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Abstract

Bayesian networks (BNs) encode conditional independence
to avoid combinatorial explosion on the number of vari-
ables, but are subject to exponential growth of space and
inference time on the number of causes per effect variable.
Among space-efficient local models, we focus on the Non-
Impeding Noisy-AND Tree (NIN-AND Tree or NAT) mod-
els due to their multiple merits and on NAT-modeled BNs,
where each multi-parent variable family may be encoded as a
NAT-model. Although BN inference is generally exponential
on treewidth, inference is tractable with NAT-modeled BNs of
high treewidth and low density. In this work, we present the
first study to learn NAT-modeled BNs from data. We apply
the MDL principle to learning NAT-modeled BNs by devel-
oping a corresponding scoring function, and we couple it with
heuristic structure search. We show that when data satisfy
NAT causal independence, high treewidth, and low density
structure, learning underlying NAT modeled BN is feasible.

1 Introduction

Discrete BNs avoid combinatorial explosion on the num-
ber of variables by encoding conditional independence
in directed acyclic graph (DAG) structures, but space
and inference time grow exponentially in the number of
causes per effect due to tabular conditional probability ta-
bles (CPTs). Space-efficient local models exist, such as
noisy-OR, noisy-MAX (Henrion 1989), context-specific in-
dependence (CSI) (Boutilier et al. 1996), NAT (Xiang
2012), DeMorgan (Maaskant and Druzdzel 2008), tensor-
decomposition (Vomlel and Tichavsky 2012), and cancella-
tion (Woudenberg, van der Gaag, and Rademaker 2015).
We focus on NAT models due to merits of simple
causal interactions (reinforcement/undermining), expres-
siveness (recursive mixture of causal interactions, multi-
valued, ordinal or nominal (Xiang and Jiang 2018)), gener-
ality (generalizing noisy-OR, noisy-MAX, and DeMorgan),
and orthogonality to CSI. Although BN inference is gen-
erally exponential on treewidth, inference is tractable with
NAT-modeled BNs of high treewidth and low density.
Specifically, the space of a BN is O(n s"), where n is
the number of variables, s bounds domain sizes of variables,
and s bounds numbers of causes (parents) per variable. In
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fully NAT-modeled BNs (see Section 2), variables quantify
dependency on parents by NAT models instead of tabular
CPTs. Their space is O(n s ). This efficiency extends to
inference time with NAT modeled BNs of high treewidth
(bounded by ~) and low density (measured by percentage of
arcs beyond being singly connected) structures.

This work studies learning NAT-model BNs from data. A
BN can be compressed into a fully NAT-modeled BN (Xi-
ang and Jiang 2018). However, since the source BN must
be either manually constructed or learned from data through
other methods, the compression approach does not com-
pletely solve knowledge acquisition for NAT-modeled BNs.

The main contribution of this work is the first study on
learning NAT-modeled BNs directly from data. We apply the
MDL principle (Rissanen 1978) to learning NAT-modeled
BN to develop a NAT-enabled scoring function, and couple
it with heuristic structure search. Our experiment shows that
when data satisfy NAT causal independence, high treewidth,
and low density structure, it is feasible to learn underlying
NAT-modeled BNs that enable inference efficiency and ac-
curacy.

In developing the MDL function, we resolve the following
issues: We propose a decomposition of description length for
NAT-modeled BNs. We show how to incorporate into de-
scription length persistent leaky causes (see Section 5) dis-
covered during learning. We reveal the break-down of MDL
decomposability, and propose remedy to maintain accuracy
of MDL score and learning efficiency. We identify the role
of NAT compression in learning NAT-modeled BNs.

The remainder is organized as follows: We review termi-
nology on NAT-modeled BNs in Section 2. Section 3 mo-
tivates the task of learning NAT-modeled BNs. Decomposi-
tion of MDL scoring function for NAT-modeled BNss is pre-
sented in Section 4. How should each component sub-score
be computed is presented in Sections 5 through 8. The struc-
ture search is described in Section 9 with complexity analy-
sis. We report initial experimental results in Section 10.

