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Abstract

We study the problem of allocating indivisible items to agents
with additive valuations, under the additional constraint that
bundles must be connected in an underlying item graph. Previ-
ous work has considered the existence and complexity of fair
allocations. We study the problem of finding an allocation that
is Pareto-optimal. While it is easy to find an efficient allocation
when the underlying graph is a path or a star, the problem is
NP-hard for many other graph topologies, even for trees of
bounded pathwidth or of maximum degree 3. We show that on
a path, there are instances where no Pareto-optimal allocation
satisfies envy-freeness up to one good, and that it is NP-hard
to decide whether such an allocation exists, even for binary
valuations. We also show that, for a path, it is NP-hard to find
a Pareto-optimal allocation that satisfies maximin share, but
show that a moving-knife algorithm can find such an allocation
when agents have binary valuations that have a non-nested
interval structure.

1 Introduction
In mechanism design, Pareto-optimality is a basic desider-
atum: if we select an outcome that is Pareto-dominated by
another, users will justifiably complain. In simple settings,
it is computationally trivial to find a Pareto-optimum (e.g.,
via serial dictatorship). Thus, it is usually sought to be sat-
isfied together with other criteria (like fairness or welfare
maximisation). However, in more complicated settings, even
Pareto-optimality may be elusive.

We study the classical problem of allocating indivisible
items among agents who have (typically additive) prefer-
ences over bundles. Following a recent model of Bouveret et
al. (2017), we are interested in settings where the set of items
has additional structure specified by a graph G over the items.
Agents are only interested in receiving a bundle of items that
is connected in G. This model is particularly relevant when
the items have a spatial or temporal structure, for example,
if we wish to allocate land, rooms, or time slots to agents.
Time slots, for instance, are naturally ordered in a sequence,
and agents will often only value being allocated a contiguous
chunk of time, particularly when restart costs are prohibitive.

Given agents’ preferences over (connected) bundles, we
wish to find an allocation that is Pareto-optimal (or Pareto-
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efficient), that is, a connected allocation such that there is no
other connected allocation which makes some agent strictly
better off while making no agent worse off. Now, in the
standard setting without connectivity constraints and with
additive valuations, it is straightforward to find Pareto-optima:
For example, we can allocate each item to a person who has
the highest valuation for it (maximizing utilitarian social
welfare in the process), or we can run a serial dictatorship.
Neither of these approaches respects connectivity constraints.
In fact, we show that it is NP-hard to construct a Pareto-
optimal allocation under connectivity constraints, unless G
is extremely simple.

Recent work on the allocation of indivisible items has fo-
cussed particularly on ensuring fairness. Two well-studied
fairness notions are due to Budish (2011), who introduced
the maximin fair share (MMS) and envy-freeness up to one
good (EF1). Both concepts have natural analogues in the
setting with connectivity constraints (Bouveret et al. 2017;
Bilò et al. 2018). An important question is whether there is a
tradeoff between efficiency and fairness, or whether both are
simultaneously achievable. Without connectivity constraints,
these notions tend to be compatible: For example, with addi-
tive valuations, the maximum Nash welfare solution satisfies
EF1 and is also Pareto-optimal (Caragiannis et al. 2016). We
investigate these tradeoffs in the connected setting.
Contributions.
• For additive valuations, we show that one can find a Pareto-

optimum in polynomial time when G is a path or a star.
• We show that, unless P = NP, there is no polynomial-time

algorithm that finds a Pareto-optimum when G is a tree,
even if valuations are additive and binary, and even if the
tree has bounded pathwidth, bounded diameter, or bounded
maximum degree. Finding a Pareto-optimum is also hard
when valuations are 2-additive and G is a path or a star.
• When G is a tree, there always exists an allocation which

is both Pareto-optimal and satisfies MMS. However, such
an allocation is NP-hard to find, even whenG is a path; the
problem stays hard when weakening MMS to α-MMS for
any α > 0. For a restricted class of binary valuations (non-
nested intervals), we give a polynomial-time algorithm.

