
 

 

 

 

CISI-net: Explicit Latent Content Inference and Imitated Style  

Rendering for Image Inpainting 

Jing Xiao,
1,2,4

 Liang Liao,
1,2,4

* Qiegen Liu,
3
 Ruimin Hu

1,2
 

1National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, China 
2Collaborative Innovation Center of Geospatial Technology, China 

3School of Electronic Information Engineering, Nanchang University, China 
4Research Institute of Wuhan University in Jiangsu, Jiangsu, China 

Email: {jing, liaoliangwhu, hrm}@whu.edu.cn liuqiegen@ncu.edu.cn 
 

 

 

Abstract 

Convolutional neural networks (CNNs) have presented their 
potential in filling large missing areas with plausible con-
tents. To address the blurriness issue commonly existing in 
the CNN-based inpainting, a typical approach is to conduct 
texture refinement on the initially completed images by re-
placing the neural patch in the predicted region using the 
closest one in the known region. However, such a pro-
cessing might introduce undesired content change in the 
predicted region, especially when the desired content does 
not exist in the known region. To avoid generating such in-
correct content, in this paper, we propose a content infer-
ence and style imitation network (CISI-net), which explicit-
ly separate the image data into content code and style code. 
The content inference is realized by performing inference in 
the latent space to infer the content code of the corrupted 
images similar to the one from the original images. It can 
produce more detailed content than a similar inference pro-
cedure in the pixel domain, due to the dimensional distribu-
tion of content being lower than that of the entire image. On 
the other hand, the style code is used to represent the render-
ing of content, which will be consistent over the entire im-
age. The style code is then integrated with the inferred con-
tent code to generate the complete image. Experiments on 
multiple datasets including structural and natural images 
demonstrate that our proposed approach out-performs the 
existing ones in terms of content accuracy as well as texture 
details. 

 Introduction   

Image inpainting refers to the task of filling in missing or 

masked regions with synthesized contents. Recently, we 

have witnessed success of learning-based image inpainting 

through scene understanding (Pathak et al. 2016; Iizuka et 
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al. 2017; Liao et al. 2018). Benefit from large scale train-

ing data, they can produce plausible inpainting result by 

encoding an incomplete image to a latent code and decod-

ing the code to a complete image. However, the latent code 

usually has some difficulties to represent the high-

dimensional distribution of the complex real scene, such as 

the changes in spatial structures, illumination and seasons, 

the inpainting results are still quite blurry and contain no-

table artifacts. 

 To reduce the difficulty of using one latent code to rep-

resent complex scene, two-stage methods have been pro-

posed to do content generation and texture refinement sep-

arately (Yang et al. 2017; Song et al. 2018; Demir et al. 

2016; Yu et al. 2018; Zhang et al. 2018). In the first stage, 

the missing regions are filled by a content generation net-

work, targeting at initializing the correct content. In the se-

cond stage, the styles are propagated from known region 

by matching and adapting neural patches with the most 

similar mid-layer feature in a texture refinement network, 

aiming to update initially filled region with fine textures. In 

this way, it not only preserves contextual structures but al-

so produces high-frequency details. However, the matching 

process is quite time consuming. Moreover, since the neu-

ral patch is a mixture of content and style, copying them 

from known region into missing region in the second stage 

will introduce change to the originally generated content, 

still leading to some notable artifacts. 

 Referring to the way how people restore corrupted pic-

ture: the scene of picture should be understood prior to the 

restoration; then, the main structures of missing region will 

be delineated, followed by rendering of the main structures 

according to the painting style of picture. According to the 

way of human in picture restoration, separation of content 

and style will help us to focus on the easier-to-solve sub-

problems of inpainting: 1) how to predict the missing con-



 

 

tent based on the inference of the semantic content from 

known region; and 2) how the predicted content can be 

rendered by imitating how the known region is drawn. 

 In this paper, we propose a Content Inference and Style 

Imitation Network (CISI-net), in which content and style 

are explicitly separated by two encoders and integrated by 

a decoder. During the encoding process, we focus on infer-

ence of the semantic content of the missing region, whilst 

during the decoding process, we focus on imitating the 

style of the known region to render the predicted content. 

Compared to the two-stage inpainting methods, we com-

bine the content inference and style refinement in a unified 

architecture, and only generate the completed image once. 