Two general applications of NAT-modeled BNs can be
identified. This work opens the door for possibility of a third,
which is discussed in Section 11 along with future research.

2 NAT-modeled Bayesian Networks
We review terminology on NAT-modeled BNs.



Causal Variables and Causal Events

A NAT model is defined over an effect e and a set of
Kk > 2 uncertain causes C' = {cy,...,¢q}, where e €
D, = {€°...,e"} (n > 1)and ¢; € {?,....,cI"} (i =
1,...,k,m; > 1). C' and e form one family (a child variable
plus its parents) in BNs. Values €° and ¢! are inactive. Other
values (may be written as e or cj) are active. That causes
in a NAT model are uncertain implies the following (they
can cause effect to be active, but do not always do so):

0< P(e*|c,....éd*) <1 (k>0,3;5 >0). (1)
That C'is the set of all causes implies the following:
P, ..., %) = 1. (2)

A causal event is a success or failure depending on if e
is active up to a given value, is single- or multi-causal de-
pending on the number of active causes, and is simple or
congregate depending on the value range of e. For instance,
P(e¥ «¢]) = P(e¥|c], ¢ : V= #14) (j > 0) is probability

1) Tz
of a simple single-causal success. P(e > ¥ < ci', ..., c}")

=Pe> ek|c{1,...,c§‘1,cg te, € C\X)

is probability of a congregate multi-causal success, where
Jiy-dqg > 0, X = {c1,...,¢4} (¢ > 1), and it may be
denoted as P(e > e* + x1) where 2t corresponds to X.

NAT Models

Interactions among causes in a NAT model may be rein-
forcing or undermining: Let ¥ be an active effect value,
R = {W1,....,Ws} (¢ > 2) be a partition of aset X C C
of causes, S C R, and Y = Uyy.csW;. Sets of causes in R
reinforce each other relative to e”, iff

VS Pe > eF f) < Ple > ek zh), 3)
where y T corresponds to Y. They undermine each other iff
VS P(e > eF —yh) > Ple>eb < zt). 4
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Figure 1: Direct (a) and dual (b) NIN-AND gates. (c) NAT.

A NAT consists of multiple NIN-AND gates. A direct gate
involves disjoint sets of causes W7, ..., W,. Each input event
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is a success e > eF +— wl (i = 1,...,9), e.g,, Fig. 1 (a)

where each WW; is a singleton. The output event is e > e*
wi, .., M;f with probability

¢
P(e > é* e@f,...,yg) = HP(e >ef e wl), (5)
i=1

and hence direct gates encode undermining.

Each input event of a dual gate is a failure e < e* « w
e.g., Fig. 1 (b). The output event is e < e « w], ..
with probability

+
:
S Wy

Ple < e* < wf, ...,w;f) =

and hence dual gates encode reinforcement.

Fig. 1 (c) shows a NAT, where causes h; and hy reinforce,
so do by and bo, but the two groups undermine each other. A
NAT is quantified by single-causals (probability parameters
of root events), in the form P(e* « ¢}) (j,k > 0). From
the NAT and single-causals, P(e > e! < hi hl bl bl), as
well as other values of CPT P(e|hq, ha, b1, by), are uniquely
specified.

NAT-modeled BNs

A BN, where CPTs of some variable families are NAT mod-
els, is a NAT-modeled BN, e.g., Fig. 2. Family of vg is a NAT
model, whose NAT is in (b) (simplified notation). Gate g3 is
dual, and g; and g are direct. A BN is fully NAT-modeled,
if every multi-parent family is a NAT model. The above BN
is so when families of vy, vg, v9 are NAT-modeled.

Vot Vo Vg+Vs VgtV

V2 V5 V7 V4 Ve

Vi V3

\%}

(c)

Figure 2: (a) DAG of a NAT-model BN. (b) NAT structure
over the family of vg. (c) Root labeled tree of NAT in (b).

