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Abstract

In many real-world problems, there is a dynamic interaction
between competitive agents. Partially observable stochastic
games (POSGs) are among the most general formal mod-
els that capture such dynamic scenarios. The model captures
stochastic events, partial information of players about the en-
vironment, and the scenario does not have a fixed horizon.
Solving POSGs in the most general setting is intractable.
Therefore, the research has been focused on subclasses of
POSGs that have a value of the game and admit designing
(approximate) optimal algorithms. We propose such a sub-
class for two-player zero-sum games with discounted-sum
objective function—POSGs with public observations (PO-
POSGs)—where each player is able to reconstruct beliefs of
the other player over the unobserved states. Our results in-
clude: (1) theoretical analysis of PO-POSGs and their value
functions showing convexity (concavity) in beliefs of maxi-
mizing (minimizing) player, (2) a novel algorithm for approx-
imating the value of the game, and (3) a practical demon-
stration of scalability of our algorithm. Experimental results
show that our algorithm can closely approximate the value of
non-trivial games with hundreds of states.

Introduction
Game theory describes the optimal behavior of rational
agents and is recently widely applied to solving security
problems. Game-theoretic strategies are used to protect crit-
ical infrastructures (Pita et al. 2008; Kiekintveld et al. 2009;
Shieh et al. 2012), secure computer networks (Vanek et
al. 2012; Nguyen, Wellman, and Singh 2017; Durkota et
al. 2017) or wildlife (Fang, Stone, and Tambe 2015; Fang
et al. 2016). In many real-world situations, there is a dy-
namic strategic interaction between the players, and the
players do not have perfect information about the environ-
ment. Moreover, a pre-defined horizon (number of moves in
the scenario) is only rarely given in practice and thus these
games belong to the class of partially observable stochastic
games (POSGs). Examples include patrolling games (Basil-
ico, Gatti, and Amigoni 2009; Vorobeychik et al. 2014;
Basilico, Nittis, and Gatti 2016; Brazdil, Kucera, and Rehak
2018), where a defender protects a set of targets against an
attacker, pursuit-evasion (Chung, Hollinger, and Isler 2011),
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or search games, where a defender is trying to find and cap-
ture an attacker.

We focus on two-player zero-sum POSGs, and even with
this restriction it is intractable to compute optimal strate-
gies in the most general case. Since the players do not per-
fectly observe the environment, each player has a belief over
possible states of the environment. However, the reward the
player receives for choosing some action(s) also depends on
the action of the other player who decides based on their
belief. Therefore, player 1 has to consider also the belief of
player 2 and belief that player 2 has about player 1, and so
on. This reasoning is called nested beliefs (e.g., in (Mac-
Dermed 2013)) and it causes a doubly-exponential number
of histories to consider for each agent.

However, real-world security scenarios require partial ob-
servability without a strictly defined horizon. Therefore,
one can restrict to subclasses of POSGs where games have
a value (i.e., the value of the game exists) and (approx-
imate) optimal algorithms can be designed. Examples of
such works are stochastic games in which both the play-
ers’ actions and observations are public (Ghosh, McDon-
ald, and Sinha 2004), games in which the support of pri-
vate/public observations does not depend on states and ac-
tions (Cole and Kocherlakota 2001), or games where only
one player has imperfect information (also called One-
Sided) (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). The practical moti-
vation for such subclasses is to compute robust strategies for
the defender assuming the worst case scenario where the at-
tacker has additional information (Vorobeychik et al. 2014;
Horak and Bosansky 2016).

In this paper, we propose a new subclass of POSGs
in which we avoid the problem of nested beliefs, called
POSGs with public observations (PO-POSGs), that gener-
alizes previous subclasses. In this model, each player is able
to exactly reconstruct the belief of the opponent. The key
characteristics are: (1) the state space is factored – each
player observes his private state, but the state of the other
player is not observed; (2) each observation that modifies
belief about the state of the other player is public (both
players are aware of this observation); (3) the true state
of the player is observed privately by that player. We re-
strict to two-players zero-sum games with discounted fu-
ture rewards and give the following contributions: (1) We
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show that games in this class have a value; (2) We show
that the value function of PO-POSGs is convex in the be-
lief of the maximizing player and concave in the belief
of the minimizing player; (3) We introduce a novel algo-
rithm based on Heuristic Value Iteration Search (HSVI) for
One-Sided POSGs (Horak, Bosansky, and Pechoucek 2017;
Smith and Simmons 2004) and show that this algorithm con-
verges to the (approximate) optimal values.

We demonstrate our algorithm on two different domains –
a patrolling game, where the attacker has imprecise informa-
tion about the position of the defender (Basilico et al. 2009),
and a lasertag game based on a single-player variant (Pineau,
Gordon, and Thrun 2003). The results show that, for the first
time, there is a practical domain-independent algorithm able
to closely approximate optimal values of non-trivial infinite-
horizon POSGs with hundreds of states where both players
have partial information about the environment.

Related Work
The notion of public actions and observations is common
in dynamic games. For finite horizon games, the concept
of public states and publicly observed actions creates sep-
arated subgames that allow designing limited-lookahead al-
gorithms for imperfect information games (Moravcik et al.
2017; Brown, Sandholm, and Amos 2018).

