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Abstract
Visualization, while an effective tool for identifying patterns
and insights, requires expert knowledge due to challenges
faced when translating user queries to visual encodings. Re-
search has shown that using a natural language interface
(NLI) is effective for these challenges because the user can
simply talk to a computer capable of producing the graphs di-
rectly. In this paper, we discuss our intelligent assistant which
processes speech and hand pointing gestures while also deal-
ing with any number of visualizations on a large screen dis-
play. Evaluation of the system shows that it is capable of
quickly producing visualizations. It also particularly effec-
tive at responding to less ambiguous queries, while in certain
cases can handle ambiguous or complex queries.

Exploring large datasets with visualizations makes gather-
ing insights easier due to the ability to quickly identify pat-
terns and compare trends between visualizations. However,
for users unfamiliar with visualization, (Grammel, Tory, and
Storey 2010) points out the steep learning curve necessary
to translate high-level queries into visual representations.
While popular tools such as Tableau can help facilitate the
process, learning new user interfaces itself presents chal-
lenges that can overwhelm the user. Speech recognition and
natural language processing, whose advances have in turn
led to commercial success of natural language interfaces
(NLIs) (e.g., virtual assistants such as Apple Siri, Amazon
Alexa, and so on), have been a key focus of the research
community in alleviating these challenges. In particular, var-
ious interactive visualization systems have been proposed
(Cox et al. 2001; Reithinger et al. 2005; Sun et al. 2010;
Setlur et al. 2016; Gao et al. 2015; Hoque et al. 2017;
Yu and Silva 2019), that implement NLIs for visualization
to help process verbal and nonverbal communication, effec-
tively decouples the user interface from the user.

In this paper, we discuss our own intelligent assistant that
we claim provides a more supportive environment for data
exploration relative to other systems; the user is able to use
a large screen display to explore data, can interact with the
large screen using free-forming NL as well as pointing ges-
tures, and has the ability to manage multiple visualizations
on the screen at once. Our contributions in this paper are:
1) Our assistant is implemented as a dialogue system (such
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systems are capable of having conversations with humans
and have been successful in various domains, for example
airline travel (Hemphill, Godfrey, and Doddington 1990;
Budzianowski et al. 2018)). It is modeled after our own
collected multimodal dialogue data (Kumar et al. 2016;
2017), capturing user interaction with a large screen dis-
play while tasked with exploring city crime data for Chicago
(called CHICAGO-CRIME-VIS corpus). As a result, rather
than making assumptions and enforcing NL templates, our
approach is flexible to the different ways that user queries
are spoken. Note that only 15% of our data contains such
queries, which we refer to as actionable requests (AR) di-
rectly, while the remaining 85% of the spoken utterances do
not specify actions to be taken by the system. 2) Our system
is configured to operate on a large screen display, effectively
allowing the user to preserve a sizable number of past visu-
alizations on the screen. The user is able to quickly refer to
any of these visualizations when forming subsequent ARs or
analyzing recently constructed ones. 3) The system manages
a dialogue history (DH) of past visualizations, which can be
accessed in the future to retrieve visualizations that corre-
spond to references made by the user. For example ”Show
me the last heat map.” finds the most recent entry associated
with map plots. 4) We conducted an extensive evaluation of
the system with 20 subjects in a user study. The evaluation
showed that the system is fast at responding to ARs and is
also effective in generating satisfactory (according to user
feedback) visualizations to ARs that have little ambiguity.
One of the primary limitations observed by participants is
the tendency by the system to take the meaning of an AR
too literally, which can lead to a wrong understanding of the
underlying intentions of the user and consequently a mis-
leading visualization.

Related Work
Interactive Systems for Visualization
Advances in the field have led to a number of systems lever-
aging NLIs for the purpose of exploring visualizations. (Cox
et al. 2001) supports multimodal input (speech and mouse
clicking) however they templated their commands hence
limiting the kinds of NL queries the system can understand.
(Reithinger et al. 2005) developed a system to assist users
in finding multimedia content via haptic visualization, how-
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ever their visualizations are pre-defined and cannot be con-
structed on the fly. The implementation proposed by (Sun
et al. 2010) allows for multiple visualizations on the screen,
however they only support speech (unimodal input) and use
less sophisticated machine learning methods for language
processing. Another system (Gao et al. 2015) only allows a
single visualization to display on the screen at a given time
however they also provide interactive widgets that allow the
user to correct misunderstandings by the system about a
given query. The next several systems (Setlur et al. 2016;
Hoque et al. 2017) use more sophisticated language process-
ing techniques however only operate on existing visualiza-
tions and follow up queries on them rather than focus on
creating new visualizations. Finally, (Yu and Silva 2019) is
also unimodal, supporting only speech input, however they
also focus on sophisticated language processing to improve
processing of spoken language.

