In Defense of the Neo-Piagetian Approach to Modeling and Engineering Human-Level Cognitive Systems

John Licato and Selmer Bringsjord
licatj@RPI.edu Selmer@RPI.edu
Department of Cognitive Science
Department of Computer Science
Lally School of Management
Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

Abstract

Presumably any human-level cognitive system (HLCS) must have the capacity to: maintain and learn new concepts; believe propositions about its environment that are constructed from these concepts, and from what it perceives; reason over the propositions it believes, in order to among other things manipulate its environment and justify its significant decisions; and learn new concepts. Given this list of desiderata, it’s hard to see how any intelligent attempt to build or simulate a HLCS can avoid falling under a neo-Piagetian approach to engineering HLCSs. Unfortunately, such engineering has been discursively declared by Jerry Fodor to be flat-out impossible. After setting out Fodor’s challenges, we refute them and, inspired by those refutations, sketch our solutions on behalf of those wanting to computationally model and construct HLCSs, under neo-Piagetian assumptions.

Concepts appear to lie at the heart of human intelligence. Every reader of the present sentence, for example, has and exploits the concept of a sentence, and every competent reader of the previous sentence has at least some concept of intelligence.

Given such truisms, it’s difficult to defend any approach to creating a human-level intelligence (= a HLCS) that doesn’t take some principled stance on both the nature of concepts and how they are to be used by the HLCS in its reasoning and decision-making. Production-system-based systems like ACT-R posit that at least some concepts are to be represented in logic-like fashion in declarative form. A Bayesian approach needs concepts and propositions to associate probabilities with. And finally, a connectionist system lacking at the object level concepts that are naturally represented in a logic (or some mathematical equivalent), but which treats concepts as “emergent” features of its sub-symbolic operations still needs to explain how the ability of an HLCS to consistently recognize, reason over, and communicate about concepts arises—which would itself require a theory of concepts, if such explanation is to abide by the concept- and proposition-based canons of science and engineering.

From this it should follow that a deeper understanding of concepts—what they are, how to define them, how they work, what sort of computational mechanism is best to emulate them, and so on—is and should be a primary focus of human-level AI research. Unfortunately, it’s not unreasonable to hold that standard AI research programs are too narrow in scope (the organizing theme of this symposium, for example, seeks to address that issue), and may be missing out on the larger picture produced by refusing take account of the daunting sweep of human-level intelligence.

One suggestion for how to transcend narrow “tunnel-vision” AI research is to frequently reevaluate and incorporate knowledge from related disciplines—cognitive science, neuroscience, cognitive psychology, and philosophy of mind, to name a few. Cognitive-architecture designers enjoy a uniquely advantageous position among practitioners in these fields in that they are able to exploit contributions from various fields by eliminating ambiguities in specification, turing vague ideas into concrete algorithmic interpretations.

Herein we present some of the assumptions underlying one of the most important and influential comprehensive theories of human-level intelligence: neo-Piagetianism. After looking at some intimate connections between neo-Piagetianism and HLCSs, it becomes clear that some of these shared assumptions face direct challenges from Jerry Fodor; challenges of sufficient power as to require that they are made explicit and addressed. Accordingly, we show that Fodor’s objections can be successfully rebutted from the neo-Piagetian perspective.

We concede at the outset our passionate affirmation of the methodological assumption that philosophical issues of the sort that Fodor and Piaget (and critics of both) grapple with can be entirely ignored by AI engineers. But if the history of AI has taught us anything since the brash predictions made at and soon after AI’s dawn at Dartmouth in 1956, it is that the pessimism of philosophers has prima facie plausibility, while the we’ll-just-show-you-soon moxey of less abstraction-oriented engineers can be unproductive.
Neo-Piagetianism and Cognitive Systems

Since Jean Piaget revolutionized the study of cognitive development with his theories (the core claims of which we will refer to as Piagetianism), his ideas have faced a number of criticisms. Largely in response to these, a class of theories we now refer to as neo-Piagetianism arose, which mostly preserved and expanded Piaget’s original conceptions (Meadows 2006; Case 1992). It’s generally agreed that neo-Piagetianism includes a set of postulates, among them:

- **Knowledge is conceptually structured, and that structure is important in determining the thoughts agents are capable of having.** We use concepts to perceive and understand the world, and these concepts behave as if they have a structure, a postulate the neo-Piagetians have inherited from Piagetianism (Case 1992). Furthermore, this structure must have a certain productivity and systematicity in order to express and generate combinations of concepts the agent may not have encountered before (we elaborate below, when we discuss compositionality).

