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Abstract

Social network analysis is a popular field of research and
most commonly supported by graph theory-based methods.
But there is an up-and-coming approach that has spilled
over from the area of artificial intelligence – so-called
entropy-driven social network analysis. This approach uses
probabilistic conditionals to express relationships between
actors or groups of actors rather than merely edges or
arrows. The new method allows for calculating all actors’
importance in the net. However, if an analyst imprudently
assigns probabilities to conditionals in the social network,
the whole structure can be inconsistent, and hence the
above-mentioned indices then are meaningless. Therefore,
we propose a new interactive algorithm that helps the analyst
to detect and revise such inconsistencies. The applicability
of the algorithm will be exemplified by a mid-sized family
network.

Introduction
Studying Social Networks (SN) supported by quantitative
methods is becoming increasingly important and is being
continuously developed due to the strong demand for so-
cial media products such as Facebook or Twitter. However,
theory of social fabrics or networks is much older than
those platforms. In the 1930s, the sociologist Jakob Moreno
laid the foundation for graph theory-based analyses of so-
cial fabrics; for the first time, he presented 1934 a graphi-
cal image of a set of actors (nodes) and their relationships
(edges) – called sociogram, cf. (Moreno 1934). Since then,
graph theory-based toolboxes have been continuously en-
riched by indices, e.g. to assess the importance of actors or
relationships, and algorithms, e.g. to reveal the vulnerability
of paths between actors or to detect groups or cliques. An
overwhelming portrayal of the mathematical concepts can
be found in (Newman 2012).

A new up-and-coming framework for modeling and an-
alyzing social networks follows the above-mentioned clas-
sical graphical representation, but replaces the semantics of
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edges by conditionals – if-then. This means: if an actor i
has, for example, a message, then actor j also does when
both are connected by an arrow, refer to (Rödder, Brenner,
and Kulmann 2014). Here, the authors show that under this
conditional-logical framework one can determine diffusion
and reception potential of each actor in the SN. For this
purpose, they determine a probability distribution Q on all
possible states of the network, using the principle of max-
imum entropy or minimum cross-entropy; for more details
on this see (Csiszár 1975; Shore and Johnson 1980; Kern-
Isberner 1998). A concept for modeling such conditional-
logical frameworks are markov nets, which can be realized
in the expert system shell SPIRIT (SPIRIT 2011).

However, one shortcoming of the new findings is that
the authors restrict their analysis to certain conditionals: all
conditionals have the same weight, i.e., probability 1. In
(Rödder, Kulmann, and Dellnitz 2016), consequently, the
authors go one step further and relax this restriction. Here,
they show that if the probabilities of all conditionals are
equal, one can always determine a Q which allows for study-
ing the aforementioned indices. For different transfer proba-
bilities, such a Q might not exist. Therefore, generating con-
sistent transfer probabilities is subject of this paper. In order
to reach this goal, first, we make use of the fact that for a to-
tally unconnected social network, we can always determine
a Q. Next, we iteratively add new conditionals to the SN,
fathoming its upper and lower probability limits beforehand
to further guarantee the existence of Q. If the desired proba-
bility does not fall into these limits – meaning that the prob-
ability is not compatible with currently collected net data –,
the respective probability will be revised.

The remainder of the paper is organized as follows: The
next section introduces the concept of entropy-based knowl-
edge processing in a probabilistic conditional logical frame-
work. Then we pave the way to consistently weighted SN
and present the new algorithm. Next, we apply the algo-
rithm to a mid-sized family network. Finally, we conclude
and point to future research.
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Syntax, Semantics and Usefulness of
MinREnt-Nets

The following definitions and statements originate from
(Rödder, Kulmann, and Dellnitz 2016); consequently and for
the sake of transparency, we employ most of their notation
to quickly catch up our idea of generating consistent social
networks.

Let a1, . . . , an be n actors. Each actor ai will be repre-
sented by a binary variable Vi, with Vi = vi and vi = i
or i. Where Vi = i or i is the proposition that actor ai has
the message (i) or not (i). Thus, a vector v = (v1, . . . , vn)
contains possible states of this network. For pairs of actors
(ai, aj), we call Q(Vj = j | Vi = i) = pij a probabilistic
conditional; if actor i has the message or information, then
also j does with transfer probability pij .