Compression of NAT Models

An arbitrary tabular CPT (referred to as source CPT) can be
approximated by a NAT model, termed compression, as fol-
lows: The CPT is analyzed to determine causal interaction
(reinforcing or undermining) between every pair of causes if
possible, with the result being a pair-wise causal interaction
(PCI) pattern. From the PCI pattern, compatible candidate
NATs are extracted, and are parameterized into NAT mod-
els through constrained gradient descent search. The output
NAT is selected to minimize a distance measure between
source CPT and the NAT CPT.



3 Learning NAT-modeled BNs

A NAT-modeled BN can be obtained by first learning a BN
with tabular CPTs from data, and compressing it into a fully
NAT-modeled BN. This approach has several limitations:

First, it relies on other methods to acquire a tabular
BN, and does not completely resolve acquisition for NAT-
modeled BNs. Second, the DAG structure of the resultant
NAT-modeled BN is the same as the tabular BN. Since the
structure was obtained independently of NAT-modeling, it
may not be the most suitable structure for the NAT-modeled
BN both efficiency-wise and accuracy-wise. Third, a tabular
CPT may not be accurately approximated by a NAT model.
The approach does not guide the compression explicitly by
trade-off between representational efficiency and accuracy.
To overcome these limitations, this work studies learning
NAT-modeled BNs directly from data.

A common approach for learning BN structures from data
is to combine heuristic search of structures with a scoring
function, e.g., BD and MDL. The MDL principle (Rissanen
1978) views the best model of a dataset as one minimizing
sum of encoding lengths of the model and the data. More
accurate models reduce data encoding length, but increase
model encoding length as they are more complex. Hence,
the MDL principle offers a trade-off between accuracy and
efficiency.

In this work, we extend structure learning of BNs to learn-
ing NAT-modeled BNs using a NAT-enabled MDL scoring
function to trade off representational efficiency and accu-
racy. Our work also belongs to structure learning with lo-
cal structures, e.g., (Friedman and Goldszmidt 1996; Chick-
ering, Heckerman, and Meek 1997). The main difference
is that their work focused on equality constraints such as
CSI, with decision trees or decision graphs as local struc-
tures. Our current work focuses on inequality constraints
such as Eqns. (3) and (4), with NAT models as local struc-
tures. Therefore, our work complements existing BN struc-
ture learning with local structures.

We develop a NAT-enabled MDL score below, couple
with a heuristic structure search, and evaluate feasibility of
learning NAT-modeled BNs from data experimentally.

4 NAT-Enabled MDL Scoring Function

Since a tabular CPT may not be sufficiently accurately ap-
proximated by a NAT model, we make the compression de-
cision by a NAT-enabled MDL score. The MDL function for
a tabular BN is additively decomposed into the model de-
scription length and the data description length. Both need
to be extended to allow NAT modeling. We assume that the
dataset D involves n variables X1, ..., X,, (additional vari-
ables may be introduced due to NAT modeling as shown be-
low), and includes N data records. Since the MDL func-
tion is score equivalent (Chickering 1995) and decompos-
able (see below on its violation due to NAT-modeling and
the proposed solution), we consider description length over
a single family, made of a variable X; and its parent set ;.
To allow trade-off of representational efficiency and accu-
racy, dependency of X; on m; may be expressed by tabular
CPT or NAT model. With tabular CPT, description length of

601

the X; family is decomposed into model description length
and data description length:

DLrapcpt = DLnyodet + DL1abData,

where X; in DL7qpcpe(X;) and other terms are omitted.