The goal of our system is to process multimodal input,
allow for visualization construction on the fly, operate on a
large screen display, and give the user the ability to manage
multiple visualizations on the screen.

Dialogue Systems
A dialogue system is designed to have conversations with
humans. They have been widely successful for a variety
of domains, such as phone conversations (Williams et al.
2013), tourism (Kim et al. 2017), and chat (Lowe et al.
2015). The classic architecture is comprised of natural lan-
guage understanding (NLU) to interpret NL utterances, di-
alogue manager (DM) for maintaining the current state
of the conversation and make decisions on the appropri-
ate subsequent actions to be taken by the system, and fi-
nally an output generator focused on performing that ac-
tion. In our case, we deal with spoken dialogue, which
typically requires speech-to-text processing prior to execut-
ing the NLU. The success of deep learning networks has
lead to End-to-end (E2E) neural network based architectures
for dialogue systems (Bordes, Boureau, and Weston 2017;
Wen et al. 2017), which have produced state-of-the-art re-
sults. However, the E2E architecture requires large amounts
of data to train, while our manually built corpus is relatively
much smaller and hence we elected to implement a classic
architecture for our application.

CHICAGO-CRIME-VIS Corpus
We performed data collection with 16 subjects, each tasked
with determining when and where to deploy police officers
(Kumar et al. 2016). They explored Chicago crime data (ob-
tained from the Chicago data portal1) using visualizations on
a large screen, interacting with a visualization expert (a hu-
man working from a separate room) using speech and hand
gestures. Later, we transcribed the dialogues using video
recordings of each participant, for a total of 3,179 total ut-
terances, 1,879 word types, and 38,105 word tokens.

In terms of annotation, we identified 449 ARs and coded
them with one of 8 possible types (ARs are similar to dia-
logue acts (DAs)). See Table 1 for details of each AR. The

1data.cityofchicago.org

Dialogue Act Freq Example
CREATE- 198 ”so *uh*, can I see the
VISUALIZATION visualization for crime

in the our-city neighborhoods?”

CLARIFICATION 82 ”Ok, so, what do you mean
by non-criminal?”

WINDOW- 57 ”If you want you can close
MANAGEMENT these graphs as I won’t be

needing it anymore”

FACT-BASED 43 ”So, what kind of crime is
what kin– what kind of
crime is maximum?”

PREFERENCE- 33 ”*Uh* okay I somehow feel
BASED the 06-2 and 07-2 they are

they’re much clearer *uh* to
visualize and understand
rather than 06-1 and 07-1.”

MODIFY- 27 ”*Uh* do– can you show only
VISUALIZATION the bar graph or do you have

some any other way of visual-
izing the same?”

APPEARANCE 7 ”*Um*, interesting, can I see
labels on the data please?”

HIGH-LEVEL- 2 ”So, according to you, which
QUERY areas do I deploy the officers?”

Table 1: 8 Dialogue Acts in the CHICAGO-CRIME-VIS cor-
pus.

intercoder agreement, using 3 coders on 4 of the same sub-
jects, was κ = 0.74. We also coded 536 total gestures iden-
tified using the recorded videos described earlier, of which
368 were pointing gestures (out of these, 159 were point-
ing to visualizations on the screen while the remaining were
targeting entities within visualizations themselves). The in-
tercoder agreement based on 2 coders annotating the same 2
subjects was κ = 0.659 for differentiating the different types
of gestures (pointing, circling, and so on) and κ = 0.639 for
gesture target (pointing to visualizations or pointing to enti-
ties within visualizations).

System Architecture
Figure 1 shows our intelligent assistant implemented using
the classic dialogue system architecture. Note the three sep-
arate modules in the system architecture, including natural
language understanding (NLU), dialogue managemement
(DM), and visualization execution (VE). The user interacts
with a large screen display using speech (Google Speech
API on an Android phone app is used for speech-to-text
processing) and hand pointing gestures (Microsoft Kinect
is used for detecting where on the screen the user is point-
ing), which are then translated into action and accordingly
updated and rendered back to the large screen.
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Figure 1: The system pipeline.

Natural Language Understanding
The NLU is comprised of three primary tasks, of which
more details on dialogue act classification and parsing can
be found in (Kumar et al. 2016) while identification of refer-
ring expressions (REs) is a recent addition.