 In the encoding process, the inference of content code is 

conducted under the assumptions: 1) the inferred content 

code of corrupted image should be same with the one of 

the uncorrupted image; and 2) the inferred content codes 

should be same for the same image with different corrupt-

ed regions. To realize the assumptions, we adopted a con-

tent code loss in latent space, which uses the content code 

from original image as guidance, and makes the inferred 

content codes from all corrupted images to be as similar as 

it. 

 In the decoding process, we attempt to make the style of 

filled region to be same with the known region considering 

that style is a global feature of whole image. Inspired by 

the Adaptive Instance Normalization (AdaIN) model for 

style transfer (Huang et al. 2017), we integrate the encoded 

style code and inferred content code before decoding. 

Then, the integrated code is decoded to the complete im-

age. In this way, we make the decoded complete image 

having consistent style with the known region. 

 Our contributions are summarized as follows: 

 1) We design a learning based inpainting system which 

reduces the high-dimensional distribution of image data in-

to two relatively low-dimensional distributions of content 

and style, which are easier for the network to model.  

 2) We introduce an inference of content in latent space 

guided by a content code loss, which is better agree with 

the way of human inpainting and more interpretable than 

only guided by the reconstruction loss in the pixel domain. 

 3) We show that our trained model can achieve perfor-
mance comparable with state-of-the-art on structural and 
natural images. 

Related Work 

In this section, we briefly review the work on each of the 

three sub-fields, i.e. CNN-based inpainting, style transfer, 

and learning disentangled representation, specially focus-

ing on those relevant to this work. 

CNN-based Inpainting 

CNN based image inpainting methods introduce the se-

mantic prior of image dataset during training and predict 

the content of missing region by understanding the context. 

A pioneer approach is context encoder (CE) (Pathak et al. 

2016), which is trained to extract latent feature representa-

tion from corrupted image and decode it to predict the con-

tent of missing region by combining reconstruction loss 

and adversarial loss. Based on structure of CE, other losses 

are proposed to improve the quality of inpainted image, 

e.g. the global adversarial loss to keep the consistency be-

tween the synthesized region with known region (Iizuka et 

al. 2017), transformation-invariant image feature loss to 

enhance the perceptual similarity of the synthesized region 

(Dosovitskiy et al. 2016; Larsen et al. 2016) and recogni-

tion performance (Zhang et al. 2017). However, these loss-

es still cannot guarantee fine textures in the inpainted re-

gion. 

 For better recovery of detail textures, multi-scale neural 

patch synthesis is presented to iteratively optimize the tex-

tures through matching and adapting predicted patches us-

ing textures features in the known region (Yang et al. 

2017) To reduce the computational cost for texture optimi-

zation, learning-based texture refinement methods are pro-

posed to simplify the inpainting task into two forward in-

ference stages, e.g. learning residuals (Demir et al.2018), 

or using features from known regions to guide the refine-

ment of missing region (Yu et al. 2018; Yan et al. 2018). 

Rather than using two-stage process, examplar-based 

inpainting model is adopted in (Yan et al. 2018) to gener-

ate a Shift feature, which is to replace the features from 

missing region by similar features in the known region. 

The Shift feature is then concatenated in the decoding lay-

ers to enhance the textures of missing region. In this work, 

we also try to integrate the texture refinement in the decod-

er. Rather than using the local similar features to refine the 

texture, we introduce a style code to represent the overall 

style of the textures 

Style Transfer 

Our texture refinement process can be related to recent 

works in image style transfer, where both the content and 

the style (texture) of missing part are estimated and trans-

ferred from the known region. Style transfer is first formu-

lated as an optimization problem to transfer style and tex-

ture of the style image to the content image (Gatys et al. 

2015), by minimizing the difference between the Gram 

matrix of the generated image and that of the style image. 

As an alternative, (Wand et al. 2016; Elad et al 2017) use 

neural-patch based similarity matching between content 

image and style image to suppress distortions. However, 

the above methods require iterative optimization in the  

  



 

 

 

Figure 1. Consistency constraints for learning encoder and decoder for image inpainting. (a) self-consistency; (b) inferring-consistency; 

(c) mutual-consistency. The latent code of each encoder is composed of a content code   and a style code  . The orange and red arrows in-

dicate the encoding process for complete images and corrupted images respectively, whilst the blue arrow indicates the decoding process. 