Model description length over the family can be further
decomposed into DAG description length (relative to DAG
structure over the family) and CPT description length (rela-
tive to tabular CPT):

DLTabCpt = DLDag + DLCpt + DLTabData-

A NAT-modeled BN has a global structure (the DAG)
and local structures (NATSs). If the X; family forms a NAT
model, its DAG description length is similar to that of a
tabular CPT (except the difference in Section 7). Since the
NAT CPT is defined by NAT structure and single-causals,
CPT description length is decomposed into NAT description
length and single-causal description length:

DLNatMod = DLDag +DLNat + DLSC + DL NatData-

As will be seen, data description length also differs de-
pending on whether tabular CPT or NAT model is used
(Section 8), and hence the naming of DLp,ppate and
DLNatpata- The following sections present these compo-
nents of description length separately in the order of

DLSm DLN(I,tv DLDag7 DLNatDatn,-

5 Single-Causal Description Length

Let s; denote the domain size of X;, k; = |m;| denote the
number of parents of X;, and s;; denote the domain size of
the jth parent of X;. If ¢; denotes the number of configura-
tions of 7;, we have ¢; = Hf’zl s;5. If X; has a tabular CPT
P(X;|m;), the number of CPT parameters is (s; —1)g;. Each
parameter is typically encoded with $logo(N) bits (Fried-
man and Yakhini 1996). Hence, the CPT description length
is

1 . ,
DLcpt = §logg(]\7)(si -1) H si; (bits). (7)
j=1

If the X; family is NAT modeled, where ; is the set of
all causes of X; (see below for alternative), the number of
single-causals needed to specify the NAT model is

(81‘ — 1) Z(S” — 1).
j=1
Encoding each parameter with $log2(IN) bits, single-causal
description length of the X; family is
1 = _
ilogg(N)(si -1 Z(SU — 1) (bits).  (8)

Jj=1

DLg. =

The above description length is applicable when X; fam-
ily has no persistent leaky cause (Henrion 1989; Xiang and
Jiang 2018), but must be extended otherwise. The leaky
cause for an effect X; represents all causes of X, that
are not explicitly named. A leaky cause may be persis-
tent. A non-persistent leaky cause can be modeled as other



causes. In such cases, we denote all causes of effect e by
c1, ..., Cy. If the leaky cause is non-persistent, we assume
that one of ¢y, ..., ¢, is the leaky cause. When the X; fam-
ily forms a NAT model, we have e = X; and Kk = k;. A
source CPT with a non-persistent leaky cause has a fully
specified P(elcy, ..., c,), where P(e%|c),...,c%) = 1 and

Y n
P(e*|cY,...,e0) = 0 for k > 0. Hence, Eqn. (2) holds.

A persistent leaky cause is always active. We integrate
all persistent leaky causes of the same effect into a single
cause, and denote the leaky cause by cg. In such cases, we
denote other causes of effect e by cy, ..., ¢,. Since ¢y is per-
sistent, we have ¢y € {c,ch}, and ¢y = ¢ always holds.
Because conditions (¢, ¢1, ..., ¢,,) never hold, and parame-
ters P(e|c§, 1, ..., ¢, ) are not empirically available, a source
CPT has the form Q(e|cy,...,c,) = Ple|cd,c1,...ycn).
Since ¢ is an uncertain cause, by Eqn. (1), we have

0 < P(elcg, Y, ..., &) = Q(eley, ...,

*trn

cn) < 1.

Hence, Eqn. (2) does not hold with the source CPT
Q(eley, ..., ¢p), which triggers identification during learn-
ing: If the X; family forms a NAT model, it involves a persis-
tent leaky cause. The source CPT Q(e|cy, ..., ¢,,) of n causes
is compressed into Py (€|co, 1, ..., ¢, ) of n 4 1 causes.

Due to the extra persistent leaky cause of the NAT model,
and that it is binary, additional s; — 1 single-causals are
needed to specify the NAT model: P(e* « c}) (k > 0).
Hence, when the family of X; forms a NAT model with the
persistent leaky cause, Eqn. (8) no longer applies. Instead,
the single-causal description length is

1 o
DLs. = 5logs(N)(si —1)(1+ > (s —1). )
j=1

6 NAT Description Length

We consider two options of NAT encoding. A NAT can be
expressed as root labeled tree (RLT), where a node repre-
sents a root event, or the leaf event, or a gate, preserving the
tree topology. The RLT of NAT in Fig. 2 (b) is shown in (c).
When the family of X; forms a NAT model, the NAT can be
encoded by encoding RLT, e.g., encoding parent set of each
node in the RLT. For RLT of m nodes, encoding index of
each node takes logo(m) bits. For instance, if x; = 3, the
RLT has as fewer as 4 nodes (3 roots and 1 leaf). Encoding
index of each node with logs(4) = 2 bits, the RLT can be
encoded with 2«4 = 8 bits. If k; = 15, the RLT has as fewer
as 16 nodes, and can be encoded with 4 % 16 = 64 bits.

