
Finding “Unexplained” Activities in Video

Massimiliano Albanese1, Cristian Molinaro1, Fabio Persia2,

Antonio Picariello2, V. S. Subrahmanian1

1University of Maryland Institute for Advanced Computer Studies,
{albanese,molinaro,vs@umiacs.umd.edu}

2Università di Napoli Federico II, Napoli, Italy,
{fabio.persia,picus}@unina.it

Abstract

Consider a video surveillance application that mon-
itors some location. The application knows a set
of activity models (that are either normal or ab-
normal or both), but in addition, the application
wants to find video segments that are unexplained
by any of the known activity models — these un-
explained video segments may correspond to activ-
ities for which no previous activity model existed.
In this paper, we formally define what it means for
a given video segment to be unexplained (totally
or partially) w.r.t. a given set of activity models
and a probability threshold. We develop two al-
gorithms – FindTUA and FindPUA – to identify
Totally and Partially Unexplained Activities respec-
tively, and show that both algorithms use important
pruning methods. We report on experiments with
a prototype implementation showing that the algo-
rithms both run efficiently and are accurate.

1 Introduction

Video surveillance is omnipresent. For instance, airport bag-
gage areas are continuously monitored for suspicious activ-
ities. In crime-ridden neighborhoods, police often monitor
streets and parking lots using video surveillance. In Israel,
highways are monitored by a central authority for suspicious
activities. However, all these applications search for known
activities – activities that have been identified in advance as
being either “normal” or “abnormal”. For instance, in the
highway application, security officers may look both for nor-
mal behavior (e.g. driving along the highway in a certain
speed range unless traffic is slow) as well as “suspicious” be-
havior (e.g. stopping the car near a bridge, taking a package
out and leaving it on the side of the road before driving away).

Most past work on activity detection uses a priori defini-
tions of normal/abnormal activities and explicitly searches
for activity occurrences [Hongeng and Nevatia, 2001]. Hid-
den Markov Models have been applied to problems ranging
from gesture recognition [Wilson and Bobick, 1999] to com-
plex activity recognition [Vaswani et al., 2005]. [Oliver et
al., 2002] describes an approach based on coupled HMMs
(CHMMs) for learning and recognizing human interactions.

Dynamic Bayesian Networks (DBNs) have been used to cap-
ture causal relationships between observations and hidden
states by [Hamid et al., 2003] who used them to detect com-
plex, multi-agent activities. [Albanese et al., 2007] developed
a stochastic automaton based language to detect activities in
video, while [Cuntoor et al., 2008] presented an HMM-based
algorithm. Alternatively, [Zhong et al., 2004] learn models of
normal behavior and detect anomalies by finding deviations
from normal behaviors. An approach for both single and mul-
tiple actor activity recognition has been proposed in [Hon-
geng et al., 2004], where Bayesian networks and probabilistic
finite state automata are used to describe single actor activi-
ties, and the interaction of multiple actors is modeled by an
event graph.

In contrast, in this paper, we assume we are given some
set A of activity definitions expressed as stochastic automata
with temporal constraints — we extend the stochastic au-
tomata of [Albanese et al., 2007] as this seems to be a com-
mon denominator underlying the HMM and DBN frame-
works. A can consist of either “normal” activities or “sus-
picious” activities or both. In this paper, we try to find video
sequences that are not “explained” by any of the activities in
A. As an example of why detecting activities that are nei-
ther ’normal’, nor ’abnormal’ is a very important problem in
many applications, consider a video surveillance application
in an airport. While we do want to find instances of known
suspicious activities, there may be many other dangerous ac-
tivities for which no model exists yet. Such previously ”un-
known” activities can be flagged as unexplained activities in
our framework.

In order to achieve this, we define a possible-worlds based
model and define the probability that a sequence of video is
totally (or partially) unexplained. Based on this, users can
specify a probability threshold and look for all sequences that
are totally (or partially) unexplained with a probability ex-
ceeding the threshold. We then define two algorithms – the
FindTUA algorithm finds all subsequences of a video that
are totally unexplained, while the FindPUA algorithm finds
all subsequences of the video that are partially unexplained.
We develop a prototype implementation and report on exper-
iments showing that the algorithms are accurate and efficient.

The paper is organized as follows. Section 2 sets up the
basic definitions of the activity model extending [Albanese
et al., 2007] in a straightforward way. Section 3 defines the

1628

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

probability that a video sequence is totally (or partially) un-
explained. Section 4 derives a set of theorems that enable fast
search of totally and partially unexplained video sequences.
Section 5 presents the FindTUA and FindPUA algorithms.
Section 6 describes our experiments.

2 Basic Activity Model

This section presents a slight variant of the stochastic activ-
ity model of [Albanese et al., 2007] as a starting point. The
novel contributions of this paper start in the next section. We
assume the existence of a finite set S of action symbols, cor-
responding to atomic actions that can be detected by image
understanding methods.