We train the model with reconstruction objectives (dashed lines) that ensure the correct mapping between latent space and image space, 

the latent feature objectives (tight dotted lines) that make correct latent content and style feature extraction, as well as the generation ob-

jectives (loose dotted lines) that ensure the inpainted images to be similar to ground truth image and indistinguishable from real images

pixel domain, which is time and computational resource 

consuming.  

 Style network models are proposed to realize an end-to-

end style transfer. At the beginning, each style is presented 

by a forward network model (Johnson et al. 2016; Ulya-

nov et al. 2016), which is hard to generalize. Then, multi-

ple styles are integrated into one model by only recoding 

the different parameters for new styles (Dumoulin et al. 

2017; Zhang et al. 2017). AdaIN network is the first work 

to represent arbitrary styles in one model (Huang et al. 

2017). It uses VGG network to extract style features and 

content features, and normalizes content into different 

styles. The AdaIN model is close to our requirement, but 

content code in our work is predicted from corrupted im-

ages and the style code is learned from known region of 

the image. 

Learning Disentangled Representation 

Our work draws inspiration from recent works on disen-

tangled representation learning. The content is firstly dis-

entangled from style for characters with bilinear models 

(Tenenbaum et al. 1997). More recent work focuses on 

learning hierarchical feature representations using deep 

convolutional neural networks to separate content and style 

(Villegas et al. 2017; Denton et al. 2017; Yang et al. 2019). 

Although different works use different definitions for con-

tent and style for different tasks, we follow the paper 

(Huang et al. 2018) to define the content as “the underlin-

ing spatial structure” and style as “the rendering of the 

structure”. In this work, we attempt to separate the known 

region into content and style, and use style to render the 

predicted content for the missing region. 

Proposed Approach 

Problem Description 

Suppose we are given a corrupted input image   . The im-

age inpainting aims to restore the ground truth image     
by filling the missing region with plausible content    to 

form a completed image   . While deep generative models 

can complete this task using reconstruction loss and adver-

sarial loss, the result are still quite blurry and contain nota-

ble artifacts. Inspired by recent works on multimodal style 

transfer (Huang et al. 2018), we assume that each image 

can be generated by a latent content code   and a latent 

style code  , namely         . Moreover, there exist in-

verse encoder   of   to separate an image into the latent 

content code and style code,       (           ) 
    . 
 In order to solve the inpainting task, the content code of 

    should be able to be inferred from    (  
      

  
  
     ), and the style codes from     and    should be 

the same since the style is a global feature (  
      

  
  
     ). In this way, the completed image can be similar 

with the ground truth image:        
        

       
 (  

          
  
     )    . The difference between   

  

and   
  

 is that   
  

 only needs to extract content feature 

from an uncorrupted image, but   
  needs to be able to in-

fer the overall content from the incomplete image. Since 

the style represent rendering of the image, it should be 

consistent over the entire image, thus   
  and   

  
 can be 

the same. Our goal is to learn the underlying generator and 

encoder functions with neural networks.  



 

 

 

Figure 2. Architecture of inpainting network

 Figure 2 shows an overview of our model, consisting of 

three encoders and a decoder. In order to train the model, 

we define three consistency assumptions: 

1) Self-consistency: an image can be factorized into a 

content code   and a style code  , and it can also be ideally 

reconstructed from its factors (Figure 1 (a)).  

2) Inferring-consistency: the inferred content code    
and extracted style code    from corrupted image should 

be consistent with    and     from ground truth image, 

and the completed image    should also be similar with     
(Figure 1 (b)). 

3) Mutual-consistency: the content and style of an im-

age is consistent no matter how does it corrupted. Namely, 

if we have two corrupted images from the same    , their 

encoded content and style codes should be the same with 

each other. Moreover, if we exchange their content codes, 

the generated images should also be similar to the ground 

truth image (Figure 1 (c)). 

 Our loss functions comprise losses in both latent space 

and image space to represent three consistency constraints. 