- **Conceptual development involves a qualitative change in the underlying structure of concepts** (Case 1992). Development, then, is more than mere acquisition of data; it is a qualitative change in the structuring of that data. This is a difficult feature to model and understand, as computations are often defined over symbols with a relatively stable structure. Shultz & Sirois (2008), for example, draw distinctions between artificial neural networks that are static (using back-propagation and quantitative changes) as opposed to those that are constructive (using cascade correlation and qualitative changes).

- **Conceptual development fundamentally involves the agent.** Learning is not a result of a passive agent being exposed to events. Rather, learning is an interactive process in which the agent is actively involved. This process, which has been described as an emerging approach among neo-Piagetians (Demetriou and Raftopoulos 2004), involves responding to observation both by fitting the observed facts into existing structures (assimilation) and modifying existing structures to fit the facts better (accommodation). This interaction between agent and environment as a part of the learning process has for example been mechanized and built into the CLARION cognitive architecture (Sun 2002).

- **There are limits to the expressivity of thought, which increases with age, experience, and maturation; these limits may be uneven across different domains of thought, and between individuals.** Whereas the previous three postulates are mostly restatements of Piaget’s original views, this claim is the most characteristic of neo-Piagetian thought. Note that this is not simply stating that children can communicate better or think more efficiently as they age, which is obvious; instead, the idea is that there are upper limits to the types of thoughts children can think. Exactly how to define this upper bound is an active area of research; many believe that it pertains to working memory (Case 1992; Barrouillet and Gaillard 2011; Meadows 2006).

- **F: Humans, if neurobiologically normal, nurtured, and sufficiently educated, naturally develop a context-free deductive reasoning scheme at the level of elementary first-order logic** (Bringsjord, Noel, and Bringsjord 1998; Bringsjord et al. 2006). Though F is directly reflective of Piaget’s position (e.g., for confirmation see (Inhelder and Piaget 1958)), F is not as controversial as the preceding postulates, but it is important to include, for reasons we discuss shortly.

There are many more, but they are not relevant to the present discussion; see Case (1992) for a more thorough list.

Any cognitive architecture comes with assumptions about how human thought works (Sun 2004; Ehman, Laird, and Rosenbloom 2006), and the preceding paragraphs provide examples of alignment with neo-Piagetianism. The preceding list should sound very familiar to designers of cognitive systems; indeed, whether done explicitly or not, many cognitive systems work on some subset of neo-Piagetian assumptions. To make this connection even more explicit, let us briefly analyze the current state of human-level cognitive systems. We assert that:

At the very least, a human-level cognitive system can (again, this we dub list L):

- maintain and learn new concepts;
- believe propositions about its environment that are constructed from these concepts, and out of what it perceives; and
- reason over the propositions it believes, in order to, among other things, manipulate its environment and justify its significant decisions; and
- learn new concepts.

The claim (L) that an HLCS must have the capacities in list L should be relatively uncontroversial, as its contents directly follow from even a casual, honest glance at humans, and from the justification of the centrality of concepts in the approaches mentioned above.

Since in our view the acceptance of L is a bare minimum for those aiming to build HLCSs, we argue that it would be beneficial to encourage closer cooperation between the engineering of such systems and neo-Piagetianism—for the simple reason that Piaget and his intellectual descendants have long been committed to modeling the list L in action, in the human case. Of course, our view immediately takes on the onus of defending at least the main neo-Piagetian assumptions, and providing theories, formalisms, and algorithms that will enable the implementation of the items in L in artificial HLCSs. Given this, it’s crucial to acknowledge that these assumptions have been attacked, most prominently by Wason and Johnson-Laird on the one hand, and Fodor on the other. In fact, according to Fodor, many of the neo-Piagetian assumptions lead to conclusions inherently incompatible with a program devoted to engineering HLCSs that instantiate L. It thus stands to reason that Fodor’s arguments must be rebutted before any crossover from neo-Piagetianism to the engineering of HLCSs can be sensibly pursued. We turn now to Fodor’s objections.