Alternatively, the RLT can be encoded by encoding its
unique PCI pattern. With x; = |m;| denoting the number
of parents of X;, encoding PCI pattern takes ; (r; — 1)/2
bits. When k; = 3, we need 3 bits. When x; = 15, we need
15 % 14/2 = 105 bits.

The above shows that none of the options dominates the
other: For simplicity, we use PCI pattern-based encoding.
If the family of X; forms a NAT model without persistent
leaky cause, the NAT description length is

1
DLNat = 5/‘61‘(/’61‘ — 1) (bZtS)
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If the NAT model involves a persistent leaky cause, the num-
ber of causes increases to «; + 1. The description length is

1
DLNat = 5/%(/% + ].) (bZtS)

7 DAG Description Length

DAG description length over the family of X; encodes par-
ent set ;. Let n be the number of variables in the dataset D.
It takes loga(n) bits to encode the index of each node. For
tabular BNs, DAG description length of the family of X is
DLp.g = loga(n) k;.

For NAT-modeled BNs, the number of nodes in the DAG
may be greater than n, invalidating the above. For each NAT
family with a persistent leaky cause, an extra node is intro-
duced. The extra node has both local and global impact to
DAG description length:

Locally, since X; has an extra parent, factor x; in DLpgq
becomes 1 + k;. Globally, with the extra variable, logs(n)
bits are insufficient to encode index of each node. Let 3 be
the total number of persistent leaky cause variables (each
over a distinct variable family) introduced at a given time
during learning. Then DAG description length over the fam-
ily of X is

DLpag =loga(n + B) (1 + k;) bits. (10)
Since [ changes as learning proceeds, existence of 3 in
DL p,g introduces dependency between description lengths
over different variable families, and breaks down decompos-
ability of the MDL function.

To ensure accuracy of MDL score, we deployed the fol-
lowing: When a new NAT family with persistent leaky cause
is learned, or such a family learned earlier is invalidated dur-
ing learning, we apply a global updating of family scores to
adjust 8 value in loga(n + ) coefficient. This allows de-
composability of the MDL function to persist between NAT
family updates, and enables efficient score computation.

8 Data Description Length
When CPT of X is tabular, data description length over the
family is

qi T

Siik
DLrabpata = — Y Y Siji l0ga (J\;.; >7
— — ij
j=1k=1
where s, 5 counts family configurations (X; = k, m; = m;;)
in D, M;; counts parent configurations (m; = m;;), and

Sijk/Mij estimates P(Xl = k‘|ﬂ'l = 7Tij).

When family of X; is a NAT model ©;, the above data
description length must replace P(X; = k|m; = m;;) with
Po,(X; = k|m; = m;;) defined by the NAT model CPT.
Data description length over the family of X is

q; T4
DLnNatData = — Z Z Sijk loga (P@i (Xi = klm = Wij))

=1 k=1

The above requires fully specifying the NAT model ©;. To
do so, we first estimate tabular CPT P(X;|m;) from D,
and then compress the CPT into ©,. Since computation of
DLnatpate TEQUires compression, it is significantly more
costly than D Lpgppatq in learning tabular BNs.