 Reconstruction loss. Given a complete image, e.g. a 

ground truth image, it should be able to be ideally recon-

structed. We use    loss to encourage per-pixel reconstruc-

tion accuracy and perceptual loss to encourage higher level 

feature similarity by projecting these images with an 

ImageNet-pretrained VGG-16 (Dosovitskiy et al. 2016). 
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where 𝛹𝑛 is the activation map of nth selected layer, 𝑁 is 

the number of selected layers,    is the weight. We use 

layers pool1, pool2 and pool3 for our loss. 

 Latent loss. Given a latent code (content and style) en-

coded from a ground truth image, we should be able to re-

cover them after decoding and encoding. Moreover, the la-

tent codes from a corrupted image or its completed image 

should also be the same with the latent codes from the cor-

responding ground truth image. It is measured by the    
loss for content and style codes separately. We take the 

loss term for inpainted image for example, and the other 

loss terms are defined in a similar manner. 

     𝑛 
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where      𝑛 
           and      𝑛 

           are the latent 

content loss and latent style loss between    and     . 
 Generation loss. In order to generate plausible inpainted 

image, we expect the inpainted image to be indistinguisha-

ble from real image. Besides the above mentioned image 

reconstruction loss, we also employ GANs (Goodfellow et 

al. 2014) to match the distribution of inpainted image to 

the data distribution of ground truth image. 

      
       𝔼 𝑔𝑡           

    𝔼        [ −      
  ] (6) 

where   is a discriminator that tries to distinguish between 

inpainted images and real images. 

 Note that the current generation loss treats each pixel of 

the output image equally, which is not desired. It leads a 

large portion of the loss will be from the known region and 



 

 

make the model pay more attention to the generation of 

this region rather than the hole. On the other hand, due to 

the known region as input image, the quality of recon-

structed content in this region is Inevitably better than that 

in the holes, which need to be inferred from this available 

information. Therefore, this is inconsistence between the 

distributions of reconstructed content in the two regions 

and distribution of the known region is naturally closer to 

that of real image, which makes the local patch discrimina-

tor cannot distinguish between the output images and real 

images. To address this issue, we propose a weighted re-

construction loss and multi-scale patch adversarial loss to 

improve generated quality in the missing region. 

 Firstly, a weighted    loss and perceptual loss consider-

ing the mask region is used and weight of missing region is 

higher than that of known region. The    loss and percep-

tual loss are modified as: 

    
       𝔼          𝑔𝑡     ‖     

 −    ‖       (7) 
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where   is pixelwise multiplication,    and   
𝑛  are 

weighted masks in pixel space and feature space respec-

tively. 

 Then we propose to use a multi-scale PatchGAN to clas-

sify global and local patches across the image at multiple 

scales. The discriminator at each scale is identical and only 

the input is a differently scaled version of the entire image. 

Each discriminator is a fully convolutional PatchGAN and 

outputs a vector of real/fake predictions and each value 

corresponds to a local image patch. For differentiating the 

hole patches and the known patches, we propose to com-

pute the PatchGAN loss only on the regions, which overlap 

with the holes. More formally, our multi-scale patch adver-

sarial loss is defined as: 

      
       = ∑ 𝔼
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𝑔𝑡
   
𝑔𝑡
)
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  [ − =     
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where k is the image scale,   
  

 and   
  are the patches, 

which overlap with the holes, on the scaled version images 

of   
  

 and   
 . 

Framework 

The overall architecture of the inpainting network is shown 

in Figure 2. It consists of two content encoders, a style en-

coder and a joint decoder. We also adopt a discriminator 

for the adversarial loss. Since the content feature encodes 

the complex spatial structure of the data, we use a high-

dimensional spatial map for content code; whilst the style 

feature has a global and relatively simple effect, we adopt a 

low-dimensional vector for style code. 

 Self-content encoder (SCE). This encoder is used to 

extract content feature from complete images. Similar with 

the completion network (Iizuka et al. 2017), it consists of 

several strided convolutional layers to downsample the im-

age, followed by several residual blocks (He et al. 2016) to 

extract content feature. All the convolution layers are nor-

malized by instance normalization (Ulyanov et al. 2017). 

Inferred-content encoder (ICE). This encoder attempts 

to extract and infer the intact content features from cor-

rupted images. Different from other image translation tasks 

such as super-resolution, etc., content inference usually not 

only rely on local statistics, but also on global context. For 

increasing the size of receptive field, we adopt dilated con-

volution in all residual blocks. Dilated convolutions use 

spaced kernels, making it compute each output value with 

a wider view of input without increasing the number of pa-

rameters and computational burden. At the end of ICE, one 

extra convolution block without stride is added for content 

inference. 