Definition 2.1 (Stochastic activity) A stochastic activity is a
labeled directed graph A = (V,E, δ, ρ) where
• V is a finite set of nodes labeled with action symbols

from S;
• E ⊆ V × V is a set of edges;
• δ : E → N+ is a function that associates, with each

edge e = (vi, vj), an upper bound on the time that can
elapse between vi and vj;

• ρ is a function that associates, with each node v ∈ V
having out-degree 1 or more, a probability distribution
on {〈v, v′〉 | 〈v, v′〉 ∈ E}, i.e.,

∑
〈v,v′〉∈E

ρ(〈v, v′〉) = 1;

• {v ∈ V | � v′ ∈ V s.t. 〈v′, v〉 ∈ E} �= ∅, i.e., there
exists at least one start node in the activity definition;

• {v ∈ V | � v′ ∈ V s.t. 〈v, v′〉 ∈ E} �= ∅, i.e., there
exists at least one end node in the activity definition.

Figure 1 shows an example of stochastic activity modeling
deposits at an Automatic Teller Machine (ATM). Each edge e
is labeled with (δ(e), ρ(e)). For instance, the two edges start-
ing at node insertCard mean that there is a 50% probability
of going to node insertChecks and a 50% probability of go-
ing to node insertCash from node insertCard. In addition,
it is required that insertChecks and insertCash follow in-
sertCard within 2 and 1 time units, respectively. In general,
actions can be easily detected by either an image process-
ing algorithm (e.g. detectPerson would check if a person is
present in the image) or a sensor (e.g. to detect if insertCard
holds).

The basic difference between this model and the one
of [Albanese et al., 2007] is the addition of the function δ
which allows us to express constraints on the maximum “tem-
poral distance” between two actions for them to be considered
part of the same activity.

insertChecks

insertCard

insertCash

pickupReceipt withdrawCard

(2, 0.5)

(1, 0.5)

(2, 0.8)

(1, 1)

(2, 0.2)

(1, 0.3)

(2, 0.7)

detectPerson
(3, 1)

Figure 1: Example of stochastic activity: ATM deposit

Definition 2.2 (Stochastic activity instance) An instance of
a stochastic activity (V,E, δ, ρ) is a sequence 〈s1, . . . , sm〉 of
nodes in V such that

• 〈si, si+1〉 ∈ E for 1 ≤ i < m;

• {s | 〈s, s1〉 ∈ E} = ∅, i.e., s1 is a start node; and

• {s | 〈sm, s〉 ∈ E} = ∅, i.e., sm is an end node.

The probability of the instance is
∏m−1

i=1 ρ(〈si, si+1〉).
Thus, an instance of a stochastic activity A is a path in A

from a start node to an end node. In Figure 1, 〈detectPerson,
insertCard, insertCash, withdrawCard〉 is an instance with
probability 0.35.

A video is a finite sequence of frames. Each frame f has an
associated timestamp, denoted f.ts; without loss of general-
ity, we assume timestamps to be positive integers. A labeling
� of a video v is a mapping � : v → 2S that takes a video
frame f ∈ v as input, and returns a set of action symbols
�(f) ⊆ S as output. Intuitively, a labeling can be computed
via an appropriate suite of image processing algorithms and
specifies what actions are detected in each frame of a video.

Example 2.1 Consider a video v = 〈f1, f2, f3, f4, f5〉, with
fi.ts= i for 1≤ i≤ 5. A possible labeling � of v is: �(f1)=
{detectPerson}, �(f2)={insertCard}, �(f3)={insertCash},
�(f4)={withdrawCash}, �(f5)={withdrawCard}.

Throughout the paper, we use the following terminology
and notation for sequences. Let S1 = 〈a1, . . . , an〉 and S2 =
〈b1, . . . , bm〉 be two sequences. We say that S2 is a subse-
quence of S1 iff there exist 1 ≤ j1 < j2 < . . . < jm ≤ n s.t.
bi=aji for 1 ≤ i ≤ m. If ji= ji+1 − 1 for 1 ≤ i < m, then
S2 is a contiguous subsequence of S1. We write S1 ∩ S2 �= ∅
iff S1 and S2 have a common element and write e ∈ S1 iff e
is an element appearing in S1. The concatenation of S1 and
S2, i.e., the sequence 〈a1, . . . , an, b1, . . . , bm〉, is denoted by
S1 · S2. Finally, we use |S1| to denote the length of S1, that
is, the number of elements in S1.

Definition 2.3 (Activity occurrence) Let v be a video, � a
labeling of v, and A = (V,E, δ, ρ) a stochastic activity. An
occurrence o of A in v w.r.t. � is a sequence 〈(f1, s1), . . . ,
(fm, sm)〉 such that

• 〈f1, . . . , fm〉 is a subsequence of v,

• 〈s1, . . . , sm〉 is an instance of A,

• si ∈ �(fi), for 1 ≤ i ≤ m, and 1

• fi+1.ts− fi.ts ≤ δ(〈si, si+1〉), for 1 ≤ i < m.

