AAAI Publications, Twenty-Fourth IAAI Conference

Font Size: 
Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records
Jeremy C. Weiss, Sriraam Natarajan, Peggy L. Peissig, Catherine A. McCarty, Daivd Page

Last modified: 2012-07-14


Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.


Statistical Relational Learning; Boosting; Functional Gradient Boosting; Medical Records; Prediction

Full Text: PDF