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Abstract

As the field of paralinguistic affect recognition has become
more mature, many researchers have shifted their approach
from a single channel of affect manifestation to a multi-
modal one in developing their affect recognition systems. In
the spirit of continuing this trend in multi-modal work, our
work utilizes paralinguistic features of speech and contextual
knowledge. Through our human study, we found that contex-
tual knowledge had positive impact on a human’s affect
recognition ability when combined with paralinguistic fea-
tures of speech. In this research, we propose a novel architec-
ture called Context-Based Paralinguistic Affect Recognition
System (CxBPARS) that combines the traditional paralin-
guistic affect recognition approach using classification algo-
rithms and the contextual knowledge related to the emotion
elicitors and their environment. By combining the results of
an AdaBoost classifier and contextual modeling, we achieved
an improvement in affect recognition accuracy from 29.5%
(context free) to 53.0% (context dependent).

Introduction

Humans have difficulty interpreting the expressed emotions
of other people when not in a face-to-face interaction. This
can be alleviated when the context of conversation is known
(Calvo and D’Mello 2010). For instance, one may find it
hard to understand an emotionally-charged person with a
heavy foreign accent through a phone line. However, when
we know that the conversation occurs in a call center con-
text, we may be able to associate the high-pitch tone with
anger or frustration resulting from a complaint. A misinter-
pretation may also occur when person A hears a foreign
speaker (person B) speaking in a language completely un-
known to A. Because A cannot understand any words se-
mantically, A can interpret a high-pitch tone by B to be a
happy expression when it is expressed on a festive occasion.

There is great merit in advancing the state-of-art in para-
linguistic affect recognition. The current trend has shifted
from the unimodal affect recognition approach to a multi-
modal one as the multi-modal has produced better results
than the unimodal approach. The implementation of deep
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learning algorithms has also gained some popularity in the
affect recognition research. Some of the latest multi-modal
works include the combination of facial expression, text,
and acoustic features (Sadoughi and Busso 2019), and the
combination of visual and audio signals (Ren et al 2019).
Another multi-modal work utilizing deep learning algo-
rithms is that of Zhang et al. (2016, 2018); these works uti-
lized Convolutional Neural Networks (CNN) and 3D-CNN
to produce audio-visual segment features. It fused these au-
dio-visual segment features in a Deep Belief Networks
(DBN). Huang et al. (2019) combined both linguistic and
paralinguistic features with CNN to recognize affect. This
multi-modal trend is also reflected through the entries to
many affect recognition competitions for the past decade.
Some of these competitions include the Audio/Visual Emo-
tion Challenge (AVEC) (Ringeval et al. 2019), the Emotion
Recognition in the Wild Challenge (EmotiW) (Dhall et al.
2019), and the International Speech Communication Asso-
ciation (ISCA) INTERSPEECH COMputational PARalin-
guistic challengE (COMPARE) competition (Schuller et al.
2019). With this trend in mind, we want to add a new differ-
ent mode—contextual knowledge.

Modeling context is not easy, especially when it involves
open-ended cases and is not domain specific. Some research
work in Context- Based Reasoning (CxBR) (Gonzalez et al.
2008) and Context Mediated Behavior (CMB) (Turner
1998) can model context but they are limited to narrow and
pre-determined scenarios, thus making them impractical for
our purposes. To our knowledge, very few works relate con-
text to affect recognition. Hammal and Suarez (2013) pio-
neered context-based affect recognition workshops where
the investigators explored the effect of contextual infor-
mation that can provide different nuances and complexities
in developing human-centric systems for affect recognition
but none of the works focused on paralinguistic speech. We
investigated several ways to utilize the contextual infor-
mation that led to the conception of our proposed architec-
ture. To our knowledge, no reported research integrates a



non-domain-specific contextual modeling approach with the
traditional paralinguistic affect recognition.

For an apples-to-apples comparison, we chose to compare
our work with Gosztolya et al.’s work (2013) - the entry to
the Emotion sub-challenge of INTERSPEECH 2013
(Schuller et al., 2013) that had the highest classification ac-
curacy results among all entries. A more inclusive compari-
son between our approach and all entries to the Emotion
sub-challenge can be found in Marpaung (2019). INTER-
SPEECH conferences have hosted the Computational Para-
linguistic Emotion (ComParE) Challenges intermittently
since 2009. ComParE 2013 focused on four sub-challenges:
(a) social signal challenge, (b) conflict challenge, (¢) emo-
tion challenge, and (d) autism challenge. We were interested
in ComParE 2013 because it was the only one that dealt with
affect recognition that utilized the GEMEP corpus (Ban-
ziger et al. 2011). To our knowledge, GEMEP corpus is the
only corpus that has documented different scenarios used to
guide the actors to enact certain emotions during the record-
ing process.