The probability of o, denoted p(o), is the probability of the
instance 〈s1, . . . , sm〉.

When concurrently monitoring multiple activities, shorter
activity instances generally tend to have higher probability.
To remedy this, we normalize occurrence probabilities by in-
troducing the relative probability p∗(o) of an occurrence o of
activity A as p∗(o) = p(o)

pmax
, where pmax is the highest prob-

ability of any instance of A.

1With a slight abuse of notation, we use si to refer to both node
si and the action symbol labeling it.

1629

Example 2.2 Consider the video and the labeling of Ex-
ample 2.1. An occurrence of the activity of Figure 1 is
o = 〈(f1, detectPerson), (f2, insertCard), (f3, insertCash),
(f5,withdrawCard)〉, and p∗(o) = 0.875.

We use O(v, �) to denote the set of all activity occurrences in
v w.r.t. �. Whenever v and � are clear from the context, we
write O instead of O(v, �).

3 Unexplained Activity Probability Model

In this section we define the probability that a video se-
quence is unexplained, given a set A of known activities.
We start by noting that the definition of probability of an ac-
tivity occurring in a video can implicitly involve conflicts.
For instance, consider the activity occurrence o in Exam-
ple 2.2 and consider a second activity occurrence o′ such that
(f1, detectPerson) ∈ o′. In this case, there is an implicit con-
flict because (f1, detectPerson) belongs to both occurrences,
but in fact, detectPerson can only belong to one activity oc-
currence, i.e. though o and o′ may both have a non-zero prob-
ability of occurrence, the probability that these two activity
occurrences coexist is 0. Formally, we say two activity oc-
currences o, o′ conflict, denoted o � o′, iff o ∩ o′ �= ∅. We
now use this to define possible worlds.

Definition 3.1 (Possible world) A possible world for a video
v and a labeling � is a subset w of O s.t. �oi, oj ∈ w, oi � oj .

Thus, a possible world is a set of activity occurrences
which do not conflict with one another, i.e., an action symbol
in a frame cannot belong to two distinct activity occurrences
in the same world. We use W(v, �) to denote the set of all
possible worlds for a video v and a labeling �; whenever v
and � are clear from the context, we simply write W .

Example 3.1 Consider a video with two conflicting occur-
rences o1, o2. There are 3 possible worlds: w0 = ∅, w1 =
{o1}, and w2 = {o2}. Note that {o1, o2} is not a world as
o1 � o2. Each world represents a way of explaining what
is observed. The first world corresponds to the case where
nothing is explained, the second and third worlds correspond
to the scenarios where we use one of the two possible occur-
rences to explain the observed action symbols.

Note that any subset of O not containing conflicting occur-
rences is a legitimate possible world — possible worlds are
not required to be maximal w.r.t. ⊆. In the above example,
the empty set is a possible world even though there are two
other possible worlds w1 = {o1} and w2 = {o2} which are
supersets of it. The reason is that o1 and o2 are uncertain,
so the scenario where neither o1 nor o2 occurs is a legitimate
one. We further illustrate this point below.

Example 3.2 Suppose we have a video where a single occur-
rence o has p∗(o)=0.6. In this case, it is natural to say that
there are two possible worlds w0=∅ and w1={o} and expect
the probabilities of w0 and w1 to be 0.4 and 0.6, respectively.
By restricting ourselves to maximal possible worlds only, we
would have only one possible world, w1, whose probability is
1, which is wrong. Nevertheless, if p∗(o) = 1, w1 is the only
possible scenario. This can be achieved by assigning 0 and 1
to the probabilities of w0 and w1, respectively.

Figure 2: Conflict-Based Partitioning of a video

We use ∗
� to denote the transitive closure of �. Clearly, ∗

�
is an equivalence relation and determines a partition of O into
equivalence classes O1, . . . ,Om.

Example 3.3 Suppose we have a video v = 〈f1, . . . , f16〉
and a labeling � such that five occurrences o1, o2, o3, o4, o5
are detected as depicted in Figure 2, that is, o1 � o2, o2 � o3,
and o4 � o5. There are two equivalence classes determined
by ∗

�, namely O1 = {o1, o2, o3} and O2 = {o4, o5}.

The equivalence classes determined by ∗
� lead to a conflict-

based partitioning of a video.

Definition 3.2 (Conflict-Based Partitioning) Let v be a
video, � a labeling, and O1, . . . ,Om the equivalence classes
determined by ∗

�. A Conflict-Based Partitioning (CBP) of v
(w.r.t. �) is a sequence 〈(v1, �1), . . . , (vm, �m)〉 such that:

• v1 · . . . · vm = v;

• �i is the restriction of � to vi, i.e., it is a labeling of vi s.t.
∀f ∈ vi, �i(f) = �(f), for 1 ≤ i ≤ m; and

• O(vi, �i) = Oi, for 1 ≤ i ≤ m.