Some of the potential information flows and the respective
transfer probabilities pij might be known empirically, con-
ducting e.g. surveys, counting frequencies of message flows,
etc. They reflect effectiveness of each link.

As indicated in the introduction, we are now seeking for
a probability distribution Q on V = {v} that respects all
observed transfer probabilities – TPs for short:

Q(Vj = j | Vi = i) = pij for (i, j) ∈ N

with N ⊆ {1, . . . , n} × {1, . . . , n}. (1)

Such a distribution is called net deployment, refer to (Rödder
et al. 2019). In general, however, the observed links and re-
spective transfer probabilities do not fully determine the dis-
tribution Q. The expert system shell SPIRIT (SPIRIT 2011)
picks up an outstanding net deployment Q from all possible
distributions – called MaxEnt- or MinRent-deployment; see,
for example, (Rödder, Reucher, and Kulmann 2006). The
shell solves

Q∗ = argmaxH(Q) = −
∑

v

Q(v) log2 Q(v)

s. t. Q(Vj = j | Vi = i) = pij , (i, j) ∈ N

(2)

or equivalently

Q∗ = argminR(Q,P0) =
∑

v

Q(v) log2
Q(v)

P0(v)

s. t. Q(Vj = j | Vi = i) = pij , (i, j) ∈ N

(3)

(2) and (3), respectively, comply with all surveyed TPs pij
and calculate the deployment Q∗ with maximal entropy H
and minimal relative-entropy R being P0 the uniform distri-
bution. What can we learn if an actor ai sends the message:
Vi := i? In our context, fixing a state in this way is called
evidenciation; it can be performed by solving

Q∗∗ = argminR(Q,Q∗) =
∑

v

Q(v) log2
Q(v)

Q∗(v)

s. t. Q(Vi = i) = 1.

(4)

Thus, evidenciation again means conditioning, now adapt-
ing Q to Q∗ such that Q(Vi = i) = 1. If Q∗∗ is determined
via (4), then one can calculate the probability Q∗∗(Vj = j)
for each j �= i. For an actor aj , it is the probability to receive

the message when actor ai has dispatched it. However, this
probability might be subject to indeterminacy due to poor
net structure. Even though, one can determine an interval es-
timate – named indeterminacy interval (II) – in which it must
fall, cf. (Reucher 2002) and (Rödder, Reucher, and Kulmann
2006):

1. Solve (3) with the only restriction Q(Vj = j | Vi = i) =
ε, ε > 0 being a sufficiently small number. Result Q̄�∗

2. Solve (3) for Q̄�∗ instead of P0. Result ¯̄Q�∗

3. Calculate � = ¯̄Q�∗(Vj = j | Vi = i)

4. Solve (3) with the only restriction Q(Vj = j | Vi = i) =
1−ε, ε > 0 being a sufficiently small number. Result Q̄u∗

5. Solve (3) for Q̄u∗ instead of P0. Result ¯̄Qu∗

6. Calculate u = ¯̄Qu∗(Vj = j | Vi = i)

7. [�, u] then is the indeterminacy interval (II)
Algorithm 1: computing II for Vj = j | Vi = i

A net deployment Q is called useful if for all i the relation
0 < Q(Vi = i) < 1 holds, otherwise it is named useless.
For a justification refer to (Rödder, Kulmann, and Dellnitz
2016). Simply speaking, in the case of Q(Vi = i) = 0 or
Q(Vi = i) = 0, the conditional probabilities Q(Vj = j |
Vi = i) and Q(Vj = j | Vi = i) are degenerated. If any
deployment becomes useless in Algorithm 1, the determina-
tion of [�, u] is impossible. The reason for this problem is an
inappropriate assignment of TPs pij in (2) and (3).

In the following section, we show how the calculation of
indeterminacy intervals can support the analyst by correct-
ing inappropriate TPs .

From Useless towards Useful Social Networks
As indicated earlier, modeling a conditional probabilistic so-
cial network – with inappropriate transfer probabilities pij –
can lead to useless network structures. This kind of issue
can have various reasons: measurement errors in data ac-
quisition, errors in data documentation, errors in data inter-
pretation, lack of objectivity, insufficient reliability and va-
lidity, undiscovered outliers, improper data transformations
into probabilities; for a deeper discussion regarding the lat-
ter refer to (Borgatti and Halgin 2011).