In games with an infinite horizon, the problem with nested
beliefs prevents one from designing an (approximate) op-
timal algorithm for fully general settings. Nested beliefs
can be tackled directly with histories – one of few such
approaches is a bottom-up dynamic programming for con-
structing relevant finite-horizon policy trees for individual
players while pruning-out dominated strategies (Hansen,
Bernstein, and Zilberstein 2004; Kumar and Zilberstein
2009). However, due to the explicit dependence on the his-
tories, the scalability in the horizon is very limited.

A more common approach is to focus on a subclass of
POSGs. In (Ghosh, McDonald, and Sinha 2004), zero-sum
POSGs with public actions and observations are considered.
The authors show that the value of the game exists and
present an algorithm that exploits the transformation of such
a model into a game with complete information. In our ap-
proach, we assume only public observations (i.e., actions are
private to the players). Moreover, we factor the state space
according to the players (i.e., each player has his own state
that is perfectly observable to this player, and the state of
the opponent is unknown). Similar factorization of the state
space is used also in (Cole and Kocherlakota 2001), how-
ever, in this work the authors assume that the support of
observations cannot change due to states or actions of the
players. We remove this assumption and actions and obser-
vations can be generated in states arbitrarily. Alternatively,
some works assume that only one player has partial informa-
tion (Chatterjee and Doyen 2014; Basu and Stettner 2015;
Horak, Bosansky, and Pechoucek 2017). Again, we remove
this assumption and allow both players to have partial in-
formation about the states of the other player. While our al-
gorithm is based on the algorithm for the one-sided case,
we provide significant generalizations of the previous work,

especially in the representation of value function, definition
and algorithms for computing value-backup operator.

Finally, (MacDermed 2013) gives a transformation of
POSGs to Markov Games of Incomplete Information
(MaGIIs) as a more efficient representation if observations
have Markov property. While the examples of games that we
consider satisfy this property, the author demonstrates the
benefits of this representation for the common-payoff case
of Dec-POMDPs only. We solve zero-sum games, which is
a more complex problem and since there is no apparent way
to exploit MaGIIs, we use a more common formalism.

POSGs with Public Observations
Definition 1. A partially observable stochastic game with
public observations (PO-POSG) is a two-player zero-sum
game (played by players i ∈ {1, 2}) represented by a tuple
〈Si, Ai, Oi, Zi, Ti, R, b(0)

i , γ〉, where
• Si is a finite set of (private) states of player i
• Ai is a finite set of actions available to player i
• Oi is a finite set of observations for player i
• Zi(oi|s−ia−i) is the probability to generate observation
oi for player i, given that his opponent1 −i played an ac-
tion a−i in state s−i

• Ti(s′i|siaioio−i) is the probability to transition from si to
s−i when player i played ai and observations oi and o−i
have been generated

• R(s1s2a1a2) is the reward of player 1 when actions
(a1, a2) have been jointly played in the joint state (s1, s2)

• b(0)
i ∈ ∆(S−i) is the initial belief of player i over states
S−i of his opponent

• γ ∈ [0, 1) is the discount factor.

A play in a PO-POSG proceeds as follows. First, the
initial joint state (s

(1)
1 , s

(1)
2 ) is drawn with probability

b
(0)
2 (s

(1)
1 ) · b(0)

1 (s
(1)
2 ). Then, in each round t, players observe

their current private state (player i observes s(t)
i , but not s(t)

−i
of his opponent). Based on this information (and history),
each player i chooses an action a(t)

i ∈ Ai independently of
the decision of his opponent −i. As a consequence of this
choice, player 1 receives reward r(t) = R(s

(t)
1 s

(t)
2 a

(t)
1 a

(t)
2 )

and player 2 receives negated reward −R(s
(t)
1 s

(t)
2 a

(t)
1 a

(t)
2 ).

Furthermore, an observation o(t)
i for each player is generated

and made publicly known to both players with probability
Zi(o

(t)
i |s

(t)
−ia

(t)
−i) and a new private state s(t+1)

i of each player

is drawn from Ti(·|s(t)
i a

(t)
i o

(t)
i o

(t)
−i). We consider discounted

setting and the utility of player 1 is thus
∑∞
t=1 γ

t−1r(t) (and
negative value for the opponent as the game is zero-sum).

Definition 2. The history of player i up to time T is a se-
quence {s(t)

i a
(t)
i o

(t)
i o

(t)
−i}Tt=1s

T+1
i .

Definition 3. The (history-dependent) strategy of player i is
a mapping σi : (SiAiOiO−i)

∗Si → ∆(Ai) from histories
of player i to randomized decisions.