First, we describe our previous human study effort to bet-
ter understand the influences of contextual knowledge in a
human’s affect recognition ability. After describing our hu-
man study, we give some background information on the
emotion lexicon and sentiment analysis domain. The last
several sections focus on our architecture and algorithm, our
experimental results, conclusion, and future work plan. For
the record, our research focuses on 17 emotions: admiration,
amusement, anger, anxiety, contempt, despair, disgust, fear,
interest, irritation, joy, pleasure, pride, relief, sad, surprise,
and tenderness.

Human Study

As a prelude to our research in context-based computa-
tional paralinguistics, we studied the impact of contextual
knowledge on a human’s affect recognition. For this
study, we utilized the GEMEP corpus. For details of this
study, we refer interested readers to (Marpaung and Gon-
zalez 2017). In summary, we manually extracted two
pieces of contextual information from the description of
the situation as provided by GEMEP: (1) action context,
and (2) relationship context. The action context is defined
as any information about what happens to a person or a
group of people involved in the conversation; the relation-
ship context is defined as any information that relates an
object or an environmental element to a person or relates
a person to another person (or to a group of people). For
each audio file, each test subject went through a three-
phase process: (1) listened to the audio file only, (2) lis-
tened to the same audio file after being given one piece of
contextual information (either the action or the relation-
ship context), and (3) listened to the same audio file after
being given a second piece of contextual information. In
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each phase, the participants selected the emotion that they
believed that the speaker in sound bite was expressing,
and rate their confidence level on their selected emotion.
To further understand the effect of action and relationship
contextual knowledge, we exposed both contextual
knowledge in two different sequences of presentation: (1)
no context — action context only — action and relationship
contexts; and (2) no context — relationship context — rela-
tionship and action contexts.

Our study concluded that there was significant positive
impact in adding contextual knowledge to a human’s af-
fect recognition ability through the paralinguistic features
of speech. Between the two identified contextual infor-
mation, we found that the action context had a more sig-
nificant impact on the correctness and confidence level in
human affect recognition ability than did the relationship
context.

Sentiment Analysis: Emotion Lexicon

Inspired by an increasing attention to the field of Senti-
ment Analysis, we borrowed the emotion lexicon, a con-
cept from the Sentiment Analysis research. Sentiment
Analysis (SA) operates at the intersection of information
retrieval, natural language processing, and artificial intel-
ligence. SA focuses on determining the sentiment ex-
pressed in text. This field of research studies the senti-
ment, the phenomena of opinion, evaluation, appraisal,
attitude, and emotion (Liu 2012)

Mohammad (2016) reviews some competitions on va-
lence classification that include: (1) Sentiment Analysis
in Twitter (SAT), held in 2013, 2014, and 2015, (2) As-
pect Based Sentiment Analysis (ABSA), held in 2014 and
2015, and (3) Sentiment Analysis of Figurative Language
in Twitter and Sentiment Analysis on Movie Reviews,
held in 2015. Poria et al. (2016) proposed a multimodal
sentiment analysis framework that fused relevant features
for text and visual data. McDuff et al. (2015) found that
voter preference (or opinion) could be determined with an
accuracy of 73% through facial expressions in videos by
analyzing 611 responses to five video clips of a US pres-
idential election debate.

Word and Affect Mappings

To build the contextual knowledge necessary for our work,
we utilized the emotion lexicon that correlates many English
words to valence and arousal. Our work utilized the emotion
lexicon by Warriner, Kuperman, and Brysbaert (2013),
which contains affective words with 13,915 English lemmas
(63.5% nouns, 12.6% verbs, 22.5% adjectives, and 1.4% un-
specified parts of speech). We utilize this dictionary because
it is not a domain-specific. This emotion lexicon also pro-
vides the largest collection of words that covers primary de-
mographic information, such as age, gender, and education.
These words were mapped in the semantic space (SS) with



three axes: valence, arousal, and dominance. Valence
measures how pleasant the stimulus is, with the scale ranges
from 1 (unpleasant) to 9 (pleasant). Arousal measures how
high/low the intensity of emotion (excitement) provoked by
the stimulus is, with the scale ranging from 1 (calm) to 9
(excited). Dominance measures how much control is exerted
by the stimulus, with the scale ranging from 1 (in control) to
9 (controlled). Because most emotion theories in Psychol-
ogy correlate affect with valence and arousal only, our work
uses only these two. We also mapped the entire 17 emotions
to the semantic space and referred them as Affect Vectors
(AVs). We utilized the same keywords used in the GEMEP
corpus for the AVs. For example, we used the keyword fear
instead of fearful or scare.