The dialogue act classifier is required to determine what
type of AR was spoken by the user for down stream pro-
cessing (i.e., if the user asks to close a visualization on
the screen, the system should look up the existing visu-
alization rather than create a new one). It assigns a se-
mantic label to the AR from the set of 8 DAs described
earlier (see Table 1. However, the system implementation
only handles CREATE-VIS, MODIFY-VIS, and WINDOWS-
MANAGEMENT, while for the other 5 DAs, the system uses
text response to asks the user to try something else.

Aside from this, the goal of the parsing component was to
identify which information the user desires to filter or aggre-
gate in producing a target visualization (i.e., an intermediate
logical form) and subsequently derive the SQL queries for
database retrieval. This is an essential step because we do
not have access to an existing corpus that maps language
to database queries and visualization. Our logical form is
represented in the form of a conjunction of clauses, namely
Cpredicate ∩ Cagent ∩ Cpatient ∩ Cdet ∩ Cmod ∩ Caction,
in which each clause is filled using primarily semantic
role labeling (SRL) and syntactic tree parsing. Our system
currently relies solely on the information provided in the
Cpredicate and Caction clauses, although the other clauses
could be leveraged as additional features in the future for
improved SQL generation. First,the relevant NPs are iden-
tified from tree parsing (we used Stanford parser) to fill the
Caction clause with nouns, Cdet clause with determiners and
Cmod clause with modifiers. The nouns in particular are cru-
cial because they allow us to identify which information to
filter and aggregate. Using the example from (Kumar et al.
2016) ”Can I see assaults in the Loop by location type?”,

the ”assaults” are a filter on the type of crime, ”Loop” is a
filter on a particular neighborhood in the city, and ”location
type” is an aggregate of all the different locations in the city
(i.e., restaurant, school, and so on). The SRLs (which refer
to a predicate and its arguments) fill the Cpredicate clause,
while also populating the Cagent, and Cpatient clauses (we
used ClearNLP (Choi 2014) to derive PropBank (Palmer,
Gildea, and Kingsbury 2005) SRLs, which were then further
enriched with Verbnet (Kipper et al. 2008) to identify these
particular thematic roles). In our current system, the predi-
cate is used to select the highest probable parse tree from the
list of Stanford parse trees that also identifies the predicate
as a verb. Subsequently, the logical form is then leveraged
to form valid SQL queries for database retrieval. Each fil-
ter is appended to the WHERE clause while aggregates are
appended to GROUP BY clause.

The purpose of the final component, focused on detecting
referring expressions in the current AR, is to identify which
existing visualization on the screen is being referred to by
the user. It deals with the scenario in which the user would
like to create a new visualization based on one that already
exists on the screen. For example, the component identifies
the RE ”the same chart” (using keyword matching) along
with the hand pointing gesture (using Microsoft Kinect) to-
wards the graph corresponding to VIS ID 7 when processing
the AR ”Can you show the same chart [POINT TO VIS ID
7] for days of the week?”.

Dialogue Management
The DM maintains a dialogue history of all the visualiza-
tions requested so far in the current session with the user,
sorted in the order in which they were requested, and lever-
ages it to determine the best visualization operation to apply.
First, the DM checks the dialogue act label of the AR. If it is
CREATE-VIS, the DM translates the parsed logical form into
an intermediate SQL query which is then used to retrieve
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relevant data, and then the DM adds the visualization ob-
ject (which we refer to as visualization specification) to the
top of the dialogue history. The MODIFY-VIS also performs
similar to CREATE-VIS unless it is a template based query
(e.g., ”Can you show the same chart [POINT TO VIS ID 7]
for days of the week?”) or plot type query (e.g., ”Can you
go back to the last map?”) is requested. For the template-
based query, the coreference module is subsequently called
to look up the visualization object in the DH correspond-
ing to identifier 7 as the initial template from which to con-
struct the new visualization. If for instance, this template
contained the filters ”theft” and ”Loop” and the temporal
aggregate ”month”, then the processing would copy the fil-
ters into the new visualization but replace the aggregate at-
tribute with ”days of the week”. In the case of plot type
query, the DM simply looks up the most recent visualiza-
tion object that matches the plot type in the AR. Finally,
if it is a WINDOWS-MANAGEMENT request, the DM re-
trieves the appropriate previous visualization specification
from the dialogue history. Then, the DM sends the visu-
alization specification to the VE, which carries out the ac-
tion mentioned in the specification. For instance, in the AR
”Close this [POINT TO VIS ID 3] graph.”, the DA clas-
sifier identifies this as WINDOWS-MANAGEMENT; hence
the DM retrieves the visualization object stored in the DH
associated with visualization identifier 3 and then indicates
in the visualization specification that it should be removed
from the large screen.

