
Task Completion Transfer Learning for Reward Inference

Layla El Asri1,2, Romain Laroche1, Olivier Pietquin3

1Orange Labs, Issy-les-Moulineaux, France
2 UMI 2958 (CNRS - GeorgiaTech), France

3University Lille 1, LIFL (UMR 8022 CNRS/Lille 1) - SequeL team, France
layla.elasri@orange.com, romain.laroche@orange.com, olivier.pietquin@univ-lille1.fr

Abstract

Reinforcement learning-based spoken dialogue systems aim
to compute an optimal strategy for dialogue management
from interactions with users. They compare their different
management strategies on the basis of a numerical reward
function. Reward inference consists of learning a reward
function from dialogues scored by users. A major issue for re-
ward inference algorithms is that important parameters influ-
ence user evaluations and cannot be computed online. This is
the case of task completion. This paper introduces Task Com-
pletion Transfer Learning (TCTL): a method to exploit the
exact knowledge of task completion on a corpus of dialogues
scored by users in order to optimise online learning. Com-
pared to previously proposed reward inference techniques,
TCTL returns a reward function enhanced with the possibility
to manage the online non-observability of task completion.
A reward function is learnt with TCTL on dialogues with a
restaurant seeking system. It is shown that the reward func-
tion returned by TCTL is a better estimator of dialogue per-
formance than the one returned by reward inference.

Introduction
In a Spoken Dialogue System (SDS), the dialogue manager
controls the behaviour of the system by choosing which dia-
logue act to perform according to the current context. Adap-
tive SDS now integrate data-driven statistical methods to op-
timise dialogue management. Among these techniques, Re-
inforcement Learning (RL) (Singh et al. 1999) compares
and assesses management strategies with a numerical re-
ward function. Since this function serves as a dialogue qual-
ity evaluator, it must take into account all the different vari-
ables which come into play in dialogue success. SDS evalu-
ation might be used to discover these variables (Lemon and
Pietquin 2012).

Evaluation campaigns on many disparate systems have
enabled to highlight common Key Performance Indica-
tors (KPI) such as task completion, dialogue duration and
speech recognition rejection/error rate (Walker et al. 1997b;
Larsen 2003; Lemon and Pietquin 2012). Therefore, a re-
ward function would ideally integrate and be able to esti-
mate online all these KPI. Nevertheless, the correctness of
speech recognition and the task completion cannot always

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be accurately estimated online. We focus in this paper on
circumventing the task completion problematic.

Walker et al. (Walker et al. 1997b) designed a PARAdigm
for DIalogue System Evaluation (PARADISE), which mod-
els SDS performance as the maximisation of task comple-
tion and the minimisation of dialogue costs such as di-
alogue duration or the number of rejections from speech
recognition. Multiple linear regression has been proposed to
compute an estimator of SDS performance. Dialogue costs
are automatically computed from dialogue logs and task
completion is measured with the κ statistic (Cohen 1960).
This estimator has been used as a reward function (Walker,
Fromer, and Narayanan 1998; Rieser and Lemon 2011).

Information-providing systems are often built as slot-
filling systems (Raux et al. 2003; Lemon et al. 2006a;
Chandramohan et al. 2011). In the case of these systems,
task completion is measured by the number of correctly
filled slots. The κ statistic counts this number and adjusts
it with the probability that the correct information was ob-
tained by chance. This statistic cannot be computed online
because, for each dialogue, it compares the values of the at-
tributes (e.g location, price, type of food for a restaurant-
seeking SDS) intended by the user to the ones understood
by the SDS. When user intention is unknown, one cannot
check the validity of the information provided by the SDS.
In this context, one way to estimate the level of task achieve-
ment is to count the number of slots that were confirmed by
the user during the dialogue. Nevertheless, this does not pro-
vide an exact measure of task completion so some dialogues
might still be ill-evaluated.