• When G is a path, we give examples with binary additive
valuations for which no Pareto-optimal EF1 allocation
exists, and show that it is NP-hard to decide existence.
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general complete tree path

PO NP-hard* poly-time NP-hard* poly-time
PO & MMS NP-hard* NP-hard* NP-hard*
PO & EF1 NP-hard poly-time† NP-hard NP-hard

Table 1: Overview of our complexity results. Hardness results
marked ∗ hold under Turing reductions. The result † refers
to a pseudo-polynomial algorithm by Barman, Murthy, and
Vaish (2018). Our hardness results hold even for additive and
binary valuations.

Related Work. There is a rich body of the literature on fair
division of a divisible cake into connected pieces. Such a
division satisfying envy-freeness always exists (Stromquist
1980); nevertheless, it cannot be obtained in finite steps even
when the cake is divided among three agents (Stromquist
2008). In contrast, several efficient algorithms are known to
yield a contiguous proportional allocation; see the survey by
Lindner and Rothe (2016) for more details.

The relation between efficiency and fairness with con-
nected pieces is also well-understood for divisible items.
Aumann and Dombb (2015) studied the utilitarian social
welfare of fair allocations under connectivity constraints. The
papers by Bei et al. (2012) and Aumann, Dombb, and Has-
sidim (2013) considered the computational complexity of
finding an allocation with connected pieces maximizing utili-
tarian social welfare. Bei et al. (2012) showed that utilitarian
social welfare is inapproximable when requiring that the al-
location satisfy proportionality; however, without the propor-
tionality requirement, Aumann, Dombb, and Hassidim (2013)
proved that there is a polynomial-time constant-factor ap-
proximation algorithm for finding an allocation maximizing
utilitarian social welfare. The algorithm by Aumann, Dombb,
and Hassidim (2013) works also for indivisible items and so
applies to our setting when G is a path. A paper by Conitzer,
Derryberry, and Sandholm (2004) considers combinatorial
auctions; translated to our setting, their results imply that
one can find a Pareto-optimal connected allocation in poly-
nomial time, when G is a graph of bounded treewidth and
agents have unit demand: each agent specifies a connected
demanded bundle such that agents have positive utility if and
only if they obtain a superset of the demanded bundle.

In the context of division of indivisible items, Bouveret
et al. (2017) formalized the model of fair division with the
extra feature that each bundle needs to be connected in the
underlying item graph. While they showed that finding a con-
nected allocation that is envy-free or proportional is NP-hard
even on paths, they proved that an allocation satisfying the
maximin fair share always exists and can be found in polyno-
mial time when the graph is acyclic; subsequently Lonc and
Truszczynski (2018) studied the computational complexity
of finding an MMS allocation when the graph G is a cycle.
Independently of Bouveret et al. (2017), Suksompong (2017)
considered the problem when the items lie on a path, ob-
taining approximations to several fairness notions such as
envy-freeness and proportionality. The recent works of Bilò
et al. (2018) and Oh, Procaccia, and Suksompong (2019)

study the existence of EF1 allocations with connected pieces.
They both showed that an EF1 allocation exists when agents
have identical valuations. Bilò et al. (2018) also proved that
for up to four agents with arbitrary monotonic valuations, an
EF1 allocation connected on a path is guaranteed to exist.

With no connectivity constraints, Aziz et al. (2016)
studied the computational complexity of finding Pareto-
improvements of a given allocation when agents have addi-
tive preferences. Technically, our hardness proofs use similar
techniques to hardness proofs obtained by Aziz, Brandt, and
Harrenstein (2013) in the context of hedonic games.
Full version. A full version is available on arXiv (Igarashi
and Peters 2018). It contains the proofs of Theorems 5, 6, 7,
and 9, which are omitted here due to space constraints.

2 Preliminaries
For an integer s ∈ N, write [s] = {1, 2, . . . , s}. Let N = [n]
be a set of agents and G = (V,E) be an undirected graph
whose vertices are called items. A subsetX of V is connected
if it induces a connected subgraph ofG. We write C(V ) ⊆ 2V

for the set of connected subsets of V , also called bundles.
Each agent i ∈ N has a valuation function ui : C(V )→ R

over connected bundles which satisfies ui(∅) = 0 and is
monotonic, so X ⊆ Y implies ui(X) 6 ui(Y ). A valuation
function ui is additive if ui(X) =

∑
v∈X ui({v}) for each

X ∈ C(V ). We write ui(v) = ui({v}) for short. An additive
valuation function is binary if ui(v) ∈ {0, 1} for all v ∈ V .
If an agent i has a binary valuation function, we say that i
approves item v if ui(v) = 1.