1As it is commonly used, −i denotes opponent of player i.
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Observe that in PO-POSGs, the player i updates his be-
lief solely on the information about the public observations
(oi, o−i) and the knowledge of the strategy used by the ad-
versary for the current stage only—we denote such one-
stage strategy by π−i as opposed to the full strategy σ−i.
Assuming that the adversary −i chooses an action a−i in a
state s−i with probability π−i(a−i|s−i) in the current stage
of the game (given the information available to him) and that
observations (oi, o−i) have been generated, player i can up-
date his belief bi ∈ ∆(S−i) to a belief τπ−i(bioio−i) where
the updated probability of being in a state s′−i is

τπ−i
(bioio−i)(s

′
−i) =

1

Prπ−i [oi]

∑
s−i,a−i

bi(s−i) · (1)

· π−i(a−i|s−i) · Z(oi|s−io−i) · T (s′−i|s−ia−io−ioi) .

Since both the strategy π−i and the public observations
(oi, o−i) are known to player−i as well, she can reconstruct
τπ−i(bioio−i), and the belief update is essentially public.

Value of PO-POSGs
We now establish the value function V ∗ to capture the utility
of playing optimal strategies in a PO-POSG (i.e., the value
of the game) based on the beliefs the players have.
Definition 4. The optimal value function of a PO-POSG is a
function V ∗ : ∆(S2)×∆(S1)→ R mapping each possible
initial belief (b1, b2) of the game to the expected utility of
player 1 in the equilibrium (i.e., the value of the game).

Since any finite-horizon approximation of a PO-POSGs
has a value (von Neumann 1928) and discounted-sum utili-
ties are considered, the value of a PO-POSG is well defined.
Theorem 1. The value of the game exists in PO-POSGs.

Proof (sketch). Denote vT the value of a finite approxima-
tion with horizon T ∈ N. The approximation considers
all rewards from the first T steps. The equilibrial strategies
in vT can thus only be inferior in the full, infinite-horizon
game, when rewards after T steps are considered. Hence

vT +
∑∞
t=T+1 γ

t−1 minR(·) ≤ V ∗[b(0)
1 , b

(0)
2 ] ≤

≤ vT +
∑∞
t=T+1 γ

t−1 maxR(·) . (2)

As T →∞, the bounds converge to V ∗[b(0)
1 , b

(0)
2 ].

Contrary to previous works, the optimal value function
V ∗ is neither convex nor concave. We show, however, that
due to the factorization of the state space, V ∗ is convex in
the belief b1 of the maximizing player 1 and concave in the
belief b2 of the minimizing player 2.
Lemma 1. Let σi be a strategy of player i, and b−i be the
belief of the adversary. Then the expected utility V σi|b−i :
∆(S−i) → R of playing σi against the best-responding op-
ponent −i parametrized by the belief of player i is linear
and (U − L)-Lipschitz continuous.

Proof (sketch). Player −i knows σi as well as his true state
s−i, and his only uncertainty is about the state si (the prob-
ability of which is b−i(si)). It is thus possible to focus on

the best response for each state s−i separately. Let us de-
note the expected utility of playing the best response against
σi starting from s−i (when si ∼ b−i) by ξ(s−i). Since
the strategy σi is fixed (and thus does not depend on bi),
the expected utility of playing σi against the best response
of the adversary is the expectation over the values ξ(s−i),
V σi|b−i(bi) =

∑
s−i

bi(s−i) · ξ(s−i), and thus the value
V σi|b−i is linear in bi. Moreover, observe that

L =
minR(·)

1− γ
≤ V σi|b−i(bi) ≤

maxR(·)
1− γ

= U (3)

which makes V σi be (U − L)-Lipschitz continuous.

Theorem 2. The value function V ∗ is convex in b1 and con-
cave in b2. Moreover, it is (U −L)

√
2-Lipschitz continuous.

Proof. For a fixed b2, player 1 chooses a strategy that maxi-
mizes the utility, hence

V ∗[b1, b2] = max
σ1

V σ1|b2(b1) . (4)

As all V σ1|b2 are linear, V ∗ is convex in b1. Vice versa, for
given fixed b1, player 2 chooses a minimizing strategy,

V ∗[b1, b2] = min
σ2

V σ2|b1(b2) , (5)

and V ∗ is concave in b2. Since V ∗ is a pointwise max-
imum/minimum (Equations (4) and (5)) from (U − L)-
Lipschitz continuous functions V σi|b−i , V ∗ is (U − L)-
Lipschitz continuous in the dimension of b1, as well as b2.
Combining the Lipschitz constants in these two dimensions
results in

√
2 · (U − L)-Lipschitz continuity of V ∗.

Properties of Nash Equilibrium of PO-POSGs
Consider a Nash equilibrium strategy profile (σ1, σ2) and
let πi(·|si) = σi(si). If observations (o1, o2) are gen-
erated, the probability of transitioning to the joint state
(s′1, s

′
2) is τπ1(b2o2o1)(s′1) · τπ2(b1o1o2)(s′2). Since the dy-

namics of the game is Markovian, the equilibrial strate-
gies aim to optimize the payoff in the subgame after
(o1, o2) is seen by the players—i.e., the expected dis-
counted sum of the rewards starting from the joint belief
(τπ2

(b1o1o2)(s′2), τπ1
(b2o2o1)(s′1)). Since in the equilib-

rium both players know this distribution, this expectation
is equal to V [τπ2

(b1o1o2), τπ1
(b2o2o1)] (since both players

have strategies that guarantee this expected long-term re-
ward when starting from the given joint belief).