Word - Affect Relationship

This section focuses on how we map the keywords, obtained
from the scenario description and the context database. By
mapping the emotions and the keywords, we can calculate
the distances between each keyword to the entire 17 emo-
tions and associate the keyword of interest to the affect with
the shortest distance.

Similar to AVs, the keywords are also mapped into the SS
in the same fashion. The Valence Coordinate (VC) and
Arousal Coordinate (AC) values for each keyword vector
are obtained from Warriner et al.’s dictionary (2013). Fig-
ure 1 shows the words lottery (VC = 6.33, AC = 6.05), win
(VC=6.97, AC=5.61), receive (VC=7.14, AC=4.3), and
gift (VC=17.27, AC=4.64) in SS.

« Lottery

e Win

%\ Gift

® Receive

Arousal

REL— Sm INT

6.4 6.8
Valence

Figure 1: Word - Affect Relationship

To estimate the closest emotion associated to each key-
word (from the 17 emotions), the Euclidian distance is
measured between each keyword and the affect coordinates.
For example, the calculation of Euclidian distances between
keyword lottery to some of the emotions are: (1) to pride:
0.54; (2) to relief: 1.66; (3) to interest: 1.72; and (4) to
amusement: 1.40. Once calculated, the emotion with the
shortest distance to the keyword of interest is associated
with this keyword. Based on this calculation, the keyword
lottery is best associated to pride. Refer to Figure 1 for their
graphical representations.
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Architecture

Supported by our previous study on human subjects
(Marpaung and Gonzalez 2017), we propose the CxBPARS
system and its novel architecture. Figure 2 shows the overall

schematic of CxBPARS.
Audio File Acoustic Features Extraction
‘))) — | Segmentation with with Praat
EasyAlign 1
Speech Audio
File Classification Algorithm

)

—

‘ Context Database (CxBD) ’—'

‘ Scenario Description
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}
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Figure 2: CxBPARS Architecture

Our approach focuses on extracting keywords from the de-
scription of the situation, and then evaluating the emotion
implications caused by these words. The emotion implica-
tions are then used to disambiguate classifier results.

Segmentation and Features Extraction

The audio files from the GEMEP corpus were segmented
manually at the word-level using EasyAlign (Goldman
2011). From these segmented audio files, five acoustic fea-
tures were extracted using Praat (Boersma 2001). EasyAlign
is a freely-distributed system usable as a plug-in to the Praat
software. The five features were: (1) mean pitch—the aver-
age of the sound’s pitch, which shows the highness or low-
ness of the human voice, measured in Hertz, (2) jitter—
pitch’s variations in human’s voice, which causes a rough
sound, (3) shimmer—a frequent back and forth change in
amplitude from soft to louder, (4) mean harmonics-to-noise
ratio (HNR)—the ratio between multiples of fundamental
frequency and the noise, and (5) mean noise-to-harmonics
ratio (NHR)—the ratio between multiples of the noise and
fundamental frequency (the inverse of HNR).

From the GEMEP corpus, 579 frames were segmented.
The frame distributions were as follows: admiration (18),
amusement (37), anger (39), anxiety (40), contempt (23),
despair (42), disgust (22), fear (32), interest (44), irritation
(45), joy (39), pleasure (43), pride (35), relief (37), sad (40),
surprise (18), and tenderness (24). From these frames, the
five acoustic features were extracted. This process produced
2,895 (579 x 5) acoustic features.

Classification Algorithm

This research utilized an AdaBoost classifier implemented
in Weka (Waikato Environment for Knowledge Analysis)
(Frank et al 2016) using a 10-fold cross validation process.
Weka implemented AdaBoost M1 method based on Freund
and Schapire (1996).