 Style encoder (SE). Considering that the style feature is 

a global effects telling how to render the content, it can be 

extracted the same from corrupted images ignoring the 

missing region. So that, we use a uniform style encoder for 

both complete and corrupted images. The style encoder in-

cludes several strided convolutional layers, followed by a 

global average pooling layer and a fully connected layer. 

Since we need to preserve the feature mean and variance 

for style codes, we do not use instance normalization in 

style encoder.  

 Decoder. The decoder generates an image from its con-

tent and style codes. It processes the content code by sev-

eral residual blocks and using upsampling and convolution 

layers to reconstruct images. Inspired by the works from 

style transform that use affine transformation parameters in 

normalization layers to represent styles (Dumoulin et al. 

2017; Wang et al. 2017), we use Adaptive Instance Nor-

malization (AdaIN) (Huang et al. 2017) layers on the re-

sidual blocks to modify the style for generate image. The 

parameters for AdaIN layers are computed by a multilayer 

perceptron (MLP) from style code.  

    𝑁         (
      

    
)                    (10) 

where   is activation produced by previous convolutional 

layer,   and   are channel-wise mean and standard devia-

tion,   and   are parameters generated from style code.  

 Discriminator. We use the LSGAN objective proposed 

by Mao et al. (Mao et al. 2017) and employ multi-scale 

discriminators (Wang et al. 2018) to guide the generators 

to produce both realistic details and correct global struc-

ture. 

Implementation Details 

In the previous subsections, we applied a weighted scheme 

for reconstruction loss. All the weighted masks are gener-

ated based on binary mask (with values of 0 and 1), but 

contain higher weight for unknown region and lower 

weight on known region (set to 5 and 1 in experiment). The 



 

 

mask    for    loss is easy to compute since the unknown 

region is obvious in pixel space. For computing the miss-

ing region in the feature space, we define a CNN with con-

volutional layers and pooling layer similar to VGG-16 but 

having the elements of convolutional filter set to 1/9. The 

input of such a CNN is the binary mask in pixel space. 

Thus, the weighted mask   
𝑛 is obtained by setting a 

threshold to the CNN feature map in the corresponding 

layer. When counting the adversarial loss, the calculation 

of binary mask region in the feature space is the same way. 

 We implement this network using Pytorch toolbox, and 

optimize this network using the Adam algorithm with 

      ,         , and a learning rate of 0.0001. In all 

experiments, we use a batch size of 4 and the training is 

stopped after 500000 iterations. We choose the dimension 

of the style code to be 8 across all datasets. Random mir-

roring is applied during training. For balance training of 

the two encoder, we first train one iteration for the self-

content encoder to update the parameters of this encoder 

with the ground truth image. Then we take the content 

code of the image to guide the content encoding of cor-

rupted image and update the inferred-content encoder with 

the generation loss while keep the parameters of the self-

content encoder unchanged.  

 For the model to have “mutual consistency”, we train the 

model with pairs of corrupted images with random missing 

regions. Then we make the content codes and style codes 

from two images in a pair to be the same using latent loss. 

Experimental Results 

We evaluate our method on two datasets: Paris StreetView 

(Doersch et al. 2012) with 14,900 training images and 100 

test images, and six scenes from Places365-Standard da-

taset (Zhou et al. 2017). The scene categories selected from 

Places365-Standard are butte, canyon, field, synagogue, 

tundra and valley. Each category has 5000 training images, 

900 test images and 100 validation images. For both da-

tasets, we resize each training images to let its minimal 

height/width be 286, and randomly crop subimage of size 

256 × 256 as input to our model.  

 We compare our results with two learning based meth-

ods. GL (Iizuka et al. 2017) adopt a fully convolutional 

neural network to complete the content and style of image 

as a whole. GntIpt (Yu et al. 2018) introduces a texture re-

finement model with contextual attention to leverage the 

surrounding textures and structures. 

  

(a) Original image       (b) masked image                  (c) GL                       (d) GntIpt                  (e) CISI-net 

Figure 3. Qualitative comparisons of testing results on the Paris StreetView images 



 

 

 

(a) Original image         (b) masked image                  (c) GL                       (d) GntIpt                  (e) CISI-net 

Figure 4. Qualitative comparisons of testing results on the Places2 images 

 

Figure 5. Results for object removal using CISI-net. 