This fact makes it possible to express the value of the
equilibrial strategy profile (σ1, σ2) in terms of the immedi-
ate reward (direct consequences of the decisions in the first
stage of the game) Rπ1π2 ,

Rπ1π2
=
∑

s1,s2,a1,a2

b2(s1)b1(s2)π1(a1|s1)π2(a2|s2)R(s1s2a1a2)

(6)
and the values V [τπ2

(b1o1o2), τπ1
(b2o2o1)] of the sub-

games:
Rπ1π2

+ (7)

+ γ
∑
o1,o2

Prπ1π2 [o1o2] · V [τπ2(b1o1o2), τπ1(b2o2o1)] .
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Relaxing the assumption of known equilibrial strategies and
performing the maximin optimization over Equation (7)
gives us the value of the game starting in the joint belief
(b1, b2) as a fixpoint equation over value functions

V ∗[b1, b2] = HV ∗[b1, b2] = max
π1

min
π2

[
Rπ1π2

+ (8)

+ γ
∑
o1,o2

Prπ1π2 [o1o2] · V [τπ2(b1o1o2), τπ1(b2o2o1)]
]

.

Moreover, since γ < 1, the operator H defined over value
functions V : ∆(S2) × ∆(S1) → R is a contraction. The
Equation (8) can thus be used to approximate V ∗ iteratively.

Algorithm
Evaluating the dynamic programming operator H directly
(as defined in Equation (8)) is impossible since the set of all
joint beliefs is infinite. To design a practical algorithm, we
need to establish an approximation scheme for V ∗ that we
describe in this section first. Then we provide mathemati-
cal programs for computing HV when this approximation
scheme is used. Finally, we state our algorithm to obtain ε-
approximation of V ∗ in PO-POSGs.

Approximating V ∗

In POMDPs (or one-sided POSGs), the value function V ∗ is
commonly represented either as a point-wise maximum over
a set of linear functions (termed α-vectors) or by considering
a convex hull of a set of points. Both of these approaches
leverage that the value function V ∗ is convex, which is not
the case for PO-POSGs. In this section, we present a way to
form a lower bound approximation V of a convex-concave
function V ∗ inspired by both of the approaches mentioned
above (the construction of the upper bound V is analogous).

To represent the value of V in the dimension of S2, we use
an extended notion of α-vectors, termed αβ-vectors. In PO-
POSGs, the linear value V σ1|b2 of a strategy depends on the
belief b2 of the adversary (see Lemma 1). Hence, also our
αβ-vectors depend on the belief of the adversary denoted β.
An αβ-vector consists of two components (see the thick line
in Figure 1). First, there is a linear function α : ∆(S2)→ R
representing the value of the αβ-vector in the ∆(S2) dimen-
sion. Second, there is a belief of the adversary β ∈ ∆(S2)
which informally positions the αβ-vector in the ∆(S1) di-
mension. As a simplification, an αβ-vector can be seen as a
value V σ1|b2 of a strategy σ1 in belief b2, where α = V σ1|b2

and β = b2. However, an αβ-vector of player 1 is an arbi-
trary function that lower bounds V ∗ in general.
Definition 5. An αβ-vector of player i is a tuple consisting
of a linear function α : ∆(S−i) → R and the belief of the
adversary β ∈ ∆(Si) satisfying

α(b1) ≤ V ∗[b1, β] , or α(b2) ≥ V ∗[β, b2] (9)

for player 1 or player 2, respectively. The set of all αβ-
vectors of player 1 (player 2) used to construct the approxi-
mating function V ( V ) is denoted Γ1 (Γ2, respectively).

Since V ∗ is concave in the belief of player 2 (i.e., ∆(S1)),
every convex combination of αβ-vectors in Γ1 forms a lower

β
∆(S1)

(linear)

∆(S2)

α : ∆(S2) → R

Figure 1: Lower bound on V ∗ using αβ-vectors of player 1.

bound on V ∗, and for every coefficients of a convex combi-
nation λ(αβ) ≥ 0 satisfying

∑
αβ∈Γ1

λ(αβ) = 1,

α′(b1) =
∑
αβ∈Γ1

λ(αβ)α(b1), β′ =
∑
αβ∈Γ1

λ(αβ)β (10)

α′β′ is also an (implicit) αβ-vector. The implicit αβ-vectors
form facets in Figure 1.

Now, we leverage the α-vector representation of value
functions as commonly used in POMDPs (or one-sided
POSGs). To obtain the value V [b1, b2], a point-wise maxi-
mum over all (implicit) αβ-vectors with β = b2 is taken.