We chose this classifier because we were interested in di-
rectly comparing our approach with Gosztolya et al.’s re-
search (2013), as it had the highest classification accuracy
in the INTERSPEECH 2013 Emotion Sub-Challenge. The
input of the classifier was the 2,895 acoustic features ex-
tracted by Praat. The output of the classifier is a tuple of the
most likely emotion the speaker conveys (A) and its proba-
bility (p): (An, pn). Since we focus on 17 different emotions,
each classifier produces 17 output tuples: {(A1, p1), (A2, p2)

... (A17, p17)}-

Scenario Description

The GEMEP corpus utilized the felt enacting technique dur-
ing the recording process. This technique guided the actors
to use personal experiences to enact certain emotions based
on the given scripts originally written in French. To build
our context-aware system, these scenario scripts were trans-
lated from French to English using Google Translate (2019).
Although the GEMEP scenario descriptions are long and
complex, these scenarios roughly represent someone’s daily
activities, and can equate to the cryptic descriptions some-
one might enter into their smart phone calendar or notes ap-
plications. To clarify, no two-way verbal conversations oc-
curred in any of these scenario descriptions.

For our initial approach, two action keywords were cho-
sen manually from the translated scenarios, and their VC
and AC values were mapped to the semantic space. The VC
and AC values were obtained from the emotion lexicon by
Warriner, Kuperman, and Brysbaert (2013). We extracted
the initial keywords manually and randomly without know-
ing their positions in the semantic space.

Context Database (CxDB)

For this work, we introduce the Context Database (CxDB)
that mimics a human’s prior knowledge. Each piece of con-
textual knowledge in the CxDB has these attributes: (1) con-
text name, (2) keywords associated with the contextual
knowledge, and (3) possible emotions that can be triggered
within that context. An example of contextual knowledge is
shown below.

Context Name: Meet_Important Person

Keywords: admire, respect, accomplish, inspiration, fa-

mous, recognized

Applicable emotions: admiration, amusement, anxiety,

fear, interest, joy, pleasure, pride.

As our initial approach, we built the CxDB manually with
50 contexts containing the information above. We
acknowledge that building this database by hand as we did
is not the ultimate solution, but we first wanted to determine
whether this approach worked before embarking on research
to automate the creation of this database.

Context Modeling

The proposed algorithm for our framework is as follows.
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1. Execute the AdaBoost classifier using the 10-fold
cross validation process (input: segmented audio
file; output: classification result (Ri) with the for-
mat of the affect (Ai) and its probability (pi): (p1,
p2... p17) wherei=1to 17, pis 0.0 to 1.0, and Ri =
(Ai, pi).

2. Rearrange the results in decreasing order from the
highest to the lowest probability.

3. Pick the top X results (those with the highest X
probabilities). X represents the search area for the
context modeling; X is selected empirically. For
this research, we picked X =10, X =11, X =12,
and X = 17. Based on our experiments, X =11 gave
the best result while any numbers below or above
this number produced poorer results. We ran X =
17 as the inclusivity case.

4. Hand-pick two keywords (SD1 and SD2) from the
scenario related to the audio file. We focused on
selecting the verbs/action words. Each keyword
has VC and AC values based on the Emotion Lex-
icon.

5. For each entry in CxDB, compare all keywords
(Keyword 1, Keyword 2, ...., Keyword K) in
each context (Context 1, Context 2, ..., Con-
text 50) with the scenario description keywords
(SD1 and SD2). Pick the context with the highest
number of (lexically) matched words and call it
CxDBwinner. If there is a tie between two con-
texts, simply pick the one occurring first.

6. From CxDBwinner, extract all applicable emo-
tions. We called them Matched Contexts.

7. Look for some agreements between emotions in
Matched Contexts and the Classifier Results
(Atop_1, Atop 2, ..., Atop n) by finding the intersection
between these two sets.

8. Extract the VC and AC for all affects in Atop x, ....,
Atop y from the Emotion Lexicon by Warriner, Ku-
perman, and Brysbaert (2013).

9. Calculate the Euclidean distance using the VCs and

ACs between the keywords (SD1 and SD2) and

each emotion in (Atwp x, ..., Atwp y)-

The affect with the shortest distance is declared as

the winner.

STOP.

10.
11.

Next, we describe our experimental results to test our ap-
proach.

Experimental Results

We divided our experiments into three phases: (1) Phase 1—
classifier, (2) Phase 2—context-centric approach, and (3)
Phase 3—context-centric approach with intelligently



selected keywords. For Phase 1, we ran our classifier with:
(a) 12 emotions, as we wanted to compare our approach with
Gosztolya et al.’s previous research, and (b) 17 emotions, as
we sought to advance the research in CPAR domain by
working with more subtle emotions. For Phase 2, we utilized
our context modeling approach in 17 emotions to break new
ground in the state-of-the-art. For Phase 3, we intelligently
selected the keywords (SD1 and SD2) to study the key-
word’s sensitivity and its influence on the architecture’s
classification results.