Unfortunately, often one cannot avoid all errors; there-
fore, we propose an algorithm which enables the analyst to
modify interactively useless social network data. Step-by-
step, we implement each conditional and the corresponding
transfer probability – perhaps altered after checking its re-
liability. To get more familiar with the underlying philoso-
phy of our algorithm, first, the procedure will be formulated
in narrative terms; more technical details will then be given
in Algorithm 2. To start with: Let us assume that for some
(ai, aj), with i, j = 1, ..., n, the sociologist has observed
respective TPs pij . Applying the aforementioned semantics,
we can write a rule – a conditional and its probability – for
an arbitrary (aio , ajo) as Rio,jo = {Q(Vjo = jo|Vio =
io) = piojo}. Furthermore, the sociologist might attribute
reliability factors to such TPs, thus implying rule priori-
ties. Let R1, . . . ,Rl, . . . ,RL, with R1 � R2, . . . ,� RL,
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be the sequence of rules and p1, . . . , pL respective proba-
bilities. Hence, Rl is the rule with the l-th priority for the
pair (ail , ajl) and pl := piljl its underlying transfer prob-
ability. Given such a priority list for L pairs of actors, we
call Rdes = (R1, . . . ,RL) the desired set of rules, with
R1 � R2, . . . ,� RL. When solving (2) or (3) by applying
Rdes and when the result is a useful Q∗, then the algorithm
should immediately stop.In the case of inconsistent rules,
however, we initialize (l = 0) the iterative procedure with an
empty set of rulesRsn := ∅. Thus, the actual uniform distri-
bution P0 is the current net deployment. In the first iteration
(l = 1), we check the consistency between the rule with the
highest priority R1 and the still empty set Rsn. Needless
to say, consistency in this case is always ensured, hence let
Rsn := R1. The second iteration comprises the same steps
as the first one, yet applying the second rule R2. If R2 is
not in contradiction to Rsn = R1, we can implement R2

with p2; the situation now is given by Rsn := R1 ∪ R2.
However, let us assume that we detect an inconsistency in
the l-th iteration. This is the case when the desired proba-
bility pl is not an element of the indeterminacy interval (II),
so pl /∈ [�l;ul]. Consequently, pl must be revised. It is most
likely that the analyst selects the upper or lower bound of the
interval. The described procedure will be repeated, until the
remaining rules are stored inRsn.

Generally speaking: the social network will be succes-
sively enriched by consistent relationships until its full im-
plementation is realized. After this narrative delineation, Al-
gorithm 2 details all steps in pseudocode.

input: a useless set of rules with a given priority sequence
output: a useful social network
1. initialize an unconnected SN with n actors;
2.Rdes := (R1, . . . ,Rl, . . . ,RL);
3.Rsn := ∅;
4. l := 1;
5. while l �= L+ 1 do
6. solve Q̄�∗ = arg max H(Q) with
7. Q(Vjl = jl|Vil = il) = ε, ε > 0;
8. solve ¯̄Q�∗ = arg min R(Q, Q̄�∗) with Q |= Rsn;
9. calculate �l =

¯̄Q�∗(Vjl = jl|Vil = il);
10. solve Q̄u∗ = arg max H(Q) with
11. Q(Vjl = jl|Vil = il) = 1− ε, ε > 0;
12. solve ¯̄Qu∗ = arg min R(Q, Q̄u∗) with Q |= Rsn;
13. calculate ul =

¯̄Qu∗(Vjl = jl|Vil = il);
14. if pl ∈ [�l, ul] then
15. Rsn := Rsn ∪ {Vjl = jl|Vil = il [pl]};
16. l := l + 1;
17. else
18. if some p̃l ∈ [�l, ul] is acceptable
19. Rsn := Rsn ∪ {Vjl = jl|Vil = il [p̃l]};
20. l := l + 1;
21. else
22. stop algorithm;
23. end
24. end
25. end

Algorithm 2: Generating useful social networks

actor person acronym
a1 author EGO
a2 father DAD
a3 brother BRO
a4 aunt 2 AUN2
a5 uncle 2 UNC2
a6 grandaunt GRAN
a7 male cousin 1 COM1
a8 male cousin 3 COM3
a9 husband of female cousin HCOF
a10 second (female) cousin SCOF
a11 mother MOM
a12 sister SIS
a13 aunt 1 AUN1
a14 uncle 1 UNC1
a15 grandma GRMA
a16 female cousin COF
a17 male cousin 2 COM2
a18 husband of sister HSIS
a19 wife of male cousin 3 WCM3
a20 second (male) cousin SCOM

Table 1: Acronyms of family members.