Another common type of dialogue system is the utili-
tarian one. These systems are built to achieve a precise
task like scheduling an appointment (Laroche et al. 2011;
El Asri et al. 2014) or controlling some devices (Möller et al.
2004). It is also difficult in this context to estimate task com-
pletion with accuracy. For instance, concerning the appoint-
ment scheduling task, it was observed on scenario-based di-
alogues that some users had booked an appointment during
a time slot when they were supposed to be busy. Because
the scenario was known, the task was not considered to have
been completed by the system but without knowing the user
calendar, this outcome would have been impossible to dis-
cern.

All in all, in most cases, it is difficult to measure the task

Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop

38

completion of an online operating SDS. This paper proposes
to use RL to improve task completion estimation accuracy.
The technique introduced in this paper is in the same line
as the RL research topic known as transfer learning. Trans-
fer learning aims to use former training on a specific task to
perform a related but different task (Taylor and Stone 2009).
We introduce Task Completion Transfer Learning (TCTL), a
technique that transfers training on a corpus of evaluated di-
alogues where task completion is known, to online learning,
where it is not.

Reward inference computes a reward function from a cor-
pus of evaluated dialogues. TCTL is based on a previously
presented reward inference algorithm named reward shap-
ing (El Asri, Laroche, and Pietquin 2012; 2013). TCTL tem-
porarily includes task completion in the dialogue state space
and learns a policy π̇ which optimises user evaluation on this
space. π̇ is then used to adjust the reward function inferred
by reward shaping.

TCTL is applied to a simulated corpus of dialogues with
a restaurant-seeking dialogue system. The reward function
learnt with reward shaping is compared to the one learnt
with TCTL. These two functions provide an estimation of
dialogue performance. It is shown that the estimation given
by TCTL is closer to the real performance than the one given
by reward shaping by comparing the rank correlation coeffi-
cients on the simulated dialogues.

Background
The stochastic decision process of dialogue management
is implemented as a Markov Decision Process (MDP).
An MDP is a tuple (S,A, T,R, γ) where S is the state
space, T are the transition probabilities modelling the en-
vironmental dynamics: ∀ (st, at, st+1), T (st, at, st+1) =
P (st+1 | st, at), R is the reward function and γ ∈]0, 1[is
a discount factor. A similar MDP without a reward function
will be noted MDP\R.

Reward shaping gives an immediate reward Rt =
R(st, st+1) to the system for each transition (st, st+1). Time
is measured in number of dialogue turns, each dialogue turn
being the time elapsed between two consecutive results of
Automatic Speech Recognition (ASR). The return rt is the
discounted sum of immediate rewards received after dia-
logue turn t: rt =

∑
k≥0 γ

kRt+k. A deterministic policy π
maps each state s to a unique action a. Under a policy π, the
value of a state s is the expected return following π starting
from state s: V π(s) = E[rt | st = s, π]. The Q-value of a
state-action couple (s, a) under π is Qπ(s, a) = E[rt | st =
s, at = a, π].

The aim of dialogue management is to compute an opti-
mal deterministic policy π∗. π∗ maximises the expected re-
turn for all dialogue states: ∀ π,∀ s, V π∗

(s) ≥ V π(s). The
optimal policy for a given MDP might not be unique but the
optimal policies share the same value functions.

Related work
The reward inference problem described in Definition 1 has
been studied for SDS optimisation (Walker et al. 1997b;

El Asri, Laroche, and Pietquin 2012; Sugiyama, Meguro,
and Minami 2012).

Definition 1 (Reward inference) Infer a reward function
from a corpus of N dialogues (Di)i∈1..N among which p di-
alogues have been manually evaluated with a performance
score P i ∈ R.
These techniques have a different manner of dealing with
task completion. Walker et. al (Walker et al. 1997b) propose
an estimator of task completion computing the κ statistic.
In (El Asri, Laroche, and Pietquin 2012), the relevant fea-
tures for computing the rewards are directly included in the
state space and task completion is handled in final states. In
(Sugiyama, Meguro, and Minami 2012), a reward function is
not designed for a goal-oriented but a conversational system.
Reward inference is done by preference-based inverse rein-
forcement learning: the algorithm learns a reward function
which follows the same numerical order as the performance
scores Pi.