The vi’s are called segments.

Example 3.4 A CBP of the video in Example 3.3 is
〈(v1, �1), (v2, �2)〉, where v1 = 〈f1, . . . , f9〉, v2 =
〈f10, . . . , f16〉, �1 and �2 are the restrictions of � to v1 and
v2, respectively. Another partitioning of the same video is
v1 = 〈f1, . . . , f10〉 and v2 = 〈f11, . . . , f16〉.

Thus, activity occurrences determine a set of possible
worlds (intuitively, different ways of explaining what is in
the video). We wish to find a probability distribution over all
possible worlds that (i) is consistent with the relative probabil-
ities of the occurrences, and (ii) takes conflicts into account.
We assume the user specifies a function Weight : A → R+

which assigns a weight to each activity and prioritizes the
importance of the activity for his needs. The weight of
an occurrence o of activity A is the weight of A. We use
C(o) to denote the set of occurrences conflicting with o, i.e.,
C(o) = {o′ | o′ ∈ O ∧ o′ � o}. Note that C(o) includes o
itself and C(o) = {o} when o does not conflict with any other
occurrence. Finally, we assume that activity occurrences be-
longing to different segments are independent events. Sup-
pose pi denotes the (unknown) probability of world wi. As
we know the probability of occurrences, and as each occur-
rence occurs in certain worlds, we can induce a set of nonlin-
ear constraints that are used to learn the values of the pi’s.

Definition 3.3 Let v be a video, � a labeling, and
O1, . . . ,Om the equivalence classes determined by ∗

�. We

1630

define the non-linear constraints NLC(v, �) as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi ≥ 0, ∀wi ∈ W∑
wi∈W

pi = 1

∑
wi∈W s.t. o∈wi

pi = p∗(o) · Weight(o)∑
oj∈C(o) Weight(oj)

, ∀o ∈ O

pj =

m∏
k=1

∑
wi∈W s.t. wi∩Ok=wj∩Ok

pi ∀wj ∈ W

The first two types of constraints enforce a probability
distribution over the set of possible worlds. The third type
of constraint ensures that the probability of occurrence o –
which is the sum of the probabilities of the worlds contain-
ing o – is equal to its relative probability p∗(o) weighted
by Weight(o)∑

oj∈C(o) Weight(oj)
, the latter being the weight of o di-

vided by the sum of the weights of the occurrences conflicting
with o. Note that: (i) the value on the right-hand side of the
third type of constraint decreases as the amount of conflict in-
creases, (ii) if an occurrence o is not conflicting with any other
occurrence, then its probability

∑
wi∈W s.t. o∈wi

pi is equal to
p∗(o), namely the probability returned by the stochastic au-
tomaton. The last kind of constraint reflects the independence
between segments.

In general NLC(v, �) might admit multiple solutions.
Example 3.5 Consider a single-segment video consisting of
frames f1, . . . , f9 shown in Figure 2. Suppose three occur-
rences o1, o2, o3 have been detected with relative probabil-
ity 0.3, 0.6, and 0.5 respectively. Suppose the weights of o1,
o2, o3 are 1, 2, 3, respectively. Five worlds are possible in
this case: w0 = ∅, w1 = {o1}, w2 = {o2}, w3 = {o3},
and w4 = {o1, o3}. Then, NLC(v, �) is as follows (we omit
the constraints expressing independence among segments be-
cause, in this case, they are trivial):

p0 + p1 + p2 + p3 + p4 = 1
p1 + p4 = 0.3 · 1

3

p2 = 0.6 · 1
3

p3 + p4 = 0.5 · 3
5

which has multiple solutions. One solution is p0 = 0.4,
p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0. Another solution
is p0 = 0.5, p1 = 0, p2 = 0.2, p3 = 0.2, p4 = 0.1.

In the rest of the paper, we assume that NLC(v, �) is solv-
able. We say that a sequence S = 〈(f1, s1), . . . , (fn, sn)〉
occurs in a video v w.r.t. a labeling � iff 〈f1, . . . , fn〉 is a con-
tiguous subsequence of v and si ∈ �(fi) for 1 ≤ i ≤ n. We
give two semantics for S to be unexplained in a world w:

1. S is totally unexplained in w, denoted w�TS, iff
∀(fi, si) ∈ S, �o ∈ w, (fi, si) ∈ o;

2. S is partially unexplained in w, denoted w�PS, iff
∃(fi, si) ∈ S, �o ∈ w, (fi, si) ∈ o.

Intuitively, S is totally (resp. partially) unexplained in w
iff w does not explain every (resp. at least one) symbol of S.
We now define the probability that a sequence occurring in a
video is totally or partially unexplained.