3Drescher (1991) and Shultz (2004) each present architectures which are explicitly inspired by Piagetianism, the former in the symbolic approach and the latter in the connectionist (Drescher 1991; Shultz 2004)

3In the case of the former, the original attack on Piaget’s claim that neurobiologically normal human beings develop into reasoners competent at least at the level of first-order logic comes via what is now known in countless books and articles at the ‘Wason selection task;’ see (Wason 1966). As to the latter, see (Fodor 1980), and most recently (Fodor 2008).
Fodor's Objections

It’s outside the scope of the present paper to provide a full discussion of Fodor’s theory of concepts; for a more detailed understanding, we recommend (Fodor 1998; 2008; Robbins 2002). We will try to limit the discussion of Fodor to those parts directly relevant to neo-Piagetianism and HLCSs. To understand this discussion, we first note that Fodor’s program attempts to answer the deceptively simple question: What exactly is a concept? Fodor first affirms three theses that seem eminently accurate as applied to the human version of HLCSs, to wit:

Representational Theory of Mind (Rep) Mental representations are composed of concepts, which can compose to form complex thoughts.

Computational Theory of Mind (Comp) All explicit thoughts (and perhaps all thoughts, period) are computations defined over the syntax of mental representations.

Concept Atomism (Atom) All lexical concepts (roughly, simple concepts corresponding to words like DOG or CAT) are atomic; they are not constructs of epistemic (experience-related) capacities, sensorimotor concepts, canonical definitions, logical constructs, inferential roles, etc.

Note that throughout this paper we will be using notation similar to Fodor (2008), where entirely capitalized words refer to concepts, and italicized words are those things in the world to which concepts refer. To think the concept CAT is to think about the class of objects in the world we call cats. Single quotes refer to words. To make a statement including ‘cats’ is to refer to cats (Fodor 2008). We put complex concepts in parentheses; e.g. (BLACK CAT) is a complex concept built out of the lexical concepts BLACK and CAT.

The three theses are agreeable to many, as they are implicit assumptions in most attempts to engineer HLCSs. It is these theses, however, that Fodor uses as a foundation for objections to L. The first way he does this is by invoking compositionality, an important restriction on theories of concepts and the one emphasized in (Fodor 2008).

Compositionality

The principle of compositionality has been expressed in many different forms (Fodor 1998; 2008; Robbins 2002; Prinz 2002; Connolly et al. 2007); we use the version formulated in (Robbins 2002):

Compositionality Constraint (Comp) The content of a complex (NON-LEXICAL) concept is exhaustively determined by the contents of its constituent concepts and the rules governing the combination of those constituents.

Comp is used as a convenient way to explain two other apparent properties of thought: systematicity, and productivity (Fodor 2008; Robbins 2002; Prinz 2002; Connolly et al. 2007). For an example of productivity, consider that if agent A can think of (represent mentally) concepts C1 and C2, then A can think of a practically unlimited number of complex concepts which are truth-functional combinations of the two; e.g., (C1 AND C2), (C1 OR C2), (C1 AND NOT C2 BUT IF NOT C1 THEN C2), etc. Similarly, due to systematicity, if A can represent a complex concept such as (IF C1 THEN C2), then A can also think (IF C2 THEN C1).

Both of these properties of thought can be explained by the compositionality constraint as side effects of the compositional nature of concepts.

It’s important to understand both the distinction between features we use when working with concepts, and what features are constitutive of conceptual structure. While it’s undoubtedly true that we use our concepts in a variety of ways, Fodor’s goal here is to figure out what the minimal conditions are in order to possess a concept; he wants to know what it means to be able to represent a concept and use it productively and systematically. For example, associations between concepts certainly exist, but the compositionality has a premise that since associations between concepts do not compose in a systematic fashion, they are not part of the minimum conditions that need to be met in order to possess a concept.