In (El Asri, Laroche, and Pietquin 2012), an algorithm
named reward shaping was proposed to solve the reward in-
ference problem. This method is recalled in Algorithm 1.
Reward shaping returns the reward function RRS in Equa-

Algorithm 1 Reward shaping algorithm
Require: A set of evaluated dialoguesD1, ..., DN with per-

formance scores P1, ..., PN ; a stopping criterion ε
1: for all Di ∈ D1, .., DN do
2: for all decision dt ∈ Di (score Pi) do
3: Compute the return rt = γ−tPi
4: end for
5: end for
6: for all (s, a) do
7: Update the state-action value function: Qπ0(s, a)
8: end for
9: Update the policy: π1(s) = argmaxaQ

π0(s, a)
10: repeat
11: for all s do
12: Update the estimated performance P̂πk(s) =

E[rt = γ−tPi | st = s, πk]
13: end for
14: for all Di ∈ D1, .., DN do
15: R(s, s′) = γP̂πk(s′)− P̂πk(s)

16: R(st0 , st1) = γP̂πk(st1)
17: for all (s, a) do
18: Update the state-action value functionQπk(s, a)

with R
19: end for
20: Update the policy: πk+1(s) = argmaxaQ

πk(s, a)
21: end for
22: until ‖P̂πk − P̂πk−1‖ ≤ ε
23:
24: return R

tion 1.

RRS(s, s′) =

{
γP̂π(s′) if s = st0
γP̂π(s′)− P̂π(s) otherwise

(1)

39

Let π be the last policy computed during reward shaping.
Given the reward function R returned by the algorithm, the
returns for a dialogue ending at a terminal state stf are as in
Equation 2.

rt0 = γtf P̂π(stf)

rt = γtf−tP̂π(stf)− P̂π(st) (2)

The idea behind reward shaping is to distribute the estimated
performance score for a given dialogue among the decisions
taken by the dialogue manager during this dialogue. In many
cases, when an evaluator of system performance is built, the
evaluation P̂ is distributed as a reward to the system at the
end of the dialogue (Walker et al. 1997a) and the return at
time t is rt = γtf−tP̂ . It was shown that the reward function
computed by reward shaping could lead to faster learning
(El Asri, Laroche, and Pietquin 2013).

Task Completion Transfer Learning
Algorithm 2 describes the off-line computation done by
TCTL.

Algorithm 2 Task Completion Transfer Learning
Require:
• A set of evaluated dialogues D = D1, ..., DN with nu-

merical performance scores P1, ..., PN
• An MDP\RM = (S,A, T, γ)

Separate D into two partitions: dialogues with task com-
pletion (D+) and without task completion (D−)
Initialise Ṡ = S− {final states}

for all Di ∈ D+ do
for all sk ∈ Di do

if sk is final and ∃Dj ∈ D− such that sk is final in
Dj then
Ṡ = Ṡ ∪ {s+k , s

−
k }

else
Ṡ = Ṡ ∪ {sk}

end if
end for

end for

Compute Ṙ by running reward shaping on Ṁ =
(Ṡ, A, T, γ)
Compute an optimal policy π̇ and its corresponding value
function Qπ̇ for Ṁ with batch learning on D
Compute RRS by running reward shaping on M
Compute an optimal policy πRS and its corresponding
value function Qπ

RS

for M with batch learning on D
return Rf : (st, at, st+1) 7→ RRS(st, st+1) +

Qπ̇(st, at)−Qπ
RS

(st, at)

Let M = (S,A, T, γ) be the MDP modelling dialogue
management. Let D = (Di)i∈1..N be a set of evaluated di-
alogues with the SDS and (Pi)i∈1..N be their performance
scores. Two partitions are formed from this set of dialogues:

one partition D+ contains the dialogues where the task was
completed and the other partition D− contains the unsuc-
cessful dialogues. The final states reached during the dia-
logues of these two partitions are then examined: if one state
sk is encountered in both D+ and D−, it is duplicated. This
results in two states : s+k is associated to task completion
and s−k is associated to task failure. The state space with
the duplicated final states is called Ṡ and the corresponding
MDP\R is Ṁ .