A (connected) allocation is a function π : N → C(V )
assigning each agent a connected bundle of items, such that
each item is allocated exactly once, i.e.,

⋃
i∈N π(i) = V and

π(i)∩π(j) = ∅ for each pair of distinct agents i, j ∈ N . For
an allocation π and a subset N ′ of agents, we denote by π|N ′

the allocation restricted to N ′.
Given an allocation π, another allocation π′ is a Pareto-

improvement of π if ui(π′(i)) > ui(π(i)) for all i ∈ N
and uj(π′(j)) > uj(π(j)) for some j ∈ N . We say that a
connected allocation π is Pareto-optimal (or Pareto-efficient,
or PO for short) if there is no connected allocation that is
a Pareto-improvement of π. The utilitarian social welfare
of an allocation π is

∑
i∈N ui(π(i)). It is easy to see that

a connected allocation which maximizes utilitarian social
welfare among connected allocations is Pareto-optimal.

A connected allocation satisfies EF1 (Bilò et al. 2018;
Oh, Procaccia, and Suksompong 2019) if for any pair of
agents i, j ∈ N , either ui(π(i)) > ui(π(j)) or there is an
item v ∈ π(j) such that π(j) \ {v} remains connected and
ui(π(i)) > ui(π(j) \ {v}). Thus, whenever i envies the
bundle of agent j, then the envy vanishes if we remove one
outer item from the envied bundle.

Let Πn(G) be the set of partitions of V into n connected
bundles. The maximin fair share of an agent i ∈ N is

mmsi = max
(P1,...,Pn)∈Πn(G)

min
j∈[n]

ui(Pj).

A connected allocation π is an MMS allocation if ui(π(i)) >
mmsi for each agent i ∈ N . Bouveret et al. (2017) show that
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if G is a tree, an MMS allocation exists. Note that this defini-
tion of the MMS value varies with the graph G, and may be
lower than the standard MMS values where the maximisation
is taken over all partitions, with no connectivity constraints.

Some graph-theoretic terminology: Given a graph G =
(V,E) and a subset X ⊆ V of vertices, we denote by G \X
the subgraph of G induced by V \X . The diameter of G is
the maximum distance between any pair of vertices.

3 Finding Some Pareto-Optimal Allocation
We start by considering the problem of producing some
Pareto-optimal allocation, without imposing any additional
constraints on the quality of this allocation. When there are
no connectivity requirements (equivalently, when G is a com-
plete graph) and valuations are additive, this problem is trivial:
Simply allocate each item v separately to an agent i who has
a highest valuation ui(v) for v. The resulting allocation max-
imizes utilitarian social welfare and is thus Pareto-optimal.
When G is not complete, this procedure can produce discon-
nected bundles. We could try to give all items to a single
agent (if the graph G is connected), but the result need not be
Pareto-optimal if that agent has zero value for some items. Is
it still possible to find a Pareto-optimal allocation for specific
graph topologies in polynomial time?

Paths and Stars
For very simple graphs and additive valuations, the answer
is positive. Our first algorithm works when G is a path. The
algorithm identifies an agent i with a nonzero valuation for
the item at the left end of the path G, and then allocates
all items to i, except for any items at the right end of the
path which i values at 0. We then recursively call the same
algorithm to decide on how to allocate the remaining items.

Theorem 1. When G is a path, and with additive valuations,
a Pareto-optimal allocation can be found in polynomial time.

Proof. The path G is given by V = {v1, v2, . . . , vm} where
{vj , vj+1} ∈ E for each j ∈ [m− 1]. For a subset V ′ of V ,
we denote by minV ′ the vertex of minimum index in V ′.