If one accepts the discussion so far, a problem arises: feature emergence violates compositionality. Let us take a brief look at stereotype theories of concepts, often suggested as an alternative to Atom (Connolly et al. 2007). Whereas Atom postulates that lexical concepts are fundamental and not constructs of epistemological capacities, stereotype theories propose that concepts are exemplar instances of a certain type, usually inferred through some statistical process (Fodor 1998). For example, a stereotypical PET is a small, benign animal which will not eventually grow past a certain size, etc. Presumably, we can observe a certain number of fish and obtain the stereotypical description of them through a statistical average of their features. In the same way, a stereotypical FISH is one that is usually eaten, can be caught with worms at the end of a fishing hook, can be found in the wild, etc. According to Comp, the content of the complex concept (PET FISH) should be exhaustively determined by the contents of PET and FISH. But there are some properties emergent in the (PET FISH) stereotype that were not present in either the PET or FISH stereotypes. A stereotypical (PET FISH) is a goldfish, which is stereotypically of an orange hue, an inch or two in length, etc. Neither of those properties were properties of the stereotypical PET (although a goldfish is a type of pet, any sort of statistical average of all pets would not yield the feature “orange hue”) or the stereotypical FISH. Even if one were to take the way the stereotypes for PET and FISH combine to create (PET FISH) and use that as a model for concept combination, it would not apply to other cases; (ENERGY DRINK) is an example. The stereotype for a complex concept is not exhaustively determined through the stereotypes of its constituent concepts; therefore, Fodor concludes, stereotypes are not concepts.

At this point, the hard-nosed scientist or engineer might be tempted to dismiss this challenge by Fodor as legereomain far removed from providing any practical insight for those trying to understand and engineer HLCSs. But this is not how successful science and engineering work. Many carcasses are littered along the road that the science and engineering of human-level cognition has taken, depositing us at

4Fodor (1998) defines RTM more precisely in terms of intensionality, but we leave this aside in favor of a simpler definition.
the present point. For instance, the rejection of behaviorism in favor of an approach that steadfastly insists on specifying the internal information-processing structure of HLCS was, as we all know, catalyzed by philosophical argumentation carried out by Chomsky. Fodor’s critique may well not be similarly trenchant, but basic prudence, and an understanding of intellectual history, generates an obligation to suitably analyze his critique.

Someone might specifically object: “What prevents an agent from drawing on the non-compositional adjacent properties of a concept (for example, associations between DOG and other concepts: Dogs usually have four legs, are hairy, etc.) during the concept combination process?” One reason is the productivity and systematicity of thought: If there is no relatively systematic way to combine and produce new concepts, how is it that one can form a complex sentence one has never spoken before (e.g., “I read a green book about a green alien while I was standing on one foot atop a two-ton table.”), and communicate it to someone who has never heard that complex sentence before, such that the semantics of the sentence are clear to both speaker and hearer? Applications of Comp to theories of concepts is the sort of argument that pervades Fodor’s writings, with perhaps the most prominent use of this constraint in (Fodor 2008).

From the vantage point we have arrived at, we can see the challenge: Any HLCS should, as is reflected in L, be able to reason about its propositions, which presumably involves performing computations on the concepts out of which those propositions are composed (assuming something like Comp). Among these computations are productivity and systematicity. Therefore, those pursuing HLCSs must either accept compositionality and Atom, or explain productivity and systematicity in a way that avoids relying on compositionality.

Responding to Compositionality Recall that Comp is proposed as a way to explain the apparent systematicity and productivity of thought. However, if one can explain systematicity and productivity without requiring that concepts are totally compositional, then perhaps stereotype theories of concepts can be valid after all. Such an approach is interesting to examine, since it can help to refine both cognitive systems and neo-Piagetian theories.

We start by weakening Comp. As Prinz (2002) observed, “it is one thing to say that concepts must be compositional, and another to say that they must be capable of compositional combination [emphasis added]” (Prinz 2002). This is similar to the distinction of strong vs. weak compositionality observed by (Robbins 2002). Essentially, we abandon the idea that there is only one way that concepts can compose. Instead, concepts can be combined in a way that generates a range of possible interpretations for the ideal representation of the complex concept (hypotheses), which are then narrowed down by the agent.

How does this explain emergent properties in complex concepts like PET FISH? The properties of a stereotypical fish could be extracted from experiences with pet fishes, and consistency checks could be performed. For example, if when thinking of a pet fish one constructs a representation in which a boy has a shark tank in his room, some of the consequences of this representation would have to be evaluated. How would he afford taking care of the shark? Where would he have the space to store it? — and so on. The challenge for implementations of HLCSs here would be how to generate and answer such questions in reasonable time. The problem then reduces to explaining systematicity and productivity in a way that can replicate human-level performance.