GRAN GRMA

UNC2 AUN2

WCM3 COM3 COM2

UNC1 AUN1

COM1 HCOF COF

SCOF SCOM

MOM DAD

EGO HSIS SIS BRO

Figure 1: Pedigree.

If in line 18 the indeterminacy interval is inacceptable, the
algorithm terminates. In this case, a revised priority list
might be a way out of the deadlock.

Either way, the algorithm’s success crucially depends on
the willingness of the analyst to accept adjustments among
troublesome transfer probabilities.

Information Flow within a Family Network
Subject of analysis
The following example, which contains 20 family members
of different degrees of relation, originates from a bachelor
thesis of the University of Hagen, Germany, cf. (Erlekotte
2013). For the actors see Table 1, being EGO the thesis’s
author. Figure 1 shows the corresponding family pedigree.

Table 2 depicts the information flows and priority order
within the family network on forthcoming family celebra-
tions and the respective transfer probabilities.

Interactively towards a useful family network
In this section, we apply the Algorithm 2 to the so far use-
less SN given in Table 2. We learn that the first 15 rules
can be included without causing inconsistency, cf. Figure 2.
However, if rule R16 with p16 = 0.9 would be added to
Rsn, the net deployment became useless. For the conditional
UNC2 | AUN2, the indeterminacy interval yields [�16;u16]
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l relation l pl l relation l pl

1 UNC2 | COM2 [0.7] 19 GRMA | COF [0.9]
2 HCOF | COF [0.6] 20 BRO | MOM [0.7]
3 COM2 | AUN2 [0.6] 21 MOM | AUN2 [0.8]
4 GRMA | GRAN [0.9] 22 DAD | MOM [0.9]
5 UNC1 | AUN1 [0.6] 23 GRMA | COM1 [0.9]
6 COM3 | WCM3 [0.6] 24 MOM | COM3 [0.6]
7 SIS | MOM [0.7] 25 COF | COM1 [0.9]
8 EGO | AUN2 [0.6] 26 MOM | GRMA [0.8]
9 SCOF | COF [0.9] 27 GRMA | AUN1 [0.8]
10 AUN2 | COM2 [0.9] 28 GRMA | COM3 [0.9]
11 MOM | DAD [0.9] 29 EGO | MOM [0.8]
12 HSIS | SIS [0.7] 30 MOM | AUN1 [0.6]
13 BRO | EGO [0.7] 31 BRO | SIS [0.7]
14 SCOM | COF [0.9] 32 GRMA | MOM [0.8]
15 SCOF | GRMA [0.6] 33 COM1 | AUN1 [0.6]
16 UNC2 | AUN2 [0.9] 34 DAD | AUN2 [0.6]
17 HCOF | COM1 [0.6] 35 COM1 | COF [0.9]
18 AUN1 | COF [0.6]

Table 2: Desired set of rulesRdes

= [0.40; 0.87]. This interval shows that the analyst should re-
vise its perception about the transfer probability p16 = 0.9;
hence, a value p̃16 between 0.4 and 0.87 should be chosen to
maintain the usefulness of the current net deployment. When
refusing any adjustment, Algorithm 2 terminates. If the so-
ciologist accepts the probability p̃16 = 0.87, we get a useful
net deployment forRsn := {R1 ∪ · · · ∪ R15 ∪ {Q(UNC2 |
AUN2) = 0.87} ∪ R17 ∪ · · · ∪ R35}, cf. Figure 2.

Conclusion and future work
When studying data, one has to deal with many measuring
problems: e.g. too small and/or distorted samples, outliers,
etc. Of course, these issues can also show up in social net-
work analysis; and, most seriously, they can lead to incon-
sistent data when modeling social relations via probabilistic
conditionals. The main goal of this paper is to eliminate pos-
sible inconsistencies. Therefore, we develop an interactive
algorithm that helps the sociologist to revise inconsistencies.
In order to run the algorithm, a prioritization of all probabili-
ties is expected from the sociologist. How do priority orders
influence the net structure? Answering this question might
be an ambitious challenge for future research.
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