We design a recursive algorithm A that takes as input a
subset N ′ of agents, a subpath G′ = (V ′, E′) of G, and
a valuation profile (ui)i∈N ′ , and returns a Pareto-optimal
allocation of the items in V ′ to the agents in N ′. Without loss
of generality, we may assume that there is an agent who likes
the left-most vertex of G′, i.e., ui(minV ′) > 0 for some
i ∈ N ′, since otherwise we can arbitrarily allocate that item
later without affecting Pareto-optimality.

If |N ′| = 1, then the algorithm allocates all items V ′
to the single agent. Suppose that |N ′| > 1. The algorithm
first finds an agent i who has positive value for minV ′; it
then allocates to i a minimal connected bundle Vi ⊆ V ′

containing all items in V ′ to which i assigns positive utility
(so that ui(Vi) = ui(V

′)). To decide on the allocation of
the remaining items, we apply A to the reduced instance
(N ′ \ {i}, G′ \ Vi, (ui′)i′∈N ′\{i}).

We will prove by induction on |N ′| that the allocation
produced by A is Pareto-optimal. This is clearly true when
|N ′| = 1. Suppose that A returns a Pareto-optimal allocation

when |N ′| = k − 1; we will prove it for |N ′| = k. Let
π be the allocation returned by A, where A chose agent i
and allocated the bundle Vi before making a recursive call.
Assume for a contradiction that there is a Pareto-improvement
π′ of π. Thus, in particular, ui(π′(i)) > ui(π(i)). By the
algorithm’s choice of the bundle Vi, we must have Vi ⊆ π′(i)
and ui(π′(i)) = ui(π(i)). Thus, there is an agent j′ different
from i who receives strictly higher value in π′ than in π.

Now, since G\π′(i) is a subgraph of G\Vi, the allocation
π′|N ′\{i} is an allocation for the instance I ′ = (N ′\{i}, G′\
Vi, (ui′)i′∈N ′\{i}). Also, we have

• uj(π′(j)) > uj(π(j)) for all agents j ∈ N ′ \ {i}; and
• uj′(π′(j′)) > uj′(π(j′)) for some j′ ∈ N ′ \ {i}.

Thus, π′|N ′\{i} is a Pareto-improvement of the allocation
π|N ′\{i}. But π|N ′\{i} is the allocation returned by A for
the instance I ′, contradicting the inductive hypothesis that A
returns Pareto-optimal allocations for |N ′| = k − 1.

Another graph type for which we can find a Pareto-
optimum is a star. In fact, we can efficiently calculate an
allocation maximizing utilitarian social welfare. Note that
when G is a star, at most one agent can receive two or more
items. This allows us to translate welfare maximization into
a bipartite matching instance.

Theorem 2. When G is a star, and valuations are additive,
a Pareto-optimal allocation can be found in polynomial time.

Proof. We give an algorithm to find an allocation that maxi-
mizes the utilitarian social welfare. LetG be a star with center
vertex c and m − 1 leaves. We start by guessing an agent
i ∈ N who receives the item c. By connectedness, every
other agent can receive at most one (leaf) item. To allocate
the leaf items, we construct a weighted bipartite graph Hi

with bipartition (N ′, V \ {c}) where N ′ consists of agents
j ∈ N \ {i} together with m− 1 copies i1, i2, . . . , im−1 of
agent i. (These copies represent ‘slots’ in i’s bundle.) Each
edge of form {j, v} for j ∈ N \ {i} has weight uj(v) and
each edge of form {ik, v} has weight ui(v).

Observe that each connected allocation in which i obtains
c can be identified with a matching in Hi: Every leaf object
is either matched with the agent receiving it, or is matched
with some copy ik of i if the object is part of i’s bundle. Note
that utilitarian social welfare of this allocation equals the
total weight of the matching. Since one can find a maximum-
weight matching in a bipartite graph in polynomial time (see,
e.g., Korte and Vygen 2006), we can find an allocation of
maximum utilitarian social welfare efficiently.