Space does not allow us to give a full summary of the debate on compositionality; for more information see (Robbins 2002; Prinz 2002; Patterson 2005; Fodor 1998; 2000; Weiskopf 2009; Fodor 2008). For now, we can be reasonably satisfied with the assumption that a HLCS could use a consistency check, a search with the agent’s existing knowledge base/schema to find contradictions, and use the result of that check to evaluate the plausibility of the potential interpretations. This is a back-and-forth, interactive learning process characteristic of neo-Piagetianism; hence appeal to such a process highlights common ground between neo-Piagetianism and work on HLCSs. Also, it’s important to note that such a process of “consistency-checking” may imply the existence of some innate, sufficiently expressive logic-based mechanism to do the checking (we explore this shortly).

This approach is not revolutionary. Because of the central role of concepts in cognitive systems, their designers must specify the detailed mechanism by which concepts are generated and manipulated. But this is an example of a way in which work on cognitive systems and neo-Piagetianism can be mutually beneficial. Neo-Piagetianism postulates structured concepts, making it a prime target for Fodorian compositionality attacks. As we have stated, a detailed description of a process which would yield sufficient productivity and systematicity should be enough to escape this challenge. However, like classic Piagetianism, neo-Piagetianism tends to suffer from underspecification of the details of the mechanisms by which concepts combine and develop (Meadows 2006). It is this problem that cognitive-systems research can solve.

For example, Bello, Bignoli, & Cassimatis (2007) applied the Polyscheme (Cassimatis 2006) framework to the false-belief task, which is traditionally believed to demonstrate that the ability for a child to represent the beliefs of others (sometimes called ‘second-order’ beliefs) doesn’t fully develop until around age 4 (Meadows 2006). Instead, Polyscheme was able to emulate the emergence of what appeared to be second-order beliefs by simply being made to shift its “cognitive focus of attention when asked to make predictions about the actions of others” (Bello, Bignoli, and Cassimatis 2007). In this way, cognitive systems appropriately focused on demonstrating the plausibility of neo-Piagetian cognitive structures in a real-time environment, keeping in mind the restrictions required by productivity and compositionality, can advance, refine, or refute neo-Piagetian theories. A similar benefit from HLCS-oriented modeling and simulation of the false-belief task is provided by Arkoudas & Bringsjord (Arkoudas and Bringsjord 2009).
The Circularity Objection to Concept Acquisition

However, the neo-Piagetian explanation faces another Fodorian objection: the claim that circularity infects accounts of concept possession. Consider the evaluation of a potential interpretation \(i\). At some level, a mental representation must be constructed (a hypothesis) with \(i\) as a constituent part in order for the evaluative computation (which, remember, is defined over representations) to work. Since the process of hypothesis construction requires the ability to represent \(i\), it cannot be the process by which the agent acquires the ability to represent \(i\). If learning the concept \(i\) is the acquisition of the ability to represent \(i\), then this cannot be the process by which \(i\) is learned, nor can it be any inferential process that presupposes the ability to represent \(i\). Therefore, all concepts are unlearned; all concepts must apparently be innate! (Fodor 1980; 2008).

This circularity objection appears to threaten the acquisition of simple concepts, leading to the (infamous) Fodorian conclusion that “[t]he only coherent sense to be made of such learning models as are currently available is one which presupposes a very extreme nativism” (Fodor 2008). Before we sketch out our solution, let us take a step back and summarize the thinking that implies circularity:

1. Thoughts are computations defined over mental representations.
2. Mental representations are built out of mental concepts.
3. An agent possesses a mental concept \(C\) iff that agent can build mental representations using \(C\).
4. An inferential process of concept acquisition requires the ability to represent the acquired concept, and therefore the process is viciously circular.
5. \(\therefore\) Concepts cannot be acquired through inferential processes.

Clearly, the conclusion, 5., is incompatible with the assumptions in L: this is what has been referred to as FP, “Fodor’s Paradox” (Quartz 1993; Shultz 2004; Carey 2009; Margolis and Laurence 1999). The ability to understand a concept involves the ability to represent that concept mentally (assuming Rep), and acquiring the ability to do so, according to most accounts of learning, involves a process of evaluating potential representations (hypotheses) and matching them up with available evidence. The process is then often repeated until a hypothesis sufficiently matches whatever criteria is set by the agent. But this hypothesis testing presupposes the ability to represent the concept, and so all accounts of concept learning are apparently viciously circular.