Then, we apply reward shaping to Ṁ and associate the re-
sulting reward function Ṙ with a batch RL algorithm such as
Least-Squares Policy Iteration (LSPI, (Lagoudakis and Parr
2003)) in order to learn a policy from D. We call this pol-
icy π̇. Likewise, we run reward shaping on M to deduce a
reward function RRS .

Having task completion embedded as a feature of a di-
alogue’s final state enables to use π̇ as a starting policy for
online learning withM . Indeed, the only difference between
M and Ṁ concerns their sets of final states so a policy learnt
with Ṁ can be reused with M . Nevertheless, since the re-
ward functions Ṙ and RRS were learnt on different state
spaces, the Q−function associated to π̇ cannot serve as ini-
tial value for M . Transfer learning from Ṁ to M is done by
adding an adjustment term to RRS .

For a given dialogue of D, sf is the final state reached in
S and ṡf the one reached in Ṡ. Let (s, a) ∈ S × A be a
state-action couple visited during the dialogue and let ts be
the dialogue turn when a was decided to be taken at state s.
According to equation 1,

ṙts =

tf∑
tk=ts

γtk−tsṘ(sk, sk+1)

=

tf∑
tk=ts

γtk−ts(γP̂ π̇(sk+1)− P̂ π̇(sk))

= γt
f−ts P̂ π̇(ṡf)− P̂ π̇(s)

rRSts =

tf∑
tk=ts

γtk−tsRRS(sk, sk+1)

= γt
f−ts P̂π

RS

(sf)− P̂π
RS

(s)

ṙts − rRSts = γt
f−ts P̂ π̇(ṡf)− P̂ π̇(s)

−γt
f−ts P̂π

RS

(sf)− P̂π
RS

(s)

= γt
f−ts(P̂ π̇(ṡf)− P̂π

RS

(sf))

−(P̂ π̇(s)− P̂π
RS

(s)) (3)

γt
f−ts(P̂ π̇(ṡf) − P̂π

RS

(sf)) is the difference of per-
formance estimation between π̇ and πRS for the di-
alogues ending with state sf or ṡf , depending on
the considered state space. This term is thus an in-
dicator of the non-observability of task completion
and Qπ̇(s, a) − Qπ

RS

(s, a) + (P̂ π̇(s) − P̂π
RS

(s)) =

40

E
[
γt

f−ts(P̂ π̇(ṡf)− P̂π
RS

(sf)) | s0 = s, a0 = a
]

aver-
ages this non-observability, starting from the couple (s, a),
over the whole corpus. Note that it is possible to factorise by
γt

f−ts because Qπ
RS

(s, a) and Qπ̇(s, a) are computed on
the same corpus, only the nature of the final states changes
from one computation to the other.Qπ̇(s, a)−QπRS

(s, a) is
used to adjust the performance estimation done byRRS . For
each transition (s, a, s′), we add to RRS(s, s′) a coefficient
correcting the performance estimation made by RRS via the
difference of Q−values between πRS and π̇ for the taken
action a. The information relative to the non-observability
of task completion is thus embedded in the actions. We
note Q̂π̇ and Q̂π

RS

the Q-functions estimated on D with
respectively Ṙ and RRS .