9 Heuristic Search and Complexity

As learning BNs from data is NP-complete, a number of
heuristics have been proposed for search of alternative struc-
tures. One may start with a complete graph, remove links
by conditional independence, and orient the resultant graph.
One may also start with an empty graph, add arcs until no
further addition improves the score, and then remove arcs
until no further removal improves the score. Alternatively,
arcs may be added, deleted, or reversed until it is no longer
possible to improve the score. The search may also be or-
ganized by orderings of variables, rather than by DAGs. A
recent summary of search heuristics in BN structure learning
can be found in (Lee and van Beek 2017). As the first study
of learning NAT-modeled BNs, a heuristic similar to that of
(Friedman and Goldszmidt 1996) is extended in our learning
algorithm, referred to as LearnNatBn. As its pseudocode
at a reasonable level of details cannot fit into the space limit,
we describes its key components below:

LearnNatBn takes as input a dataset D over a set V/
of variables. It learns a NAT-modeled BN A/ = (G, Q, ©).
G is a DAG possibly over a superset of V' (due to persistent
leaky causes). 2 is a set of CPTs one for each variable family
whose dependency is quantified by tabular CPT. O is a set of
NAT models one for each variable family whose dependency
is quantified by NAT model.

LearnNatBn starts with an empty DAG. The MDL
score of a DAG G is denoted as DL(G). Search proceeds
in multiple rounds. Each round tries to find a DAG G’ that
differs from G by one arc, whose score DL(G’) is better
than DL(G). Search terminates when no such DAG can be
found to improve the score.

For each newly formed variable family in the current
DAG, MDL sub-scores are computed for both tabular CPT
and NAT model. For X; with k; = |r;|, the number of alter-
native NAT models over the X; family is super-exponential
in k;. Instead of computing a MDL sub-score for each NAT
model, we compress the tabular CPT (estimated from data)
into a NAT model. That is, the search through the NAT space
is conducted by compression, and the best NAT model found
is MDL-scored. Decision to model the family as tabular CPT
or NAT model is made by comparing the two sub-scores.
If the NAT model is selected that involves persistent leaky
cause, a new variable will be included in the current DAG.

For complexity of LearnNatBn, denote n = |V|. O(n?)
links are evaluated before one is added, removed, or re-
versed. At most O(n?) links can be added, yielding com-
plexity of O(n*). The above does not count cost of NAT-
model compression, including PCI pattern recognition, NAT
extraction, and NAT parameterization. Complexity of PCI
pattern recognition for a variable of  parents is O(x?) (Xi-
ang and Jiang 2018). For PCI pattern with 3 missing bits,
complexity of NAT extraction is O(x? 2°%%). Let s bounds
variable domain sizes, and 7 bounds steps in gradient de-
scent during NAT parameterization. Complexity of NAT pa-
rameterization is O(r s 7 29).

Due to compression, learning NAT-modeled BN is sig-
nificantly more costly. To be as efficient as possible,
LearnNatBn also uses mutual information between pairs
of variables to reduce links evaluated in each round.
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Before LearnNatBn, D is pre-processed into a set F'
of frequencies of unique records over V. | F'| is significantly
< |D|, and complexity of LearnNatBn is linear on | F|.

10 Initial Experimental Results

To establish feasibility of learning NAT-modeled BNs from
data, we generated 30 fully NAT-modeled BNs (Fig. 3), re-
ferred to as source BNs. Each source BN consists of 200 bi-
nary or ternary variables. The maximum number of parents
per variable is 12. The density of the DAG is controlled by
adding 5% extra arcs beyond being singly-connected. Each
source BN is transformed to an equivalent peer tabular BN,
from which a dataset of size N = 5000 is sampled as input
to LearnNatBn.

Among the 200 variable families in each source BN, be-
tween 18 and 28% are NAT-models, and the rest have tabular
CPTs. In NAT-modeled BNs, between 11 and 18% of vari-
able families are NAT-models.

4.0 0.045 5.0

3.5 0.040 +

3.0 0.035 4.0

2.5 0.030 3.0

2.0 0.025 2.0

1.5 0.020 ' .
1.0 0.015 1.0

B LearnTm-hr B PstErr B Tab-log-ms M Nat-log-ms

Figure 3: Summery of experimental results

Fig. 3 (left) reports learning time in hours. Learned NAT-
modeled BNs are evaluated by accuracy of inference and ef-
ficiency gain, relative to the peer BN. Each peer BN is com-
piled into a junction tree for lazy propagation. Each learned
BN is de-causalized (Xiang and Loker 2018) and compiled
into junction tree. Ten runs of inference are performed on
each peer BN and each learned BN, by observing 10% of
randomly selected variables.