Why must we assume that concept possession is a binary property? Isn’t it possible to encounter a concept, and through normal interactions with it slowly obtain a partial understanding of how to mentally represent it? Certainly the neo-Piagetian/Pragmatist idea of “knowing how” before “knowing what” is consistent with such an approach (Fodor 2008). But if concept acquisition is a process of discrete steps, where an inferential process takes each intermediate step to the next, resulting in a more accurate representation of the target concept, clearly Fodor’s Paradox as described here still rears its ugly head. Each iteration in the envisaged step-by-step process is after all hypothesis formation and testing on a small scale.

Alternatively, a dispositional theory might then be suggested, where by some automatic means one learns to behave in accordance with a rule rather than having that rule as the subject of an intentional state. At first glance, it looks like this may avoid the circularity involved in hypothesis formation, but Fodor argues that this dispositional account of rule-following will not work. Given a rule \(R:\)

an account of rule-following that invokes behavioral intentions needs a story about what it’s going on when an intention to behave in accordance with \(R\) is (part of) what explains behavior that does accord with \(R\). Well, if the working commitment to RTM and CTM still holds, then what distinguishes following \(R\) from mere action in accordance with \(R\) is that in the former case \(R\) is mentally represented (‘in the intention box’, as one says) and the mental representation of \(R\) is implicated in the etiology of the behavior that accords with \(R\). But if that’s right, then only someone who is already able to mentally represent conjunction can intend to follow the rules that constitute the definition-in-use of AND. (Fodor 2008)

The entire class of Piagetian and neo-Piagetian theories relies on the belief that external behavior can be learned pre-symbolically and then turned into a concept or declarative symbol. Similar processes have been called “bottom-up learning” (Sun 2004), M-Sorting to I-Sorting (Weiskopf and Bechtel 2004), and Piaget’s “semiotic function” (Piattelli-Palmarini 1980). Fodor argues that this resulting symbol must then be subject to compositionality, and since the only way to explain the process by which a disposition can map to a compositional symbol is one which presupposes the existence of the symbol, all such symbols must be innate. But, as we have mentioned, a process which produces interpretations of complex symbols in a systematic way which draws on whatever it knows about the concept should demonstrate a consistency that can be empirically compared to human interpretation of the same complex symbols, and would need to do so in order to satisfy the productivity and systematicity constraints.

The objection, then, assumes that the ability to represent a concept when properly activated is innate. If the ability to represent a concept \(C\) depends on the level of development of an agent’s relevant conceptual structures, then the neo-Piagetian response still looks valid: The reason children can’t represent most adult concepts or act in accordance with complex rules of behavior is because their conceptual structures (schemas) have not yet developed to a degree sufficient to represent these rules. If we stick with the neo-Piagetian assumption that development involves an increasing complexity of these structures, then we may be able to safely straddle two extremes: that all concepts are necessarily innate, and that all (declarative) thought is simply emergent from lower-level, sub-symbolic processes. Unsurprisingly, Fodor has another circularity argument which challenges this possibility as well.

\(^5\)Although Carey (2009) formulates the paradox similarly, FP as formulated here tries to focus more on its non-lexical role.
The Circularity Objection to Bootstrapping

The objection can be understood in terms of expressibility. If thought is structured in such a way that it can be represented using symbols, and those symbols follow certain inference rules, then it’s an undeniable mathematical fact that those symbols have a certain expressibility whose upper bound is equal to that of a formal logic \(L \). If \(L \) has a certain expressibility, then by definition the concepts bounded by \(L \) cannot combine in any way to express concepts with complexity greater than \(L \). For example, propositional logic cannot express certain statements in first-order logic (FOL), and deterministic finite automata (which are after all in correspondence to a formal logic whose expressibility is below that of FOL) cannot recognize all the languages a Turing machine can.\(^6\)

