Online Experiments for Computational Social Science

Presented by Eytan Bakshy and Sean Taylor

Taught by two researchers on the Facebook Data Science team, this tutorial teaches attendees how to design, plan, implement, and analyze online experiments. First, we review basic concepts in causal inference and motivate the need for experiments. Then we will discuss basic statistical tools to help plan experiments: exploratory analysis, power calculations, and the use of simulation in R. We then discuss statistical methods to estimate causal quantities of interest and construct appropriate confidence intervals. Particular attention will be given to scalable methods suitable for “big data,” including working with weighted data and clustered bootstrapping. We then discuss how to design and implement online experiments using PlanOut, an open-source toolkit for advanced online experimentation used at Facebook. We will show how basic A/B tests, within-subjects designs, as well as more sophisticated experiments can be implemented. We demonstrate how experimental designs from social computing literature can be implemented, and also review in detail two very large field experiments conducted at Facebook using PlanOut. Finally, we will discuss issues with logging and common errors in the deployment and analysis of experiments. Attendees will be given code examples and participate in the planning, implementation, and analysis of a web application using Python, PlanOut, and R.

Eytan Bakshy is a researcher and senior member of the Facebook Data Science Team. He has been conducting field experiments at Facebook for over three years, focusing peer effects in networks. Bakshy holds a Ph.D. in information from the University of Michigan and a B.S. in mathematics from UIUC.

Sean J. Taylor is a research scientist on the Facebook Data Science Team specializing in field experiments on Web and mobile platforms. His research interests include causal inference, social influence, information credibility, and evaluation of predictions. Taylor holds a Ph.D. in information systems from New York University and a B.S. in economics from the University of Pennsylvania.

Social Media Threats and Countermeasures

Presented by Kyumin Lee, James Caverlee, and Calton Pu

The past few years have seen the rapid rise of many successful social systems — from web-based social networks (such as Facebook, and LinkedIn) to online social media sites (such as Twitter and YouTube) to large-scale information sharing communities (such as reddit and Yahoo! Answers) to crowd-based funding services (such as Kickstarter and Indiegogo) to web-scale crowdsourcing systems (such as Amazon MTurk and Crowdflower).

However, with this success has come a commensurate wave of new threats, including bot-controlled accounts in social media systems for disseminating malware and commercial spam messages, adversarial propaganda campaigns designed to sway public opinion, collective attention spam targeting popular topics and memes, and propagate manipulated contents.

This tutorial will introduce peer-reviewed research work on social media threats and countermeasures. Specifically, we will address new threats such as social spam, campaigns, misinformation and crowdturking, and overview countermeasures to mitigate and resolve these threats by revealing and detecting malicious participants (such as social spam-
mers, content polluters, and crowdturkers) and low quality contents. This tutorial will also overview available tools to detect these participants.

Kyumin Lee is an assistant professor in the Department of Computer Science, Utah State University, (kyumin.lee@usu.edu). Lee’s primary research interests are in information quality and data analytics over large-scale networked information systems like the web, social media systems, and other emerging distributed systems. His current work focuses on both a negative and a positive dimension. On one hand, he focuses on threats to these systems and designs methods to mitigate negative behaviors; on the other, he looks for positive opportunities to mine and analyze these systems for developing next generation algorithms and architectures that can empower decision makers. He received a highly-competitive Google Faculty Research Award in 2013. He has published 30 peer-reviewed research papers in top journals and conferences such as TIST, SIGIR, WWW, CIKM, and ICWSM. His work was introduced by the MIT Technology review. Lee received his Ph.D. from Texas A&M in 2013.

James Caverlee is an associate professor in the Department of Computer Science and Engineering, Texas A&M University (caverlee@cse.tamu.edu). Caverlee's research focuses on web-scale information management, distributed data-intensive systems, and social computing. Most recently, he's been working on (1) spam and crowdturfing threats to social media and web systems; and (2) geosocial systems that leverage large-scale spatio-temporal footprints in social media. Caverlee is a recipient of the 2010 Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, the 2012 Air Force Office of Scientific Research (AFOSR) Young Investigator Award, a 2012 NSF CAREER Award, and was named a Texas A&M Center for Teaching Excellence Montague-CTE Scholar for 2011-2012. Caverlee received his Ph.D. from Georgia Institute of Technology in 2007.

