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Abstract

How humans reason about syllogistic statements is a problem
that currently lacks a comprehensive, universally accepted ex-
planatory theory. The goal of this article is twofold: First, it
sheds light on the actual predictive quality of existing theo-
ries by providing a standardized implementation of a subset
of them. To that end, the theories are algorithmically formal-
ized, including their capabilities for adaptation to an individ-
ual reasoner. The implementations are modular with regard to
mental operations defined by the cognitive theories. Based on
such operations, a novel composite approach is devised, re-
sulting in a prediction model for predicting an individual rea-
soner before she draws the inference. It uses sequences of op-
erations, selected from possibly different theories, to form its
predictions. Among the basic models, our implementations
of PHM, mReasoner and Verbal Models make the best pre-
dictions. The composite model is able to significantly surpass
it by exploiting synergies between different models. There-
fore, the composite approach is a promising tool to model
and study syllogistic reasoning and possibly other reasoning
tasks as well.

Introduction
Reasoning is one of the most distinguishing human charac-
teristics compared to other living creatures. One particular
domain in the study of reasoning concerns itself with syllo-
gistic inferences. Such an inference may look like this:

No optician is a camper.
Some campers are barkeepers.

Therefore: Some barkeepers are not opticians.

In experiments, reasoners often demonstrate systematic
deviations from the classical logical conclusion to syllo-
gisms (see for example Begg and Denny 1969). In the last
century, multiple theories have been developed to explain
patterns in human responses to syllogistic reasoning tasks.
None of these theories seems to be fully satisfactory, as
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discussed in a meta-analysis by Khemlani and Johnson-
Laird (2012). However, there is no comprehensive compar-
ison of syllogistic theories yet that takes their adaptive po-
tential towards individual reasoners into account. The goal
of this article is to present explicit and modular implemen-
tations with respect to mental operations for a number of
syllogistic theories. The set of all operations across differ-
ent theories is used to create a novel composite model of
reasoning. Our evaluation shows that this model exceeds the
predictive performance of its constituent models by finding
new and appropriate mental processes.

Background
A syllogism is a kind of logical argument made up of cate-
gorical propositions. The four types of propositions are: All
X are Y, Some X are Y, No X are Y and Some X are not Y. A
syllogism consists of two categorical premises which share
exactly one term, often denoted as B. When terms like opti-
cian and camper are replaced by generic terms, there are 64
different kinds of syllogisms, like the following one.

All A are B.
Some B are C.

A well-formed conclusion to a syllogism relates the two
terms that are not shared. These terms are often denoted with
A and C. With four types of propositions and two ways to
order A and C, there are eight possible conclusions. A spe-
cial response in many experiments is No valid conclusion
(NVC), indicating that nothing follows.

There are at least twelve theories that seek to explain and
model reasoning on syllogisms. They can roughly be cat-
egorized into three domains (Khemlani and Johnson-Laird
2012). First, heuristic theories proposing that conclusions
are drawn quickly and intuitively, based on apparent fea-
tures of the syllogism. Second, rule-based theories, which
propose that inference takes place deliberately by applying
formal inference rules to mental representations of proposi-
tions, similar to logical deduction. Third, there are theories
using sets, diagrams or models rather than propositions as
mental representation. These theories suggest that reason-
ing happens by encoding, manipulating and drawing con-
clusions from such representations.
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Basic Models
The reasoning task to be modeled is defined by its possi-
ble input items and responses. The set of input items CItem

contains the 64 types of syllogisms. CResponses contains
all subsets of the eight possible conclusions plus NVC. A
model needs to implement a parameterized prediction func-
tion fp : CItem → CResponses. The internal parameters
p can then be fitted to seen pairs of item and response. A fi-
nal prediction is obtained by choosing uniformly among the
responses predicted by fp.

From the twelve theories of syllogistic reasoning the fol-
lowing seven have been formalized and implemented: At-
mosphere, Matching, Illicit Conversion and PHM as heuris-
tic theories, PSYCOP as rule-based theory and Mental Mod-
els (both mReasoner and a classical version without heuris-
tics) and Verbal Models as model-based theories.

Exemplarically, Verbal Models (Polk and Newell 1995)
proposes three different operations: Encoding, conclud-
ing and reencoding. Initially, the premises are encoded
into a mental model. A mental model is a representation
of a situation in which the presented propositions are
true. For example, the syllogism All A are B. Some B
are not C. quantifies three sets and if we consider individ-
ual elements the following model could be mentally formed:

a' b' -c (one individual)
a' b' (another individual)

VM draws conclusions from a mental model according
to certain pattern-matching rules. If no conclusion is found,
the problem is reencoded, leading to a new mental model.
For reencoding, VM chooses a term in the model and tries
to extract additional information about it from the premises.
This process is repeated until a mental model is found which
entails a conclusion or all available additional information
has been considered.