This problem, that of explaining the emergence of higher-level logics spontaneously out of lower-level logics, has been called the “bootstrapping problem” (Carey 2004; Rips, Asmuth, and Bloomfield 2006), and appears in other areas of conceptual development. Susan Carey attempted to explain how children learn the natural numbers using a bootstrapping process (Carey 2004), but was challenged by Rips et al. (2006), who used a circularity argument similar to the Fodorian ones we encapsulated above. Whereas Carey supposed that children infer the inductive property of natural numbers from the memorization of a sequence of names (one, two, three...) and the ability to make analogies, Rips et al. note that given only that evidence, the standard natural number assumption is ambiguous with other possible hypotheses (such as counting modulo 10), and therefore there must be some sort of bias that prefers the inductive property as an explanation of the natural numbers. But if this is the case, then the bootstrapping process is unnecessary (Rips, Asmuth, and Bloomfield 2006); indeed, it begins to look more like a Fodorian (2008) explanation: that there is an innate concept of natural numbers and it is merely “activated” with experience.

But the Rips paper gave an example of a child who grew up in an environment where malicious aliens willingly taught the child the wrong numbering system (they only taught her how to count modulo 10), and this is a key point. Children do not learn in an isolated environment where they are left to work out each potential hypothesis, as if they were machines fed input and expected to output the correct answer. Instead, it is an interactive process where they test each hypothesis, by observing the behavior of parents who correct or reward them based on the accuracy of each hypothesis. Again, neo-Piagetianism provides an escape from the absurd conclusion of extreme nativism.

The idea that concepts develop by increasing in complexity, however, can mean something like the ability to represent more variables at once, a possibility which brings to mind the current research on the role of working memory in cognition (Barrouillet and Gaillard 2011). The expressibility of concepts whose complexity is bounded by the availability of working memory is a different type of limit. However, even in that case, the problem remains: How to explain the origin of logical expressibility?

It seems that only two solutions are possible. Either the child, in the beginning, already has concepts with expressibility equivalent to the maximum expressibility that humans can think, or the developmental process which modifies the conceptual structures has this same maximum expressibility.

Logic and neo-Piagetianism

Many of the criticisms of Piaget’s original theory centered on his usage of formal logic to describe thinking of children at different stages (Meadows 2006), attacks which led to the currently popular view that Piaget was wrong to do so (Case 1992; Meadows 2006). The most successful of these attacks have been studies showing that some thought does not conform to the Piagetian logical model as neatly as Piaget and Inhelder (at least initially) believed.\(^7\) As a result, many neo-Piagetians prefer to describe the qualitative features of the cognitive structures themselves as opposed to using formal symbols (Case 1992).

But we should not throw out the usefulness of formal logic to model and analyze mature human cognition just yet. A strong case can be made at least for the following:

- **F** Humans, if neurobiologically normal, nurtured, and sufficiently educated, naturally develop a context-free deductive reasoning scheme at the level of elementary first-order logic.

See (Bringsjord, Noel, and Bringsjord 1998; Bringsjord et al. 2006) for a defense of **F**, the details of which we will not repeat here. Note that **F** does not necessarily imply an automatic emergence of FOL, as this would run contrary to empirical evidence; nor does it predict flawless performance among adults on FOL-level word problems. Rather, we defend a version tied to education. In true neo-Piagetian fashion, it may not be the case that minimal education in formal logic would nonetheless suffice to give the learner a level of intelligence sufficient to solve difficult problems that require hypothesis formation and testing via deduction, as suggested in Piaget & Inhelder (1958). But clearly serious and sustained training in formal logic can produce capacities in HLCSs in line with those ascribed by Piaget and Inhelder to those humans who are only minimally educated. In short, any researcher in the area of HLCSs who has mastered a comprehensive AI textbook like (Russell and Norvig 2002), which provides extensive coverage of formal logic, would be precisely the kind of cognizer Piaget and Inhelder in too-sanguine fashion took almost all humans to be.

However, recall we earlier mentioned that the functional-invariant processes that govern the modification of conceptual structures must have the expressivity of at least first-order logic in order to know how to construct structures capable of representing statements in FOL, else they face charges of circularity à la Fodor. This seems unavoidable; whether concepts originate through inductive processes or

\(^6\)Fodor leaves aside the logico-mathematics of the relationships and processes that can hold between logics, but this topic is outside the scope of the present paper. For an introduction in the context of robotics HLCSs, see (Bringsjord et al. forthcoming).

\(^7\)See Meadows (2006) for a thorough summary.
emerge from something like a connectionist architecture, the expressive power to understand and systematically produce them must come from somewhere.

