. A sampling-based heuristic for
tree search applied to grammar induction. In AAAI/IAAI, 776-783.

Krtek, L. 2014. Learning picture languages using restarting au-
tomata. master thesis, Charles University, Faculty of Mathematics
and Physics.

Lang, K. J.; Pearlmutter, B. A.; and Price, R. A. 1998. Results of
the abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm. In ICGI 1998, volume 1433 of
LNCS, 1-12. Springer.

Lang, K. J. 1992. Random DFA’s can be approximately learned
from sparse uniform examples. In COLT 1992, 45-52. ACM.

Maurer, H. A.; Rozenberg, G.; and Welzl, E. 1982. Using string
languages to describe picture languages. Information and Control
54(3):155-185.

Oncina, J., and Garcia, P. 1992. Inferring regular languages in poly-
nomial updated time. In Pattern recognition and image analysis:
selected papers from the IVth Spanish Symposium, 49—61. World
Scientific.

Prisa, D.; Mréz, F.; and Otto, F. 2014. Two-dimensional sgraf-
fito automata. RAIRO-Theoretical Informatics and Applications
48(5):505-539.