Definition 3.4 Let v be a video, � a labeling, and S a se-
quence occurring in v w.r.t. �. The probability interval that S

is totally unexplained in v w.r.t. � is IT (S) = [l, u], where:

l = minimize
∑

wi∈W s.t. wi�TS pi
subject to NLC(v, �)

u = maximize
∑

wi∈W s.t. wi�TS pi
subject to NLC(v, �)

Likewise, the probability interval that S is partially unex-
plained in v w.r.t. � is IP (S) = [l′, u′], where:

l′ = minimize
∑

wi∈W s.t. wi�PS pi
subject to NLC(v, �)

u′ = maximize
∑

wi∈W s.t. wi�PS pi
subject to NLC(v, �)

Thus, given a solution of NLC(v, �), the probability that
a sequence S occurring in v is totally (resp. partially) unex-
plained is the sum of the probabilities of the worlds in which
S is totally (resp. partially) unexplained. As NLC(v, �)
may have multiple solutions, we find the tightest interval [l, u]
(resp. [l′, u′]) s.t. this probability is in [l, u] (resp. [l′, u′]) for
any solution. Different criteria can be used to infer a value
from an interval [l, u], e.g. the MIN l, the MAX u, the aver-
age (i.e., (l+ u)/2), etc. Clearly, the only requirement is that
this value has to be in [l, u]. In the rest of the paper we as-
sume that one of the above criteria has been chosen — PT (S)
(resp. PP (S)) denotes the probability that S is totally (resp.
partially) unexplained.

Given two sequences S1 and S2 occurring in a video, it
can be easily verified that if S1 is a subsequence of S2, then
PT (S1) ≥ PT (S2) and PP (S1) ≤ PP (S2).

Definition 3.5 (Unexplained activity occurrence) Let v be
a video, � a labeling, τ ∈ [0, 1] a probability threshold, and
L ∈ N+ a length threshold. Then,
• a totally unexplained activity occurrence is a sequence

S occurring in v s.t. (i) PT (S) ≥ τ , (ii) |S| ≥ L, and
(iii) S is maximal, i.e., there does not exist a sequence
S′ �= S occurring in v s.t. S is a subsequence of S′,
PT (S

′) ≥ τ , and |S′| ≥ L.
• a partially unexplained activity occurrence is a sequence
S occurring in v s.t. (i) PP (S) ≥ τ , (ii) |S| ≥ L, and
(iii) S is minimal, i.e., there does not exist a sequence
S′ �= S occurring in v s.t. S′ is a subsequence of S,
PP (S

′) ≥ τ , and |S′| ≥ L.

In the definition above, L is the minimum length a se-
quence must be for it to be considered a possible unexplained
activity occurrence. Totally unexplained occurrences S have
to be maximal because once we find S, then any sub-sequence
of it has a probability of being (totally) unexplained greater
than or equal to the probability of S. On the other hand, par-
tially unexplained occurrences S′ have to be minimal because
once we find S′, then any super-sequence of it has a proba-
bility of being (partially) unexplained greater than or equal to
the one of S.

Intuitively, an unexplained activity occurrence is a se-
quence of action symbols that are observed in the video and
poorly explained by the known activity models. Such se-
quences might correspond to unknown variants of known ac-
tivities or to entirely new – and unknown – activities.

1631

An Unexplained Activity Problem (UAP) instance is a 4-
tuple 〈v, �, τ, L〉, where v is a video, � is a labeling of v,
τ ∈ [0, 1] is a probability threshold, and L ∈ N+ is a
length threshold. The desired result is all totally/partially un-
explained activity occurrences.

4 Properties of UAPs

In this section, we derive properties of the above model that
can be leveraged (in the next section) to devise efficient algo-
rithms to find unexplained activities. Specifically, we first
show an interesting property concerning the resolution of
NLC(v, �) (some subsequent results rely on it); then, in the
following two subsections, we consider specific properties for
totally and partially unexplained activities.

For a given video v and labeling �, we now show that if
〈(v1, �1), . . . , (vm, �m)〉 is a CBP, then we can find the so-
lutions of the non-linear constraints NLC(v, �) by solving
m smaller sets of linear constraints.2 We define LC(v, �)
as the set of linear constraints of NLC(v, �) (thus, we in-
clude all the constraints of Definition 3.3 except for the last
kind). Henceforth, we use W to denote W(v, l) and Wi to
denote W(vi, �i), 1 ≤ i ≤ m. A solution of NLC(v, �) is a
mapping P : W → [0, 1] which satisfies NLC(v, �). Like-
wise, a solution of LC(vi, �i) is a mapping Pi : Wi → [0, 1]
which satisfies LC(vi, �i). It is important to note that W =
{w1 ∪ . . . ∪ wm | wi ∈ Wi, 1 ≤ i ≤ m}.