V [b1, b2] = max
λ(·)≥0

{ ∑
αβ∈Γ1

λ(αβ)α(b1)
∣∣∣ ∑
αβ∈Γ1

λ(αβ)β = b2

}
(11)

The upper-bounding value function V is constructed by
considering αβ-vectors Γ2 of player 2 and using a point-
wise minimum instead of maximum. Lower and upper-
bound approximations define the approximation error.
Definition 6. Let V and V be the current approximations of
V ∗. The approximation error (gap) in joint belief (b1, b2) is

V̂ [b1, b2] = V [b1, b2]− V [b1, b2] . (12)

Computing HV [b1, b2] via linear programming
When considering approximate value functions V and V de-
scribed in the previous section, the point-based value backup
HV [b1, b2] (or HV [b1, b2]) can be evaluated using linear
programming. We again focus on the construction of a linear
program for computing lower bound HV [b1, b2] (denoted
LP(HV [b1, b2])), the case for LP(HV [b1, b2]) is analogous.

We start by rewriting the optimization problem
HV [b1, b2] (as defined in Equation (7)) by evaluating
V according to the Equation (11).

max
π1,λ

min
π2

[
Rπ1π2

+ γ
∑
o1,o2

Prπ2
[o1] · Prπ1

[o2]· (13a)

·
∑
s′2

τπ2
(b1o1o2)(s′2)

∑
αβ∈Γ1

λo1o2(αβ) · α(s′2)
]

s.t.
∑
αβ∈Γ1

λo1o2(αβ) · β(s′1) = τπ1
(b2o2o1)(s′1) (13b)

∀(o1, o2) ∈ O1 ×O2 ∀s′1 ∈ S1

λ(·) ≥ 0 (13c)
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Variables λ(·) from Equation (11) have been replaced with
λo1o2(·) for each observation pair. The term 1/Prπ2 [o1] in
τπ2

(b1o1o2) cancels out, hence the objective becomes

max
π1,λ

min
π2

[
Rπ1π2 + γ

∑
o1,o2

Prπ1 [o2]
∑

s2,a2,s′2

b1(s2)π2(a2|s2)·

· Z(o1|s2a2)T (s′2|s2a2o2o1)
∑
αβ∈Γ1

λo1o2(αβ)α(s′2)
]

. (14)

Similarly, it is possible to cancel out Prπ1
[o2] in τπ1

(b2o2o1)

by substituting λ̂o1o2(·) = Prπ1
[o2] · λo1o2(·).

max
π1,λ̂

min
π2

[
Rπ1π2

+ γ
∑

s2,a2,o1,o2,s′2

b1(s2)π2(a2|s2)Z[o1|s2a2]·

· T [s′2|s2a2o2o1]
∑
αβ∈Γ1

λ̂o1o2(αβ) · α(s′2)
]

(15a)

s.t.
∑
αβ∈Γ1

λ̂o1o2(αβ) · β(s′1) =
∑
s1,a1

b2(s1)π1(a1|s1) ·

· Z(o2|s1a1)T (s′1|s1a1o1o2) ∀(o1, o2)∀s′1 (15b)

λ̂(·) ≥ 0 (15c)

When π1 and λ̂ variables are fixed, the value is linear
in π2. Hence the optimum will be in a pure strategy π2.
The minimization over a finite number of pure strategies
can be rewritten using a set of linear inequality constraints.
Moreover, we leverage the fact that the adversary (player 2)
knows his current state. Therefore, it is possible to compute
π2(·|s2) for each state s2 of player 2 separately and compute
the expectation over values of individual states. The result-
ing linear program follows.

max
π1,λ̂

∑
s2

b1(s2) · V (s2)

s.t. V (s2) ≤
∑
s1,a1

b2(s1)π1(a1|s1)R(s1s2a1a2) + (16a)

+ γ
∑

o1,o2,s′2

Z(o1|s2a2)T (s′2|s2a2o2o1) ·

·
∑
αβ∈Γ1

λ̂o1o2(αβ) · α(s′2) ∀s2, a2∑
αβ∈Γ1

λ̂o1o2(αβ) · β(s′1)=
∑
s1,a1

b2(s1)π1(a1|s1) · (16b)

· Z(o2|s1a1)T (s′1|s1a1o1o2) ∀(o1, o2)∀s′1

λ̂(·) ≥ 0 (16c)

Note that the variables V (s2) correspond to the values of
playing a strategy represented by values of variables π1 and
λ̂ in the unobserved state s2 of the opponent. Such strategy
prescribes player 1 to play according to strategy π1 in the
first stage of the game and then, after observing (o1, o2), fol-
low a strategy the value of which is greater than the convex
combination of αβ-vectors with coefficients λ(αβ),

λ(αβ) = λ̂o1o2(αβ)/
∑
αβ∈Γ1

λ̂o1o2(αβ) . (17)

Hence, we can use values of the variables V (s2) to form a
new αβ-vector (β = b2) such that α(b1) =

∑
s2
b1(s2) ·

V (s2). For states s2 with b1(s2) = 0, the value V (s2)
may, however underestimate, due to the lack of pressure on
V (s2). In these cases, we compute the minimum represented
by constraints (16a) separately.

The algorithm
We are now ready to state our algorithm to compute an ε-
approximation of V ∗ in the joint belief (b

(0)
1 , b

(0)
2 ) and to

prove its correctness. The algorithm (Algorithm 1) follows
the ideas of the HSVI algorithm for POMDPs (Smith and
Simmons 2004) and one-sided POSGs (Horak, Bosansky,
and Pechoucek 2017) while replacing the point-based up-
date step with the computation of optimal αβ-vectors to add
using the linear program from Equations (16).