The reward function Rf returned by TCTL is defined as
follows: ∀(s, a, s′),

Rf (s, a, s′)

= RRS(s, s′) + Q̂π̇(s, a)− Q̂π
RS

(s, a) (4)

Experimental validation
Protocol
We applied TCTL to a restaurant-seeking dialogue system
similar to the one presented in (Lemon et al. 2006b). During
the interaction, the system needs to fill three slots to provide
the information to the user: type of food, price range and
city area. Instead of keeping in memory the values given for
each slot (e.g. type of food = Italian, price range = cheap,
city area = dowtown) and a probability for each value to
have been correctly understood , the system only remem-
bers if a slot is empty, filled or confirmed. The actions the
system can perform are the following: greet the user, ask a
slot, explicitly confirm a slot, implicitly confirm a slot and
close the dialogue.

We simulated 1500 scenario-based dialogues with this
system. User behaviour was simulated with a Bayesian
network, as proposed in (Pietquin, Rossignol, and Ian-
otto 2009). The parameters of the Bayesian network were
learned on the 1234 human-machine dialogues described in
(Williams and Young 2007). System policy was uniform in
order to gather as many observations as possible for each
state. For each dialogue, the values of the slots understood
by the system were compared to the ones intended by the
simulated user. Each dialogue was scored according to the
function in equation 5, where nbRight is the number of slots
which were correctly filled, nbWrong the number of slots
incorrectly filled, nbEmpty, the number of slots left empty
and nbTurns the number of dialogue turns.

score =− 3× nbEmpty + 0.25× nbRight
− 0.75× nbWrong− 0.015× nbTurns (5)

We trained TCTL on 26 training sets of
50, 100, 150, ..., 1300 randomly drawn dialogues and tested
it on 26 test sets with the remaining 1450, 1400, 1350, ...200
dialogues. On each training set, we computed Ṙ, RRS and
Rf . On each test set, we compared the returns at time 0

0 200 400 600 800 1000 1200

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Number of dialogues

S
pe

ar
m

an
 c

or
re

la
tio

n
co

ef
fic

ie
nt

0 200 400 600 800 1000 1200

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Number of dialogues

S
pe

ar
m

an
 c

or
re

la
tio

n
co

ef
fic

ie
nt

0 200 400 600 800 1000 1200

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Number of dialogues

S
pe

ar
m

an
 c

or
re

la
tio

n
co

ef
fic

ie
nt

Figure 1: Spearman correlation coefficient between the sim-
ulated returns and the ones computed with Ṙ (plain line),
RRS (dotted line) and Rf (dashed line).

according to these functions to the simulated performance
scores computed with Equation 5. We repeated this process
150 times, each time drawing different training sets.

Results
Figure 1 displays the Spearman correlation coefficients be-
tween the performance scores computed with Equation 5
and the returns given by Ṙ, RRS and Rf on the 26 test
sets, averaged on the 150 runs. The Spearman correlation
coefficient (Spearman 1904) compares the rankings of the
dialogues, if two rankings are the same, the coefficient is
equal to 1. If they are opposite, the coefficient is equal to
-1. In order to learn a policy similar to the one that would be
learnt with the scoring function, the inferred reward function
should rank the dialogues in a similar way.

In Figure 1, it can be seen that a training set of 200 dia-
logues is enough for Ṙ and RRS to reach their highest cor-
relation value (respectively 0.86 and 0.85). As expected, the
correlation with Ṙ is always higher than the one with RRS .
As for Rf , it keeps improving its quality as a performance
estimator and even surpasses Ṙ for training sets bigger than
700 dialogues to reach a correlation of 0.87 for a training
set of 1300 dialogues. Besides, Figure 1 shows that Rf is a
better estimator of performance than RRS for any training
set of size higher than 300 dialogues. 300 dialogues corre-
sponded to the training set necessary to learn an optimal pol-
icy (which consisted of asking for and then confirming each
slot turn by turn) with Ṙ.