Qualitative Comparisons 

Figure 3 and Figure 4 show the visual comparisons of our 

method, which is denoted as CISI-net, with GL and GntIpt 

on Paris StreetView and Places2 datasets respectively. The 

damaged area is simulated by sampling a central hole (128 

× 128) or multiple placed missing rectangles randomly. 

The reported results are direct outputs from the trained 

models without using any post-processing. 

 As shown in the figures, GL is effective in understand 

the context of entire image, but the results tend to be de-

formed or to mix with the surrounding environment, thus 

not look realistic or recognizable. GntIpt can generate 

more realistic results than GL due to the introduction of 

style from known region. However, some adverse effects, 

such as incorrect textures in the known areas, are intro-

duced while borrowing the style information from sur-

rounding. In comparison to the competing methods, our 

CISI-net can generate more semantically plausible and vis-

ual-pleasing results with much less artifacts, owing to the 

separation of content and style. Lower dimensional distri-

bution of content enabled more correct inference, and no 

other content can be introduced from surroundings. 

 In Figure 5, we also show some example results for the 

inpainting of object removal in real world images.  



 

 

 

(a) masked image           (b) Experiment 1           (c) Experiment 2             (d) Experiment 3                (e) CISI-net 

Figure 6. Qualitative comparisons of Internal analysis of CISI-net

Quantitative Comparisons 

In the image inpainting task, many visual-pleasing results 

can be produced to complete the image, which may be to-

tally different from original image content. For reference, 

we also compare our model quantitatively with the compet-

ing methods on the Paris StreetView in the case of missing 

center region. Table 1 reports the quantitative results in 

terms of mean    loss, peak signal-to noise ratio (PSNR) 

and structural similarity index (SSIM) of the completed re-

gion and the execution time of the three models to com-

plete an image of 256 × 256. In general, the proposed 

CISI-net gets better    loss, PSNR and SSIM with the 

competing methods, and it can highly reduce the inpainting 

time due to only one-time forward inference. 

Table 1. Quantitative comparison on Paris StreetView dataset 

Method    loss PSNR (dB) SSIM Time (ms) 

GL 7.11% 19.53 0.49 168 

GntIpt 6.68% 19.85 0.53 285 

CISI-net 6.53% 20.05 0.55 161 

Internal Analysis of CISI-net 

The main contributions of our CISI-net are the separation 

of image into content and style, the introduction of latent 

inference of content, and weighted loss for missing region. 

To analyze the effectiveness of those operations, experi-

ments are conducted. We use the fully convolutional neural 

network in CISI-net as the base network. 

 Experiment 1: removing separation (using a fully-
convolutional neural network to treat the content and style 
as a whole), removing latent guidance for content inference 
and weighted loss for missing region.  

Experiment 2: keeping image separation, removing la-

tent guidance for content inference and weighted loss for 

missing region 

 Experiment 3: keeping image separation and guidance 

for content inference, removing weighted loss for missing 

region. 

 Figure 6 shows inpainting results of the three experi-

ments and CISI-net. Comparing (b) and (c), we can notice 

that reduction from complex high dimensional distribution 

of image data to relatively low dimensional distribution of 

content is effective for generating detailed content. (d) 

shows that the latent loss of content inference leads to 

more correct structure. The added weighted loss results in 

finer structure and texture (e) by given more content in the 

missing region. 

Conclusion 

This paper has proposed a novel architecture, i.e. CISI-net, 

for image completion with only once generation but prom-

ising content and details. The explicit separation of content 

and style has shown its effectiveness on representing the 

image, where the mapping function for each has smaller 

dimensionality. We also show that the guided inference in 

latent space for content can efficiently generating correct 

structures. Experiments show that our CISI-net can gener-

ate fine-detailed and perceptually realistic images. Future 

studies will be given to further exploring the relationship 

between content and style and their representations to fur-

ther improve inpainting performance. We will also further 

look into the no reference quality assessment (Fang et al. 

2018) for inpainting and the generalization to applications, 

such as context-based coding (Xiao et al. 2016) and 

disocclusion-based analysis (Xiao et al. 2017). 
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