A simpler theory than VM is the Atmosphere the-
ory (Woodworth and Sells 1935; Revlis 1975). Its core op-
eration is a heuristic that determines the type of an accepted
conclusion from the types of premises in a specific way: The
quantifier of the conclusion is particular if at least one of
the premises is particularly quantified, otherwise the quan-
tifier is universal. A similar rule holds for the quality of the
quantifier. The quantifier of the conclusion is negative if at
least one of the premise quantifiers is negative, otherwise
the quantifier is universal. In that sense, particular and nega-
tive quantifiers are dominant. The Atmosphere heuristic nat-
urally leads to an algorithmic prediction model by choosing
those conclusions for prediction which are of the type that
follows from the heuristic.

A Composite Approach to Modeling
Reasoning

The modular algorithmic implementations of different rea-
soning models form the basis for an abstract reasoning
model that replaces concrete operations with classes of op-
erations and concrete mental representations with a set of
unified mental representations. That way, operations from
different theories can operate on a common representation,
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Figure 1: Abstract reasoning model for syllogistic reasoning.

opening up the possibility of combining these operations
into new mixed-model reasoning paths.

An abstract reasoning model is defined as a graph with
a set of states S and a set of directed edges E. For every
s ∈ S, a set of possible content Cs is defined. The set CItem

contains the possible input items and CResponses all subsets
of possible responses. The pair (CItem, CResponses) defines
the reasoning task.

Considering the implemented syllogistic theories, we use
three different types of mental representations: First, tenta-
tive conclusions CTC = CResponses as produced by heuris-
tics or derived from a mental model, including NVC. Sec-
ond, a mental model representation CMM that unifies men-
tal and verbal models. And third, sets of two to four premises
CPremises as produced by Illicit Conversion. Additionally,
there can be pairs of mental models and tentative conclu-
sions CMM+TC = CMM × CTC that are kept in mind si-
multaneously. The according abstract reasoning model is
shown in Figure 1. Nodes in the abstract reasoning model
correspond to classes of content, edges correspond to classes
of operations. By considering operations as being related to
edges in the abstract reasoning model, we can use sequences
of operations that lead from the initial state Item ∈ S to the
target state Responses ∈ S to make predictions. The set
of prediction sequences can be obtained by expanding a tree
where each node N = (s, c, v) corresponds to a state s ∈ S
in the abstract reasoning model and contains some specific
content c ∈ Cs associated with this state. Additionally, ev-
ery node holds a particular variable assignment v ∈ V that
is used to define applicability constraints of an operation, for
example to restrict the length of prediction sequences.

An operation Ω = (O, fvar, φ) consists of several
elements: First, the actual content transformation opera-
tion O : Cpre → Cpost that is defined on the edge
(pre, post) ∈ E. Implicitly, O defines a state transition
from the state pre ∈ S \ {Responses} to the state
post ∈ S. Additionally, the application of Ω may alter
the current state of variables via a variable transition func-
tion fvar : V → V , for instance by incrementing a counter.
The function φ : S × V → {True, False} defines the
applicability of Ω, depending on the variables and state of a
node, but not on its content. An operation Ω is applicable in
a node N = (s, c, v) iff φ(s, v) evaluates to true. A check for
s = pre is by default included in φ. An applicable operation
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Figure 2: Exemplary subtree of Ti for i = Some A are B. All C are B with four prediction sequences. For every node, state and
content are depicted. Values of variables are not shown.

Ω = (O, fvar, φ) can be applied to a node N = (pre, c, v)
to yield a new node Ω(N) = (post, O(c), fvar(v)). Now,
for every i ∈ CItem, a prediction tree Ti is expanded, start-
ing with the initial node (Item, i, vinit). Child nodes are
added to a node by application of an operation until no more
operations are applicable to any node. A subgraph of such a
prediction tree is shown in Figure 2.

A prediction sequence in Ti is a path from the root node to
some leaf node L = (Responses, c, v) that corresponds to
the target state Responses. Since the applicability of opera-
tions depends only on the state and the variable assignment,
but not on the content of a node, Ti looks the same for each
i ∈ CItem except for the content of its nodes. In particular,
they have the same set of prediction sequences, which makes
them comparable across different items.