Visualization Executor
The aim of the VE is to carry out the action described in the
visualization specification, by either creating a new visual-
ization or manipulating existing ones already on the screen.
The updates are rendered back to the screen for the user.
In the case of creating a new visualization, the specification
includes data retrieved using the SQL query, x-axis, y-axis,
plot type, DA label, and chart title (along with other use-
ful information such as the DH, and so on). The VE uses
Vegalite2 to plot a graphical representation of the visualiza-
tion specification. We currently support 2-D bar charts, line
graphs, and heat maps.

Evaluation
Our purpose for this evaluation was to understand the ef-
fectiveness of the system in processing speech and gesture
input. A total of 20 human subjects participated in this eval-
uation, including undergraduate students, graduate students,
and other university affiliates.

For speech input, the subject tapped the circle button on
the phone app (shown in Figure 1) once to turn on listening
and once the user stopped talking, the phone app transmit-
ted the captured text to our system. If the system misheard
the AR, the user was allowed to repeat it again. The ges-
ture system (using Microsoft Kinect) detected hand pointing
gestures, and also identified the visualization being pointed
to on the screen. If the subject pointed to multiple visual-

2https://vega.github.io/vega-lite/

izations, our configuration only registered the one pointed to
for the longest duration.

Study Design
The study was segmented into four separate parts. In the
first 3 parts, the subject was told exactly which ARs to say
(taken from real dialogue from the CHICAGO-CRIME-VIS
corpus). We list the ARs from part 3 in Figure 2 as an exam-
ple; there are also 6 ARs for part 1 and 6 ARs for part 2 that
we do not show here. In the final part, the subjects were en-
couraged to come up with their own ARs. The speech input
was turned off for part 1 (we manually typed into the sys-
tem each AR that the user had spoken). We enabled speech
input for parts 2, 3, and 4. With regards to gesture input, we
enabled them for parts 3 an 4 only. For parts 1, 2, and 4, the
screen was blank initially (visualizations were all cleared)
while in part 3 the last visualization from part 2 was in-
tentionally retained on the screen. The subject was asked to
point to that visualization while speaking the first 2 ARs in
part 3 (which consequently resulted in the creation of 2 ad-
ditional visualizations) and then the user was free to point
to any visualization on the screen for each of the remain-
ing ARs. After completing each part, the subject was asked
to fill out a feedback survey, listed in Figure 3. The first 5
questions asked the subject to simply rate between 1 and 5
while the final 2 questions asked for short essay responses
pertaining to best and worst responses produced by the sys-
tem according to the subject.

Results

1. Can you show the same chart for days of the week?
2. Can you show this graph for months of year?
3. Can you move it
4. Can you minimize it?
5. Can you maximize it?
6. Can you bring up this pic that has been hidden?
7. Yeah don’t need this one

Figure 2: Actionable requests from part 3 of the study.

We found the speech app to be very effective overall, log-
ging 103 misheard words (including repetitions) out of 3,140
words for parts 2 and 3 (recall in part 1 the ARs are manually
typed). A majority of the mistakes were made in part 2, with
just 5 words (i.e., ”theft”, ”wondering”, ”year”, ”pic”, and
”graph”) making up 36% of the the total mistakes. Note that
”theft”, ”year”, and ”graph” are particularly problematic,
because they describe important entities, and hence will re-
sult in the wrong visualizations being constructed when mis-
heard. A visualization was successfully constructed for only
31.7% of the 63 ARs in which the speech system misheard
the subject (including ARs repeated a second time due to
being incorrectly heard the first time)

We also analyzed whether subjects found the behavior of
the system significantly better in one of the 4 parts with re-
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1. On a scale of 1 to 5, on average how quickly did the sys-
tem respond to requests?