Calton Pu is a professor in the College of Computing, Georgia Institute of Technology (calton.pu@cc.gatech.edu). Pu’s research interests are in the areas of distributed computing, Internet data management, and operating systems. He has published more than 250 papers in several system-related areas, including operating systems, transaction processing, systems reliability, security, and Internet data management. He worked on spam and denial of information (with several academic and industry partners), service computing (with IBM Research), and automated system management (with HP Labs). He has served on more than 100 program committees for more than 50 international conferences and workshops, including PC cochair of SRDS, ICDE, CoopIs, DOA, and general cochair for CIKM, ICDE, CEAS, and SCC. He is an affiliated faculty of Center for Experimental Research in Computer Systems (CERCS), Georgia Tech Information Security Center (GTISC), and Tennenbaum Institute. Pu received his Ph.D. from the University of Washington in 1986.

Route Planning and Visualization Using Geo-Social Media Data

Presented by Hsun-Ping Hsieh, Thomas Sandholm, and Cheng-Te Li

Geosocial media data, produced by GPS-enabled devices, location-based services, and digital cameras, are ubiquitous thanks to the maturity of mobile and web technologies. Geographical activities of human beings are tracked in the form of trajectories. User-generated geosocial trajectory data enable a novel application, route planning, which aims to recommend travel routes satisfying trip requirements. In this tutorial, we aim to introduce two popular topics related to the analysis of geosocial media data: route planning and geodata visualization. The first part provides a broad review of recent advances on the route planning problem using GPS trajectories and uncertain trajectories that come from different sources and possess diverse properties and problems. Given geosocial query requirements depicting the desired routes, which are divided into three categories, that is, location, context, and social, we elaborate three mainstream approaches of route planning: graph search, pat-
tern mining, and inference or learning. The
second part gives a technical introduction and
practical advice on how to visualize geosocial
data using various tools, including Google
Maps, D3, Google Fusion Tables, Google
Earth, Tableau Public, Open Street Map,
Python Heatmap, Stamen, and Mongolabs.
Hands-on examples are provided to elaborate
techniques of cloud data storage, scalable geo-
marker positioning, and interactive maps for
visualization.

Hsun-Ping Hsieh is a Ph.D. candidate at the
National Taiwan University with research inter-
ests on geosocial and urban computing. He
worked as a research intern at Microsoft Re-
search Asia and received the Excellent Stars of
Tomorrow award in 2013. His representative
recognition includes the ACM KDD Cup 2010
First Prize, and Garmin Fellowship 2014.

Thomas Sandholm is a principal research
scientist at HP Labs in Palo Alto, CA, USA. He
holds a PhD in computer science from the
Royal Institute of Technology in Sweden, and
worked as research staff on distributed systems
and geosocial media analysis at Argonne Na-
tional Labs, Lund University and KAIST.

Cheng-Te Li is a postdoctoral researcher
at the Institute of Information Science in
Academia Sinica, with research interests on so-
cial networks, big data mining, and geosocial
computing. He earned his Ph.D. in computer
science from National Taiwan University. His
representative international recognition in-
cludes Facebook Fellowship Finalist Award
2012, and ACM KDD Cup 2012 First Prize.

Large Scale Network
Analytics with SNAP

Presented by Jure Leskovec and Rok Sosic

Techniques for social media modeling, analysis
and optimization are based on studies of large
scale networks, where a network can contain
hundreds of millions of nodes and billions of
edges. Network analysis tools must provide not
only extensive functionality, but also high per-
formance in processing these large networks.

The tutorial will present the Stanford Net-
work Analysis Platform (SNAP), a general pur-
pose, high performance system for analysis and
manipulation of large networks. SNAP is being
used widely in studies of web and social media.
SNAP consists of open source software, which
provides a rich set of functions for performing
network analytics, and a popular repository of
publicly available real world network datasets.
SNAP software APIs are available in Python
and C++.

The tutorial will cover all aspects of SNAP,
including SNAP APIs and SNAP datasets. The
tutorial is targeted toward entry level audience
with some programming background, thus the
Python API will presented in more detail than
the C++ API. The tutorial will include a hands-
on component, where the participants will
have the opportunity to use SNAP on their
computers.

Jure Leskovec is an assistant professor of
computer science at Stanford University. His
research focuses on mining and modeling large
social and information networks, their evolu-
tion, and diffusion of information and influ-
ence over them. Problems he investigates are
motivated by large scale data, the Web and on-
line media.

Rok Sosic is a research associate in the De-
partment of Computer Science at Stanford
University.