Discussion
For a small evaluated corpus of dialogues (under 300 in the
previous example), the quality of Rf is similar to the one
of RRS . Then, once the training set is large enough to learn

41

an optimal policy with Ṙ, the adjustment term in Rf helps
predict better the performance of each dialogue than RRS .

Another interesting result is that, on training sets bigger
than 700 dialogues, Rf gives a more accurate ranking of
dialogues than Ṙ. This can be explained by the fact that, in
this case, the task was completed if and only if every slot
had been correctly understood by the system. Ṙ was thus
learnt on a state space that only separated two cases of task
completion. Therefore, Ṙ could not easily distinguish the
cases were the task had been partially completed (e.g. one
slot correctly understood and the other two misunderstood).
However the adjustment term in Rf takes into account the
actions taken during the dialogue and this helped to rank
correctly these dialogues. Indeed, in these dialogues, there
are many user time outs or speech recognition rejections that
make the dialogue stagnate at the same state and Rf is more
precise than Ṙ because it penalises these outcomes. These
results show that not only TCTL enables to provide a better
estimator of dialogue performance than the one inferred by
reward shaping, it also learns an accurate estimator of the
cases where task completion can have more than two values.

We could have included partial task completion in Ṡ du-
plicating final states into four states (corresponding to 0 to 3
correctly filled states) to make task completion fully observ-
able in Ṁ . Nevertheless, our goal is to use reward shaping
with dialogues scored by users and in this case, the parame-
ters explaining the scores cannot be entirely known. We sim-
ulated here the fact that users will score dialogues according
to partial task completion and we showed that in this situ-
ation, TCTL can be successfully used to estimate dialogue
performance.

It is thus possible to optimise the exploitation of an evalu-
ated corpus to deal with online non-observability of features
as crucial as task completion. We believe TCTL is a promis-
ing strategy for building a reward function which can be used
online. In future work, we will compare the performance of
the policy learnt withRf to the one learnt withRRS on other
simulated dialogues to confirm that Rf entails a policy that
leads to higher performance.

As said in the introduction, another non-observable yet
paramount feature to predict user satisfaction is the num-
ber of speech recognition errors. We intend to extend our
methodology for computing a reward function to handling
this feature, adapting work from (Litman and Pan 2002) who
showed it is possible to build a model to predict the amount
of errors from a set of annotated dialogues. If such a model
can be built efficiently, it will then be possible to integrate
speech recognition errors to the set of features composing
the state space.

Another direction for future work is to additionally exploit
a set of evaluated dialogues to build jointly the state space
and the reward function of a given SDS.

Conclusion
This paper has introduced Task Completion Transfer Learn-
ing (TCTL) for learning Spoken Dialogue Systems (SDS).
When task completion is non-observable online, TCTL
transfers the knowledge of task completion on a corpus of

evaluated dialogues to online learning. This is done by com-
puting a reward function embedding information about task
completion.

TCTL was tested on a set of scenario-based simulated di-
alogues with an information providing system. The reward
function computed by TCTL was compared to the one com-
puted with a reward inference algorithm. It was shown that
for a set of dialogues sufficiently large, TCTL returns a bet-
ter estimator of dialogue performance.

Future work will focus on including speech recognition
errors to the model and optimising the conception of the
SDS state space.

Acknowledgements
The authors would like to thank Heriot-Watt University’s In-
teraction lab for providing help with DIPPER.