Anderson (1976), for example, found it important to demonstrate that his production rules had an expressibility at least equal to that of FOL, and carefully established this (Anderson 1976, Ch. 7). Such expressibility is more difficult to prove in systems where it’s claimed to be emergent out of more basic processes (such as a simple neural network), and easier to prove in systems where inferential ability is explicit (e.g., the ICARUS cognitive architecture makes use of conceptual inference as its most basic activity (Langley and Choi 2006)). However, any information-processing device whatsoever that operates at or below the level of a Turing machine is provably doing no more than processing information by classical deduction in a first-order theory.

Drescher (1991), however, references this issue, but quickly brushes the issue aside. Any modern computer is technically only a deterministic finite automaton (or at most a linear bounded automaton), yet we consider it Turing-complete for many purposes (Drescher 1991). In the same way, a mind that lacks the expressive power of FOL may conceivably learn to behave in a manner resembling FOL thought; yet it is difficult to imagine such thought developing as quickly as it does in (properly educated) children without a preexisting ability to generate hypotheses with FOL’s expressivity. Because of this reason, it may not be a good idea to quickly dismiss the logical bootstrapping objection.

Conclusion: Lessons for neo-Piagetians and AI Researchers

In this short and non-technical paper, we make no claim to have carried out an in-depth analysis of Fodor’s critique of the current understanding of concepts, nor to have provided a thorough account of all possible similarities and differences between cognitive systems theory and neo-Piagetianism. Such a task would be impossible in the scope of this paper, and is the topic of our ongoing research.

Yet here are some key and perhaps not insignificant points to leave with. The first is that neo-Piagetianism and cognitive systems theory have a lot in common, and both stand to benefit from the other. Implementing psychological theories force them to come to terms with real-world limitations and to refine or abandon unworkable ideas (Shultz and Sirois 2008), and cognitive systems can borrow fresh ideas from a class of theories it already shares much in common with. The second point is that neo-Piagetians (and the HLCSs which share their assumptions) must accept a version of Piaget’s F as we have formulated it, or they risk succumbing to the Fodorian paradoxes. We believe that both of these points represent new approaches to both the theory behind, and the implementation of, human-level cognitive systems.

A few more points to summarize in closing:

- The process of concept acquisition must be more closely analyzed, and both researchers in HLCSs and neo-Piagetians are obliged to define it in a way that avoids the circularity objection, while preserving sufficient compositionality.

- Any HLCS will need to reflect a careful definition of compositionality. If Comp is accepted by the designers of a HLCS, how does the designer avoid Fodor’s Paradox and an appeal to complete (and therefore completely untenable) nativism? If accepting a weaker version of compositionality, the designer must describe a process for understanding never-before-encountered complex concepts, and this process must not be so non-deterministic as to generate hypotheses that would not be encountered by a reasonable human being. The distribution and nature of these hypotheses can presumably be empirically verified by comparing to human-generated hypotheses.

- Those seeking to engineer artificial HLCSs cannot commit, whether premeditatively or unwittingly, to allowing a HLCS to spontaneously generate a more expressive logic (or, generally, a less expressive system for concepts and representations of a declarative nature, such as is seen in ACT-R and other such systems) from a less expressive one. The process that secures the gain in expressivity must be defined in a way that does not lead to a homuncular regress.

It appears that nobody has attempted to build a Fodorian artificial HLCS, and for good reason. If Atom is compatible with Comp, then it presumably explains deterministically the process by which two concepts combine to form a (possibly unfamiliar-to-the-thinker) complex concept C. (It would be interesting to see if a system that came with a large repertoire of pre-defined concepts, and which then learned using an analogical mechanism, could demonstrate general intelligence.) If a concept is atomic, and not at least partially composed of some subset of inferential properties or facts connected to other concepts, then what is left? What is the point of a concept that one can think about, but not know how to exploit for some behavior, not know how to draw inferences about, and not associate with any other concepts? Fodor’s reductionist program may have oversimplified via too strong a version of compositionality.

Yet, the Comp requirement cannot be ignored. It is the systematicity and productivity of thought which Fodor wants to explain, and he correctly brings attention to the details of the fundamental structure of concepts as containing the key to understanding them. We feel that neo-Piagetianism and the work done under this banner offers insight into these structures—insight that should be harvested by those building HLCSs.

References