Theorem 1 Let v be a video, � a labeling, and
〈(v1, �1), . . . , (vm, �m)〉 a CBP. P is a solution of
NLC(v, �) iff ∀i ∈ [1,m] there exists a solution Pi of
LC(vi, �i) s.t. P(

⋃m
i=1 wi) =

∏m
i=1 Pi(wi) for every

w1 ∈ W1, . . . , wm ∈ Wm.

Consider a video v and a labeling �, and let
〈(v1, �1), . . . , (vm, �m)〉 be a CBP. Given a sequence
S = 〈(f1, s1), . . . , (fq, sq)〉 occurring in v, we say that
vi, vi+1, . . . , vi+n (1 ≤ i ≤ i + n ≤ m) are the sub-videos
containing S iff f1 ∈ vi and fq ∈ vi+n. In other words,
S spans the sub-videos vi, vi+1, . . . , vi+n: it starts at some
point in sub-video vi (as vi contains the first frame of S)
and ends at some point in sub-video vi+n (as vi+n contains
the last frame of S). In addition, we use Sk to denote the
projection of S on the k-th sub-video vk (i ≤ k ≤ i+n), that
is, the subsequence of S containing all the pairs (f, s) ∈ S
with f ∈ vk.

4.1 Totally unexplained activities

The following theorem says that we can compute IT (S) by
solving LC (which are linear constraints) for each sub-video
containing S (instead of solving a non-linear set of constraints
for the whole video).

Theorem 2 Consider a video v and a labeling �. Let
〈(v1, �1), . . . , (vm, �m)〉 be a CBP and 〈vi, . . . , vi+n〉 be the
sub-videos containing a sequence S occurring in v. For

2This therefore yields two benefits: first it allows us to solve a
smaller set of constraints, and second, it allows us to solve linear
constraints which are usually easier to solve than nonlinear ones.

i ≤ k ≤ i+ n, let

lk = minimize
∑

wh∈Wk s.t. wh�TSk
ph

subject to LC(vk, �k)
uk = maximize

∑
wh∈Wk s.t. wh�TSk

ph
subject to LC(vk, �k)

If IT (S) = [l, u], then l =
∏i+n

k=i lk and u =
∏i+n

k=i uk.

The following theorem provides a sufficient condition for
a pair (f, s) not to be included in any sequence S occurring
in v and having PT (S) ≥ τ .

Theorem 3 Let 〈v, �, τ, L〉 be a UAP instance. Given (f, s)

s.t. f ∈ v and s ∈ �(f), let ε =
∑

o∈O s.t. (f,s)∈o

p∗(o) ·

Weight(o)∑
oj∈C(o) Weight(oj)

. If ε > 1−τ , then there does not exist

a sequence S occurring in v s.t. (f, s) ∈ S and PT (S) ≥ τ .

If the condition stated in the theorem above holds for a
pair (f, s), then we say that (f, s) is sufficiently explained.
It is important to note that to check whether a pair (f, s) is
sufficiently explained, we do not need to solve any set of lin-
ear or non-linear constraints, since ε is computed by simply
summing the (weighted) probabilities of the occurrences con-
taining (f, s). Thus, this result yields a further efficiency. A
frame f is sufficiently explained iff (f, s) is sufficiently ex-
plained for every s ∈ �(f). If (f, s) is sufficiently explained,
then it can be disregarded for the purpose of identifying unex-
plained activity occurrences, and, in addition, this may allow
us to disregard entire parts of videos as shown in the example
below.

Example 4.1 Consider a UAP instance 〈v, �, τ, L〉 where
v = 〈f1, . . . , f9〉 and � is s.t. �(fi) = {si} for 1 ≤ i ≤ 9, as
depicted in the figure below.

(f6,s6)(f4,s4)(f4,s4)((f1,s1)(f1,s1) (f2,s2)) (f6,s6)()(f3,s3) (f5,s5) (f7,s7) (f8,s8)) ((f8,s8)) (f9,s9)

PDFill PDF Editor with Free Writer and Tools

Suppose that L = 3 and that (f1, s1), (f4, s4), (f6, s6)
are sufficiently explained, that is, because of Theorem 3, we
can conclude that there is no sequence S occurring in v with
PT (S) ≥ τ and containing any of them. Even though we
have been able to apply the theorem to a few (fi, si) pairs,
we can conclude that no unexplained activity occurrence can
be found before f7, because L = 3.

Given a UAP instance I = 〈v, �, τ, L〉 and a contiguous
subsequence v′ of v, v′ is relevant iff (i) |v′| ≥ L, (ii) ∀f ∈ v′,
f is not sufficiently explained, and (iii) v′ is maximal (i.e.,
there does not exist v′′ �= v′ s.t. v′ is a subsequence of v′′ and
v′′ satisfies (i) and (ii)). We use relevant(I) to denote the set
of relevant sub-videos.

Theorem 3 entails that relevant sub-videos can be individ-
ually considered when looking for totally unexplained activi-
ties because there is no totally unexplained activity spanning
two different relevant sub-videos.