References
Chandramohan, S.; Geist, M.; Lefèvre, F.; and Pietquin, O.
2011. User simulation in dialogue systems using inverse
reinforcement learning. In Proc. of Interspeech.
Cohen, J. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement 20:37–
46.
El Asri, L.; Lemonnier, R.; Laroche, R.; Pietquin, O.; and
Khouzaimi, H. 2014. NASTIA: Negotiating Appointment
Setting Interface. In Proc. of LREC (to be published).
El Asri, L.; Laroche, R.; and Pietquin, O. 2012. Reward
function learning for dialogue management. In Proc. of
STAIRS.
El Asri, L.; Laroche, R.; and Pietquin, O. 2013. Reward
shaping for statistical optimisation of dialogue management.
In Proc. of SLSP.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4:1107–
1149.
Laroche, R.; Putois, G.; Bretier, P.; Aranguren, M.;
Velkovska, J.; Hastie, H.; Keizer, S.; Yu, K.; Jurčı́ček, F.;
Lemon, O.; and Young, S. 2011. D6.4: Final evaluation of
classic towninfo and appointment scheduling systems. Tech-
nical report, CLASSIC Project.
Larsen, L. B. 2003. Issues in the evaluation of spoken di-
alogue systems using objective and subjective measures. In
Proc. of IEEE ASRU, 209–214.
Lemon, O., and Pietquin, O. 2012. Data-Driven Methods
for Adaptive Spoken Dialogue Systems. Springer.
Lemon, O.; Georgila, K.; Henderson, J.; and Stuttle, M.
2006a. An ISU dialogue system exhibiting reinforcement
learning of dialogue policies: Generic slot-filling in the talk
in-car system. In Proc. of EACL.
Lemon, O.; Georgila, K.; Henderson, J.; and Stuttle, M.
2006b. An ISU dialogue system exhibiting reinforcement
learning of dialogue policies: generic slot-filling in the
TALK in-car system. In Proc. of EACL.

42

Litman, D. J., and Pan, S. 2002. Designing and evaluating
an adaptive spoken dialogue system. User Modeling and
User-Adapted Interaction 12:111–137.
Möller, S.; Krebber, J.; Raake, E.; Smeele, P.; Rajman, M.;
Melichar, M.; Pallotta, V.; Tsakou, G.; Kladis, B.; Vovos, A.;
Hoonhout, J.; Schuchardt, D.; Fakotakis, N.; Ganchev, T.;
and Potamitis, I. 2004. INSPIRE: Evaluation of a Smart-
Home System for Infotainment Management and Device
Control. In Proc. of LREC.
Pietquin, O.; Rossignol, S.; and Ianotto, M. 2009. Train-
ing Bayesian networks for realistic man-machine spoken di-
alogue simulation. In Proc. of IWSDS 2009.
Raux, A.; Langner, B.; Black, A.; and Eskenazi, M. 2003.
LET’S GO: Improving Spoken Dialog Systems for the El-
derly and Non-natives. In Proc. of Eurospeech.
Rieser, V., and Lemon, O. 2011. Learning and evaluation
of dialogue strategies for new applications: Empirical meth-
ods for optimization from small data sets. Computational
Linguistics 37.
Singh, S.; Kearns, M.; Litman, D.; and Walker, M. 1999. Re-
inforcement learning for spoken dialogue systems. In Proc.
of NIPS.
Spearman, C. 1904. The proof and measurement of associ-
ation between two things. American Journal of Psychology
15:72–101.
Sugiyama, H.; Meguro, T.; and Minami, Y. 2012.
Preference-learning based Inverse Reinforcement Learning
for Dialog Control. In Proc. of Interspeech.
Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10:1633–1685.
Walker, M.; Hindle, D.; Fromer, J.; Fabbrizio, G.; and Mes-
tel, C. 1997a. Evaluating competing agent strategies for a
voice e-mail agent. In Proc. of EuroSpeech.
Walker, M. A.; Litman, D. J.; Kamm, C. A.; and Abella,
A. 1997b. PARADISE: a framework for evaluating spoken
dialogue agents. In Proc. of EACL, 271–280.
Walker, M. A.; Fromer, J. C.; and Narayanan, S. 1998.
Learning optimal dialogue strategies: A case study of a spo-
ken dialogue agent for email. In Proc. of COLING/ACL,
1345–1352.
Williams, J. D., and Young, S. 2007. Partially observable
markov decision processes for spoken dialog systems. Com-
puter Speech and Language 21:231–422.

43