1 Initialize V and V
2 while V̂ [b

(0)
1 , b

(0)
2 ] > ε do explore(b(0)

1 , b
(0)
2 , 0)

3 procedure explore(b1, b2, t)
4 if V̂ [b1, b2] ≤ ρ(t) then return
5 Extract π1 from LP(HV [b1, b2]) and π2 from

LP(HV [b1, b2])
6 (o∗1, o

∗
2)← arg maxo1,o2 Prπ1π2

[o1o2]·
excesst+1(τπ2

(b1o1o2), τπ1
(b2o2o1))

7 explore(τπ2
(b1o1o2), τπ1

(b2o2o1), t+ 1)
8 Extract α1 from LP(HV [b1, b2]) (V (s2) variables)
9 Extract α2 from LP(HV [b1, b2]) (V (s1) variables)

10 Γ1 ← Γ1 ∪ {α1b2} ; Γ2 ← Γ2 ∪ {α2b1}
Algorithm 1: HSVI algorithm for PO-POSGs.

Since we want to focus on the key characteristics of the
algorithm, we initialize V and V using the minimum and
maximum possible utilities of player 1,

L = min
s1,s2,a1,a2

R(s1s2a1a2)/(1− γ) (18)

U = max
s1,s2,a1,a2

R(s1s2a1a2)/(1− γ) . (19)

In practice, we can obtain tighter bounds (and consequently
faster convergence) by either leveraging domain knowledge,
or solving a simplified version of the game.

To obtain an ε-approximation of V ∗[b(0)
1 , b

(0)
2 ], it is suf-

ficient that beliefs (b1, b2) reached at depth t (the value of
which is therefore multiplied by γt) satisfy V̂ [b1, b2] ≤ ρ(t),
where ρ(t) is an increasing and unbounded sequence (for
sufficiently small R > 0),

ρ(t) = εγ−t −
t∑
i=1

2R(U − L)
√

2 · γ−i . (20)

If V̂ [b1, b2] > ρ(t), we say that (b1, b2) has a positive excess
gap excesst(b1, b2) = V̂ [b1, b2]− ρ(t).

Once Algorithm 1 terminates, an ε-approximation of
V ∗[b

(0)
1 , b

(0)
2 ] has been found (see line 2). Moreover, since

the sequence ρ(t) is increasing and unbounded while the
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maximum gap is bounded by U −L, the condition on line 4
is always eventually met and every call to explore therefore
terminates in a bounded number of recursion levels (denote
this bound Tmax). It is therefore sufficient to show that the
number of calls to explore is finite.

Denote {(b(t)1 , b
(t)
2 )}Tt=0 the beliefs that have been visited

during a trial of length T . Observe that V̂ [b
(T−1)
1 , b

(T−1)
2 ] >

ρ(T − 1) (otherwise the trial would have terminated at
depth (T − 1)). On the contrary, when considering be-
lief (b

(T−1)
1 , b

(T−1)
2 ) and the corresponding strategy pro-

file (π1, π2) from line 5, the reachable beliefs satisfy
V̂ [τπ2

(b
(T−1)
1 o1o2), τπ1(b

(T−1)
2 o2o1)] ≤ ρ(T ) for every

(o1, o2) seen with positive probability.

Lemma 2. Consider a trial {(b(t)1 , b
(t)
2 )}Tt=0 of length T and

consider that point-based updates on lines 8–10 of Algo-
rithm 1 have been performed. Then
(1) V̂ [b

(T−1)
1 , b

(T−1)
2 ] ≤ ρ(T − 1)− 2R(U − L)

√
2, and

(2) For every (b1, b2) satisfying ‖(b1, b2) −
(b

(T−1)
1 , b

(T−1)
2 )‖2 ≤ R, it holds V̂ [b1, b2] ≤ ρ(T − 1).

Proof (sketch). Observe that from the definition of the se-
quence ρ(t) in Equation (20) it follows that

γρ(T ) = ρ(T − 1)− 2R(U − L)
√

2 . (21)

Moreover, the trial terminated at depth T . Therefore, all be-
liefs that can be reached from (b

(T−1)
1 , b

(T−1)
2 ) when follow-

ing (π1, π1) from line 5 must satisfy

V̂ [τπ2
(b

(T−1)
1 o1o2), τπ1(b

(T−1)
2 o2o1)] ≤ ρ(T ) . (22)

Let (π1, π2) (and (π1, π2)) be equilibrial strategy profiles
in HV [b

(T−1)
1 , b

(T−1)
2 ] (and HV [b

(T−1)
1 , b

(T−1)
2 ], respec-

tively) and denote uV (π1, π2) the utility of playing strate-
gies (π1, π2) in HV [b

(T−1)
1 , b

(T−1)
2 ]. By deviating from the

equilibrium, the players can only worsen their utility. Hence,

uV (π1, π2) ≤ uV (π1, π2) = HV [b
(T−1)
1 , b

(T−1)
2 ] ≤ (23)

≤ HV [b
(T−1)
1 , b

(T−1)
2 ] = uV (π1, π2) ≤ uV (π1, π2) .