1632

4.2 Partially unexplained activities

The following theorem states that we can compute IP (S) by
solving NLC for the sub-video consisting of the segments
containing S (instead of solving NLC for the whole video).

Theorem 4 Consider a video v and a labeling �. Let
〈(v1, �1), . . . , (vm, �m)〉 be a CBP and 〈vi, . . . , vi+n〉 be the
sub-videos containing a sequence S occurring in v. Let
v∗ = vi · . . . · vi+n and �∗ be a labeling for v∗ s.t., for every
f ∈ v∗, �∗(f) = �(f). IP (S) computed w.r.t. v and � is
equal to IP (S) computed w.r.t. v∗ and �∗.

5 Algorithms

We now present algorithms to find totally and partially unex-
plained activities. Due to lack of space, we assume |�(f)| = 1
for every frame f in a video (this makes the algorithms much
more concise – generalization to the case of multiple ac-
tion symbols per frame is straightforward3). Given a video
v = {f1, . . . , fn}, we use v(i, j) (1 ≤ i ≤ j ≤ n) to de-
note the sequence S = 〈(fi, si), . . . , (fj , sj)〉, where sk is
the only element in �(fk), i ≤ k ≤ j.

The FindTUA algorithm computes all totally unexplained
activities in a video. Leveraging Theorem 3, FindTUA only
considers relevant subsequences of v. When the algorithm
finds a sequence v′(start, end) of length at least L having
a probability of being unexplained greater than or equal to
τ (line 5), then the algorithm makes it maximal by adding
frames on the right. Instead of adding one frame at a time,
v′(start, end) is extended of L frames at a time until its prob-
ability drops below τ (lines 7–10); then, the exact maximum
length of the unexplained activity is found (line 12, this is ac-
complished by performing a binary search between s and e).
Note that PT is computed by applying Theorem 2.

Algorithm 1 FindTUA
Input: UAP instance I = 〈v, �, τ, L〉
Output: Set of totally unexplained activities
1: Sol = ∅
2: for all v′ ∈ relevant(I) do

3: start = 1; end = L
4: repeat

5: if PT (v′(start, end)) ≥ τ then

6: end′ = end
7: while end < |v′| do

8: end = min{end + L, |v′|}
9: if PT (v′(start, end)) < τ then

10: break

11: s = max{end − L, end′}; e = end
12: end = max{mid | s ≤ mid ≤ e∧PT (v′(start,mid)) ≥ τ}
13: S = v′(start, end); Add S to Sol;
14: start = start + 1; end = start + |S| − 1
15: else

16: start = start + 1; end = max{end, start + L − 1}
17: until end > |v′|
18: return Sol

Theorem 5 Algorithm FindTUA returns all the totally unex-
plained activities of the input instance.

The FindPUA algorithm below computes all partially un-
explained activities. To find an unexplained activity, it starts

3Indeed, it suffices to consider the different sequences given by
the different action symbols.

with a sequence of a certain length (at least L) and adds
frames on the right of the sequence until its probability of
being unexplained is greater than or equal to τ . As in the case
of FindTUA, this is done not by adding one frame at a time,
but adding L frames at a time (lines 5–8) and then determin-
ing the exact minimal length (line 11, this is accomplished by
performing a binary search between s and e). The sequence
is then shortened on the left making it minimal (line 15, this
is again done by performing a binary search instead of pro-
ceeding one frame at a time). Note that PP is computed by
applying Theorem 4.

Algorithm 2 FindPUA
Input: UAP instance I = 〈v, �, τ, L〉
Output: Set of partially unexplained activities
1: Sol = ∅; start = 1; end = L
2: while end ≤ |v| do

3: if PP (v(start, end)) < τ then

4: end′ = end
5: while end < |v| do

6: end = min{end + L, |v|}
7: if PP (v(start, end)) ≥ τ then

8: break

9: if PP (v(start, end)) ≥ τ then

10: s = max{end′ + 1, end − L + 1}; e = end
11: end = min{mid | s ≤ mid ≤ e ∧ PP (v(start,mid)) ≥ τ}
12: else

13: return Sol
14: s′ = start; e′ = end − L + 1
15: start = max{mid | s′ ≤ mid ≤ e′ ∧ PP (v(mid, end)) ≥ τ}
16: S = v(start, end); Add S to Sol
17: start = start + 1; end = start + |S| − 1
18: return Sol

Theorem 6 Algorithm FindPUA returns all the partially un-
explained activities of the input instance.

6 Experimental Results

Our prototype implementation of the proposed framework
consists of:

• an image processing library, which performs low-level
processing of video frames, including object tracking
and classification;

• a video labeler, which maps frames to action symbols,
based on the output of the image processing stage;

• an activity recognition algorithm, based on [Albanese et
al., 2007], which identifies all possible occurrences of
known activities;

• a UAP engine, which implements algorithms FindTUA
and FindPUA in 7500 lines of Java code.