Phase 1: Classifier

For Phase 1, we utilized an AdaBoost classifier imple-
mented in Weka. Table 1 compares our UAR (Unweighted
Average Recall) results for the 12 and 17 emotions with
Gosztolya et al’s result. At the face value, our result was
lower by 2.8 percentage points. Refer to Marpaung (2019)
for the comparison between our results and the winners of
the INTERSPEECH 2013 Emotion sub-challenge.

Next, we describe our Phase 2 experiment where we inte-
grated the contextual knowledge to the classifier results.

Our Results Gosztolya et al. (2013)
12 affects 39.5% 42.3%
17 affects 29.5%

Table 1: Comparing our results and Gostolya et al.’s result

Phase 2: Context-Centric Approach

Table 2 shows our results utilizing our CxBPARS architec-
ture for 17 emotions for different values of X (10, 11, 12,
and 17). In Phase 2, the verb/action keywords were ran-
domly chosen without knowing their VCs and ACs with re-
spect to the VCs and ACs of the intended emotions.

QOur Results
X=10 52.8 %
X=11 53.0 %
X=12 50.3 %
X=17 38.7 %

Table 2: CxBPARS Experimental Results

As shown in Table 2, the architecture gave the best classifi-
cation result when we set the value of X to 11.

Phase 3: Keywords Sensitivity

From Phase 2, we chose X=11 and conducted another study
of Phase 3 to measure the sensitivity of the keyword selec-
tion. In this phase, we changed one of the two keywords for
each emotion (amusement, anxiety, and relief) and ran the
algorithm again using the 10-fold cross validation process.
We chose the keywords whose VCs and ACs close to the
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intended emotions on purpose. Table 3 shows the results of
Phase 3.

For the scenario whose ground truth was amusement, the

original keywords were figure and laugh. For Phase 3, we
changed the keyword figure to create. For Phase 2, we
achieved 22 correct cases (out of 37) and for Phase 3, we
reached 36 correct cases. For anxiety, our result improved
from 4 correct cases to 39 cases (out of 40) when we
swapped the keyword trouble with distress. And finally, for
relief, we reached 37 correct cases (out of 37) when we
switched suspect with arise.
Overall, using this intelligently selected keywords method
in Phase 3, our results improved from 53.0% (in Phase 2) to
58.4% (in Phase 3). The experiment therefore indicated that
the choice of keywords does influence the accuracy results.
If a higher accuracy result, the valence and arousal coordi-
nates must be located near to the coordinates of the emo-
tions. Otherwise, the accuracy results are negatively im-
pacted.

Emotions I Phase 2 I Phase 3
Amusement
Keywords | Figure Create
(VC=5.0,AC=3.67) | (VC=7.06, AC=4.86)
Laugh Laugh
(VC=8.05,AC=5.39) | (VC=8.05,AC=5.39)
Accuracy 22 (out of 37) 36 (out of 37)
Anxiety
Keywords | Trouble Distress
(VC=2.87, AC=5.6) (VC=2.37,AC=4)5)
Fail Fail
(VC=2.33,AC=5.5) (VC=2.33,AC=5.5)
Accuracy 4 (out of 40) 39 (out 0f 40)
Relief
Keywords | Suspect Arise
(VC=2.39,AC=4.6) (VC=6.61, AC=4.49)
Favor Favor
(VC =6.67, AC=4.61) | (VC=6.67, AC=4.61)
Accuracy 4 (out of 37) 37 (out of 37)

Table 3: Phase 3 Results

Conclusion and Future Works

Inspired by our human study, we proposed the CxBPARS
architecture where we employed both the paralinguistic
speech features and the relevant contextual knowledge.
Through our experiments, we could see the improvement
from 29.5% (context free in Phase 1) to 53.0% (context de-
pendent in Phase 2). Utilizing the intelligently selected key-
words method, our accuracy improved from 53.0% (in
Phase 2) to 58.4% (in Phase 3). We realized that this proof-
of-concept work was not automated. Thus, these results
should be considered as an upper bound.

Our future works include the automation of creating and
maintaining the CxDB and the automation of the intelligent



keyword selection process by utilizing the information ex-
tracted from the smartphone applications.
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