Evaluation and Discussion
All models are evaluated using the CCOBRA framework1.
For training and testing, the data provided in the CCOBRA
repository is used. The Veser 2018 dataset with 2058
items over 33 participants is used as training data and the
Ragni 2016 dataset including 8896 participants over 139
subjects is used for evaluation. For comparison, four bench-
mark models are added. The models’ overall predictive ac-
curacies are shown in Figure 3.

Basic models Every implemented model is better than
guessing and thus captures some amount of structure in the
data. The simple heuristic models Atmosphere and Match-
ing show the lowest performance, predicting between 22 and
24 percent of responses correctly. In contrast to these two
models, the remaining six basic models all come with the
ability to predict NVC and, as expected, perform above the
NVC benchmark. The non-heuristic Mental Models version,
PSYCOP and Illicit Conversion constitute a mediocre block,
predicting around 35 percent of the responses correctly.

The strongest basic models are Verbal Models, mRea-
soner and PHM, which almost reach the MFA benchmark.

1https://github.com/CognitiveComputationLab/CCOBRA

Both Verbal Models (Polk and Newell 1995) and mRea-
soner (Khemlani and Johnson-Laird 2016) have previously
been used successfully to explain individual differences in
syllogistic reasoning. This evaluation underlines the strength
of these models in adaption to individual reasoners. The
strongest basic model is PHM, which is the only theory in
the top group that is not model-based. The strong perfor-
mance of PHM provides evidence that not only model-based
approaches but also a purely heuristic theory can perform
close to the MFA benchmark in syllogistic reasoning.

Composite model The composite model outperforms the
best basic models, predicting about 44 percent of the re-
sponses correctly. It also slightly exceeds the MFA bench-
mark, which strongly suggests that it successfully adapts to
individual reasoning patterns. For comparison, a version of
the composite model was implemented which allows only
prediction sequences containing operations from one and the
same basic model. This version gets only around 42% of its
predictions correct. Thus, the improvement that the compos-
ite model provides over its constituent models seems to have
a significant synergistic component that comes from allow-
ing prediction sequences that combine operations not only
from the same, but also from different models. The compos-
ite model using only single-model-sequences does not sig-
nificantly outperform the best basic models, even though it
has access to the bulk of their operations. Though, it cannot
use their entire adaption potential. The internal parameters
of the operations used by the composite model need to be
fixed, so the operations themselves cannot be adapted to in-
dividual reasoners. In effect, part of the improvement gained
by the adaptability on the level of prediction sequences is
eaten up by a lack of adaptability on the level of single op-
erations. To judge the predictive quality of the composite
model in more detail, it would be interesting to have an up-
per bound specifically defined for the evaluation set, reveal-
ing which performance can in principle be achieved. Such
an upper bound is likely not far beyond the MFA bench-
mark (Riesterer, Brand, and Ragni 2019). Minimally outper-
forming this benchmark seems to place the composite model
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Figure 3: Model evaluation results. Uniform Model: Randomly predict one of the nine possible responses. NVC Model: Always
predict NVC. MFA Model: Always predict the most frequent response to the respective syllogism in the training data (breaking
ties by randomly choosing among the most frequent responses).

not far away from the theoretical upper limit, while still leav-
ing room for improvement.

Conclusion and Outlook

A set of seven different theories of syllogistic reasoning
has been systematically converted into parametric prediction
models. The evaluation of these models sheds light on the
theories’ potentials for individual adaption, which has pre-
viously lain largely dormant in the context of model eval-
uation. It has been shown that PHM, mReasoner and Ver-
bal Models show the best performances, with PSYCOP in
midfield and simple heuristic theories like Atmosphere and
Matching below. These results make a case for model-based
and heuristic models. Also, a novel approach to combining
basic reasoning models has been proposed and applied to the
syllogistic single-response task. While even the best basic
models still perform below the MFA benchmark, the com-
posite model slightly but significantly outperforms both its
best constituent models and the MFA benchmark. A syner-
gistic component of this improvement, resulting from com-
bining operations from different models, has been exposed.

To garner further insights, a methodically sound analy-
sis of the performance of the composite model is required.
One could examine, which operations are particularly im-
portant or negligible to achieve its successful adaption and
gain information about how existing models might be im-
proved. For the future, it might also be interesting to apply
a composite approach either to other syllogistic tasks like
conclusion verification or to other reasoning domains. The
presented approach can also be used to create models with a
carefully designed set of reasoning sequences. The compos-
ite approach itself can further be improved as well to accom-
modate to use stochastic operations. In contrast to classical
reasoning theories which are monolithic, identifying and re-
combining operations in existing theories is a next level of
models that can be adaptive for humans.
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