For inference accuracy, average differences on posterior
marginals over all variables (10 runs per BN) are reported
in Fig. 3 (middle). Learned NAT-modeled BNs yield suf-
ficiently accurate posteriors with average errors between
0.018 and 0.044.

For efficiency gain in inference, average runtimes (msec;
10 runs per BN) in logl0 for peer BNs (Tab-log-ms) and
learned BNs (Nat-log-ms) are shown in Fig. 3 (right).
Learned NAT-modeled BNs are between 110 and 990 times
faster in inference.

The initial experiment suggests that when data satisfy
NAT causal independence, and high treewidth, low density
structure, it is feasible to learn underlying NAT-modeled
BN that enable inference efficiency and accuracy.

11 Conclusion and Future Work

The main contribution is the first investigation on learning
NAT-modeled BNs. Although this study is not the first on
learning BNs with local structures, previous work mainly



focused on equality constraints such as CSI, with decision
trees or decision graphs as local structures. This work fo-
cuses on inequality constraints with NAT models as local
structures. Hence, this work complements existing literature
on BN learning with local structures. Contributions also in-
clude development of the NAT-enabled MDL function, cou-
pling it with a heuristic search, and initial empirical study on
feasibility of learning NAT-modeled BNs from data.

Two general applications of NAT-modeled BNs are
identified in the peer-reviewed literature: First, they of-
fer a tractable subclass of BNs for knowledge representa-
tion and acquisition (in line with the recent trend about
tractable models such as SPNs). Through recursive, rein-
forcing/undermining local modeling, they reduce space of
BNs from O(n s") to O(n s ). For high treewidth, low
density BNs, they enable tractable inference through tech-
niques such as de-causalization. Second, they offer a more
efficient approximation of intractable BNs through compres-
sion, trading accuracy for efficiency.

The current work opens the door for a third possibility,
where NAT-modeled BNs are used directly for modeling
data. To realize this option, a number of research issues are
yet to be addressed:

Feasibility of NAT-models as alternative for modeling
data needs to be evaluated. They are most beneficial when
underlying dependency structure has high treewidth and low
density. Existing real world BNs often do not fit this profile.
For instance, the 9 medium or large BNs in the BN Reposi-
tory has the maximum number of parents per node of 7. We
hypothesize the reason to be difficulty with tabular CPT elic-
itation (exponential human time) and learning (exponential
data). NAT-modeled BNs promise to remove the difficulty.
To test the hypothesis, learning NAT-model BNs from real
world data needs to be conducted.

The initial experiment found that strength of dependency
between individual causes and their effect in the same NAT
model is far from uniformly distributed. Due to the uneven
strength of dependency, a cause in the source NAT model
may be excluded during learning. Implication of such exclu-
sion should be evaluated. Deeper understanding of strength
of dependency within NAT models is needed, e.g., how
NAT topology and single-causal values determine relative
strength of dependency for individual causes.

Investigation on learning of NAT-models requires simu-
lation of source models as experimental testbeds. It is de-
sirable that similarity between source and learned BNs posi-
tively validates learning. That is, source BNs should be faith-
ful models. Fueled by deeper understanding of the depen-
dency within NAT models, simulations that generate such
source BNs should be developed.

The initial experimental study tested one heuristic search
method. Many alternatives exist, e.g., NAT-enabled scoring
is applied at only the last round of search. Further research
to compare alternative heuristics relative to quality of output
NAT-modeled BNs and efficiency of learning is needed.

Additional issues for future research include integration
of alternative encodings relative to D Ly, improved NAT-
modeling for small datasets, and comparison with learning
algorithms utilizing other local models.
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