AAAI Publications, 2015 AAAI Fall Symposium Series

Font Size: 
Saul: Towards Declarative Learning Based Programming
Parisa Kordjamshidi, Dan Roth, Hao Wu

Last modified: 2015-09-23

Abstract


We present Saul, a new probabilistic programming language designed to address some of the shortcomings of programming languages that aim at advancing and simplifying the development of AI systems. Such languages need to interact with messy, naturally occurring data, to allow a programmer to specify what needs to be done at an appropriate level of abstraction rather than at the data level, to be developed on a solid theory that supports moving to and reasoning at this level of abstraction and, finally, to support flexible integration of these learning and inference models within an application program. Saul is an object-functional programming language written in Scala that facilitates these by (1) allowing a programmer to learn, name and manipulate named abstractions over relational data; (2) supporting seamless incorporation of trainable (probabilistic or discriminative) components into the program, and (3) providing a level of inference over trainable models to support composition and make decisions that respect domain and application constraints. Saul is developed over a declaratively defined relational data model, can use piecewise learned factor graphs with declaratively specified learning and inference objectives, and it supports inference over probabilistic models augmented with declarative knowledge-based constraints.We describe the key constructs of Saul and exemplify its use in developing applications that require relational feature engineering and structured output prediction.

Keywords


Learning based programming, Probabilistic Programming, Relational Machine Learning, Structured Learning, Constraint Conditional Models

Full Text: PDF