2. On a scale of 1 to 5, on average how understandable were
the responses?

3. On a scale of 1 to 5, on average how well did the responses
directly answer the requests?

4. On a scale of 1 to 5, on average how well did the responses
provide additional insight not directly requested?

5. On a scale of 1 to 5, how would you rate the responses
overall?

6. Which of the responses did you find to be the best and
why?

7. Which of the responses did you find to be the worst and
why?

Figure 3: The feedback survey questions used in evaluation
study.

spect to the other 3. For this, we computed statistical sig-
nificance when comparing each of the 4 parts based on the
ratings we received on the first 5 survey questions (listed in
Figure 3). The results are summarized in Table 2. First, note
for questions 2 and 4, no part performed significantly better
than other parts (hence not included in the table). Question
1 (corresponding to response time) shows that parts 2, 3,
and 4 were rated significantly better than part 1. This is ex-
pected since part 1 required typing each AR manually. For
question 3, which asks whether the system answered the AR
being asked, we were surprised to see part 4 perform signif-
icantly better than parts 1, 2, and 3 since the subject is free
to ask anything of the system (i.e., not scripted). We hypoth-
esize this may have to do with subjects asking more direct
questions (i.e., recall that the ARs in the previous parts were
taken from the CHICAGO-CRIME-VIS corpus and may have
been perceived as vague, such as ”Lets start with the activity
around university”, where we are unsure what ”activity” is
referring to in the data). By the same reasoning, again part 4
is found to be significantly better, this time when compared
to parts 1 and 3, for question 5 (asking to rate the overall
response).

Q. 1 Q. 3 Q. 5
Parts p-value p-value p-value
1,2 <.05 <.05 0.78
1,3 <.05 .88 0.66
1,4 <.05 <.05 <.05
2,3 .72 <.05 0.19
2,4 .90 <.05 0.07
3,4 .38 <.05 <.05

Table 2: Statistical significance testing (in bold) for the rat-
ing feedback questions 1, 3, and 5 (no statistical significance
for questions 2 and 4) when comparing each of the 4 parts.

Aside from ratings analysis, we also studied the final 2
short essay questions pertaining to the best and worst sys-
tem responses. For parts 1 and 2, the subjects generally were
impressed with the system responses for several questions,
one of which was vague (”Could I look at when crimes hap-

pen for each neighborhood”), another was a complex query
(”If I was walking to the EL, would there be any areas that
are particularly dangerous to walk through due to theft or
battery”) and also an oddly worded AR (”I would just like
to see the total amount of crimes that happened divided by
the three main areas, university, River North and Near West
Side”. Aside from these, for another AR asking about data
aggregated by location, the system produced the results in
descending order, which the subjects noted made it easy to
identify the locations with the most crime. Next, summa-
rizing negative feedback, a common complaint was that the
system took the AR too literally for the AR ”Can you show
the location type for the crimes that occur between noon and
6 and 6 and midnight”, producing a visualization with one
time interval from noon to midnight in a single visualiza-
tion. Additionally, for heat-maps produced by the system,
some of the subjects noted a lack of a legend for the differ-
ent colors, hence making it harder to interpret by the users.

Moving on to part 3, we found that the subjects liked the
windows management features overall because they facil-
itated managing many visualizations on the screen at once.
In particular users noted minimizing visualizations to the up-
per right corner and moving partially covered visualizations
to the foreground. The subjects disliked the response for the
AR dealing with moving (i.e., ”Can you move [POINT TO
VIS] it”) because the destination position is random and can-
not be specified.

Finally, in part 4, several limitations were identified. First,
due to a small dialogue corpus, the system had limited vo-
cabulary (e.g., it could understand ”close the graph” how-
ever ”remove the graph” failed). The feedback also pointed
out a few instances in which the system would become con-
fused when the user is pointing to a screen location consist-
ing of multiple visualizations overlayed on top of each other.
Also they did not see the purpose of generating empty visu-
alizations in the absence of relevant data, rather than avoid-
ing producing such graphs. In terms of positive feedback for
part 4, subjects generally agreed that the system responses
were quickly generated and also noted that the system pro-
duced expected responses to more direct ARs (which sup-
ports our hypothesis for question 3 results in the rating anal-
ysis discussion earlier).

Conclusion
In this paper, we presented our new intelligent assistant for
exploring visualizations, implemented as a dialogue system
and modeled on our own multimodal dialogue corpus. Sub-
jects interacted (i.e., by using speech and gestures) with a
large screen display. An extensive evaluation of the sys-
tem with 20 users was also done, and indicated overall that
the system did well on response time; also, users were im-
pressed in some cases when the system was able to success-
fully produce visualizations for oddly worded, vague, and
complex queries. The results also noted that the system can
take ARs too literally and produce unsatisfactory visualiza-
tions.

In terms of future work, we plan to focus on building
a more sophisticated machine learning based approach to
detecting and resolving referring expressions rather than
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keyword matching as being done currently. We also plan
to study the findings of the evaluation study to determine
how we could improve the system implementation for fu-
ture users.
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