Since the same strategy profile (π1, π2) is considered in both
uV (π1, π2) and uV (π1, π2), the difference satisfies

uV (π1, π2)− uV (π1, π2) = γ
∑
o1o2

Prπ1π2
[o1o2]· (24)

· V̂ [τπ2
(b

(T−1)
1 o1o2), τπ1

(b
(T−1)
2 o2o1)] .

The gap V̂ [τπ2
(b1o1o2), τπ1

(b2o2o1)] of all beliefs reach-
able using (π1, π2) is smaller than ρ(T ) and hence
uV (π1, π2)−uV (π1, π2) ≤ γρ(T ). The point-based update
in (b

(T−1)
1 , b

(T−1)
2 ) renders V̂ [b

(T−1)
1 , b

(T−1)
2 ] ≤ ρ(T −1)−

2R(U − L)
√

2 which concludes the proof of (1).
Now, since V ∗ is (U−L)

√
2-Lipschitz continuous (Theo-

rem 2), it is possible to consider (U−L)
√

2-Lipschitz contin-
uous approximations V and V . Function V̂ = V −V is then
2(U−L)

√
2-Lipschitz continuous and therefore the value of

any belief within the R-neighborhood of (b
(T−1)
1 , b

(T−1)
2 )

cannot be higher than ρ(T − 1) which proves (2).

We are now ready to prove the correctness of the algo-
rithm by showing that it can only perform a finite number of
trials of given length.

Theorem 3. Algorithm 1 terminates with an ε-
approximation of V ∗[b(0)

1 , b
(0)
2 ].

Proof. Assume for the sake of contradiction that the algo-
rithm does not terminate and generates an infinite number of
explore trials. Since the length of a trial is bounded by a fi-
nite number Tmax, the number of trials of length T (for some
0 ≤ T ≤ Tmax) must be infinite. It is impossible to fit an in-
finite number of belief points (b1, b2) satisfying ‖(b1, b2) −
(b′1, b

′
2)‖2 > R within ∆(S1)×∆(S2). Hence there must be

two trials of length T , {(b(t)11 , b
(t)
21 )}Tt=0 and {(b(t)12 , b

(t)
22 )}Tt=0,

such that ‖(b(T−1)
11 , b

(T−1)
21 ) − (b

(T−1)
12 , b

(T−1)
22 )‖2 ≤ R.

Without loss of generality, assume that (b
(T−1)
11 , b

(T−1)
21 ) was

visited the first. According to Lemma 2, the point-based up-
date in (b

(T−1)
11 , b

(T−1)
21 ) resulted in V̂ [(b

(T−1)
12 , b

(T−1)
22 )] ≤

ρ(T − 1)—which contradicts that the condition on line 4 of
Algorithm 1 has not been satisfied for (b

(T−1)
12 , b

(T−1)
22 ) (and

hence that {(b(t)12 , b
(t)
22 )}Tt=0 was a trial of length T ).

Implementation details
In this section, we provide some of the details on our practi-
cal implementation of the HSVI algorithm for PO-POSGs.

Pruning The number of αβ-vectors grows in the course
of the algorithm, however, not all of the vectors are needed
to represent V (or V ) accurately. To counteract this growth,
we run a pruning procedure every time the size of Γi gets
1.5× larger than after the pruning was last performed. An
αβ-vector is pruned if there exists a convex combination of
vectors in Γi that dominates it.

Lipschitz continuity The theoretical proof of the correct-
ness relies on the fact that the approximating functions are
(U −L)

√
2-Lipschitz continuous. While the extracted αβ-

vectors from the linear programs are (U−L)
√

2-Lipschitz
continuous, the implicitly computed convex/concave hull
need not satisfy this property (and thus may potentially ren-
der the Lipschitz constant of V or V impossible to bound).
While this issue can be fixed by computing a (U−L)

√
2-

Lipschitz envelope of V or V by adding additional αβ-
vectors to Γi, we omit this step in our implementation. The
computation of the envelope significantly increases the num-
ber of αβ-vectors (and thus the number of expensive pruning
steps) and our experimental results show that the algorithm
converges in practice even when the assumption of bound-
edly Lipschitz-continuous approximations is relaxed.

Other We use the idea of modifying ε between iterations
similarly to (Horak, Bosansky, and Pechoucek 2017). The
εimm for the current iteration is obtained as εimm = ε +

0.5(V̂ [b
(0)
1 , b

(0)
2 ] − ε). This allows the algorithm to perform

shorter trials in the initial phases of the search (when the
bounds do not provide accurate information about what parts
of the belief space to target).
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Figure 2: Experimental results on the Patrolling domain for
different sizes of graph |V |. Time to reach V̂ [b

(0)
1 , b

(0)
2 ] ≤ 1.