We generated a video by concatenating multiple videos
from the ITEA CANDELA dataset, a publicly available
dataset depicting a number of staged package exchanges and
object drop-offs and pick-ups (http://www.multitel.
be/˜va/candela/abandon.html). We evaluated preci-
sion and recall against a ground truth provided by human an-
notators. Annotators were informed about known activities
by providing them with a graphical representation of the ac-
tivity models (for an example, see Figure 1). They were asked
to watch the video and identify video segments where totally
(resp. partially) unexplained activities occurred.

1633

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

5 50 500

Ru
nn

in
g

tim
e

(m
s)

Video length (min.)

NaïveTUA

FindTUA

FindPUA

NaïvePUA

Figure 3: Processing times

Running time. Figure 3 shows the processing time of Find-
TUA and FindPUA as a function of the length of the video.
Note that both axes are on a logarithmic scale. It is clear that
both algorithms run in time linear in the length of the video,
and significantly outperform naı̈ve algorithms that do not use
the optimizations of Theorems 2, 3, and 4.

Precision/recall. Given a set A of activity definitions, let
{Sa

i }i∈[1,m] denote the set of unexplained sequences returned
by our algorithms, and let {Sh

j }j∈[1,n] denote the set of se-
quences flagged as unexplained by human annotators. We
evaluate precision and recall as

P =
|{Sa

i |∃Sh
j s.t. Sa

i ≈p Sh
j }|

m

R =
|{Sh

j |∃Sa
i s.t. Sa

i ≈p Sh
j }|

n

where Sa
i ≈p Sh

j means that Sa
i and Sh

j overlap by a percent-
age no smaller than p.

The precision/recall graph for algorithms FindTUA and
FindPUA, when p = 75%, is reported in Figure 4. The
value of the probability threshold τ that maximizes the F-
measure for FindTUA and FindPUA is 0.6. For τ = 0.6,
FindTUA achieves P = 70% and R = 69%, whereas Find-
PUA achieves P = 67% and R = 72%.

7 Conclusions

Suppose A is a given set of known activity models and v is
a video. This paper presents a possible worlds framework
to find all subsequences of v that cannot be explained by an
activity in A with a probability exceeding a user-specified
threshold. We develop the FindTUA and FindPUA algo-
rithms to find totally and partially unexplained sequences re-
spectively.

Finally, we present a prototype implementation of the pro-
posed framework, and show, through experiments, that algo-
rithms FindTUA and FindPUA work well in practice on a
real world video data set.

TUA

40

45

50

55

60

65

70

75

60 65 70 75 80 85 90

Pr
ec

is
io

n

Recall

PUA

Figure 4: Precision and recall

References

[Albanese et al., 2007] M. Albanese, V. Moscato, A. Pi-
cariello, V. S. Subrahmanian, and O. Udrea. Detecting
stochastically scheduled activities in video. In Proc. of IJ-
CAI’07, pages 1802–1807, 2007.

[Cuntoor et al., 2008] N. P. Cuntoor, B. Yegnanarayana, and
R. Chellappa. Activity modeling using event probability
sequences. IEEE Trans. Image Processing, 17(4):594–
607, April 2008.

[Hamid et al., 2003] R. Hamid, Y. Huang, and I. Essa.
Argmode - activity recognition using graphical models. In
Proc. IEEE CVPR’03, volume 4, pages 38–43, 2003.

[Hongeng and Nevatia, 2001] Somboon Hongeng and Ra-
makant Nevatia. Multi-agent event recognition. In Proc.
of IEEE ICCV’01, volume 2, pages 84–93, 2001.

[Hongeng et al., 2004] Somboon Hongeng, Ramakant Neva-
tia, and François Brémond. Video-based event recogni-
tion: activity representation and probabilistic recognition
methods. Computer Vision and Image Understanding,
96(2):129–162, 2004.

[Oliver et al., 2002] N. Oliver, E. Horvitz, and A. Garg. Lay-
ered representations for human activity recognition. In
Proc. of IEEE ICMI’02, pages 3–7, 2002.

[Vaswani et al., 2005] N. Vaswani, A. K. Roy-Chowdhury,
and R. Chellappa. Shape activity: A continuous-state hmm
for moving/deforming shapes with application to abnor-
mal activity detection. IEEE Trans. Image Processing,
14(10):1603–1616, October 2005.

[Wilson and Bobick, 1999] A. D. Wilson and A. F. Bobick.
Parametric hidden Markov models for gesture recognition.
IEEE Trans. Pattern Anal. Machine Intell., 21(9):884–900,
September 1999.

[Zhong et al., 2004] Hua Zhong, Jianbo Shi, and Mirkó Vi-
sontai. Detecting unusual activity in video. In Proc. of
IEEE CVPR’04, volume 2, pages 819–826, 2004.

1634