We construct a compact version of the linear programs
LP(HV [b1, b2]). Namely, we consider only states, actions
and observation pairs that can be played/observed in the cur-
rent joint belief (b1, b2). Furthermore, we adopt a column
generation approach to incrementally add variables λoioj (·).
Initially, we start with one αβ-vector (and its λoioj (αβ))
for each pure belief of the opponent and we add additional
αβ-vectors once they are necessary to accurately represent
V [τ(b1o1o2), τ(b2o2o1)].

Experiments
We demonstrate the scalability of our algorithm on two
fundamentally different domains—partially observable pa-
trolling inspired by (Basilico et al. 2009) and a lasertag game
inspired by Tag from (Pineau, Gordon, and Thrun 2003). All
experiments use discount factor γ = 0.95 and were run on
Intel i7-8700K (solving 6 instances in parallel).

Patrolling The game is played by two players—the pa-
troller and the intruder. The patroller moves between ver-
tices V of a graph G = (V,E) and attempts to locate an in-
truder before the intruder succeeds in causing damage. The
intruder starts initially outside of the graph and observes the
position of the patroller whenever he steps on one of the
observable vertices O ⊆ V (otherwise the position of the
patroller remains hidden). The intruder may decide to attack
any target vertex v ∈ T , T ⊆ O. Once the intruder decides
to attack, he has to stay undetected in the chosen vertex v for
t× time steps to complete his attack and get a reward c(v).

In our experimental evaluation, we consider t× = 3 and
t× = 4 and generate random graphs from the Dorogovtsev-
Mendes model such that the shortest cycle covering all tar-
gets is longer than t× (i.e., the patroller cannot cover the
targets perfectly). There are |T | = dV/4e targets and |O| =
d2V/3e observable nodes. The costs c(v) of targets are gen-
erated uniformly from the [70, 100] interval. Figure 2 sum-
marizes the runtime of our algorithm on 200 randomly gen-
erated instances of Patrolling (time to reach precision 1, i.e.,
1% of the maximum cost, is reported). All instances have
been solved within 10 hours, while 97 instances with t× = 3
out of 100 and 82 instances with t× = 4 out of 100 have
been solved in less than 20 minutes.

Lasertag The game is played by two players—the tagger
and the evader—on a grid. In each time step, the players can

decide to move to an adjacent square (free of an obstacle),
or, the tagger can additionally shoot a laser beam either hori-
zontally or vertically (which is effective until hitting the first
obstacle). If the beam tags the evader, the tagger receives a
reward +10 and the game ends, otherwise his reward is−10
and the game continues. Unless the tagger decides to use the
laser beam, his reward is −1 in each step. Hence, the tag-
ger attempts to terminate the game by tagging the adversary
as quickly as possible. Neither player knows the position of
each other until the tagger decides to shoot when the evader
can observe the light ray (and thus deduce possible positions
of the tagger).

We consider lasertag games played on a 4× 4 grid with 3
obstacles where the tagger starts in the top-left corner, while
the evader starts at position (3, 4) next to the opposite cor-
ner. The obstacles are placed randomly while guaranteeing
the existence of a path between the players (we discard sym-
metrical instances). We ran the algorithm with ε = 0.05 for
5 hours. While the algorithm did not terminate within this
limit on 16 out of 20 instances, the average excess gap in
the initial belief relative to the value of the lower bound was
10%±2.6% (where the confidence interval marks standard
error). For grid size 3× 3, all non-symmetric instances with
players starting in opposite corners have been solved in less
than 8 seconds.

Analysis We provide a detailed analysis of the perfor-
mance of the algorithm for two instances of patrolling, an
11-vertex instance with t× = 4 solved in 307s and a 13-
vertex instance with t× = 4 solved in 11004s. On both of
the instances, 85% of the runtime corresponds to the opera-
tions with the approximating functions (especially comput-
ing values for a joint belief), while the construction and solv-
ing LP(HV [b1, b2]) took only 10% of the runtime. The re-
maining 5% of the runtime corresponds to the pruning step,
initiated 95 times on the larger instance within the 1556 it-
erations. The pruning eliminated 22126 αβ-vectors out of
50404 generated on the larger instance. Unlike in the pa-
trolling domain, on a lasertag instance solved in 9337s the
pruning was much more frequent (approximately one prun-
ing per 6 iterations) and considerably more demanding (took
22% of runtime).

Conclusions
We present a subclass of partially observable stochastic
games (POSGs) where the observations are publicly observ-
able by the players. We provide the formal definition of such
games and a novel, practical algorithm with proven conver-
gence to approximately solve games in this class. Our algo-
rithm is, to the best of our knowledge, the first practical gen-
eral algorithm to solve a broad subclass of infinite-horizon
games where both players lack information about the game
state.

There is a large volume of possible future work. One di-
rection is to adopt recent advancements from single-player
POMDPs and apply them to the class of POSGs to improve
scalability. Next, one can fine-tune representation of value
functions and their initialization for specific games in se-
curity domains (e.g., in cybersecurity) to solve much larger
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instances that correspond to real-world problems. Another
way is to generalize the approach presented in this paper and
relax some of the assumptions made: (1) adapt the approach
for objective functions different from the discounted sum of
rewards or (2) relax the factorization over the states.
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