We have shown that finding a Pareto-optimum is easy for
paths and for stars. An interesting open problem is whether
the problem is also easy for caterpillars, a class of graphs
containing both paths and stars. One might be able to com-
bine the approaches of Theorems 1 and 2 to handle them,
but the details are difficult. Note that caterplliars are pre-
cisely the graphs of pathwidth 1; we discuss a negative result
about graphs of pathwidth 2 below. Another open problem is
whether finding a Pareto-optimum is easy when G is a cycle.
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Hardness Results
For more general classes of graphs, the news is less positive.
We show that, unless P = NP, there is no polynomial-time al-
gorithm which produces a Pareto-optimal allocation when G
is an arbitrary tree even for binary valuations. Notably, this re-
sult implies that it is NP-hard to find allocations maximizing
any type of social welfare (utilitarian, leximin, Nash) when
G is a tree, since such allocations are also Pareto-optimal.

To obtain our hardness result, we first consider a more
general problem which is easier to analyze, namely the case
where G is a forest. Since a Pareto-optimum always exists,
we cannot employ the standard approach of showing that a de-
cision problem is NP-hard via many-one reductions. Instead,
we show (by a Turing reduction) that a polynomial-time algo-
rithm producing a connected Pareto-optimal allocation could
be used to solve an NP-complete problem in polynomial time.

Theorem 3. Unless P = NP, there is no polynomial-time
algorithm which finds a Pareto-optimal connected allocation
when G is a union of vertex-disjoint paths of size 3, even if
valuations are binary and additive.

Proof. We give a Turing reduction from EXACT-3-COVER
(X3C). Recall that an instance of X3C is given by a set
of elements X = {x1, x2, . . . , x3r} and a family S =
{S1, . . . , Ss} of three-element subsets of X; it is a ‘yes’-
instance if and only if there is an exact cover S ′ ⊆ S with
|S ′| = r and

⋃
S∈S′ S = X . For a set S ∈ S , order the three

elements of S in some canonical way (e.g., alphabetically)
and write S1, S2, S3 for the elements in that order.

Given an instance (X,S) of X3C, for each S ∈ S,
construct a path PS on three vertices vS,1, vS,2, vS,3. Let
G =

⋃
S∈S PS . For each element x ∈ X , we introduce an

agent ix with uix(vS,j) = 1 iff Sj = x, and uix(vS,j) = 0
otherwise. Thus, agent ix approves all instances of x. We also
introduce s − r dummy agents d1, . . . , ds−r who approve
every item, so udk

(vS,j) = 1 for all j, k, S. Note that for
each agent ix, a highest-value connected bundle has value
1, while for a dummy agent dk, a highest-value connected
bundle has value 3.

Suppose we had an algorithm A which finds a Pareto-
optimal allocation. We show how to useA to solve X3C. Run
A on the allocation problem constructed above to obtain a
Pareto-optimal allocation π. We claim that the X3C instance
(X,S) has a solution iff

uix(π(ix)) = 1 for all x ∈ X and
udk

(π(dk)) = 3 for all k ∈ [s− r]. (3.1)

Since (3.1) is easy to check, this equivalence implies that A
can be used to solve X3C, and hence our problem is NP-hard.

Suppose π satisfies (3.1). We construct a solution to the
X3C instance. For each k ∈ [s− r], since udk

(π(dk)) = 3,
we must have π(dk) = PS for some S ∈ S. Let S ′ = {S ∈
S : π(dk) 6= PS for all k ∈ [s− r]}. Then S ′ is a solution:
Clearly |S ′| = r; further, for every x ∈ X , we have that
π(ix) ∈ PS for some S ∈ S, and since uix(π(ix)) = 1 by
(3.1), this implies that x ∈ S. Thus,

⋃
S∈S′ S = X . Hence,

S ′ is a solution to the X3C instance (X,S).

Conversely, suppose there is a solution S ′ to the instance
of X3C, but suppose for a contradiction that π fails con-
dition (3.1). Define the following allocation π∗: For each
x ∈ X , identify a set S ∈ S ′ and an index j ∈ [3] such
that Sj = x and set π∗(ix) = {vS,j}; next, write S \ S ′ =
{S′1, . . . , S′s−r} and set π∗(dk) = {vS′

k,1
, vS′

k,2
, vS′

k,3
} for

each k ∈ [s− r]. Then π∗ satisfies (3.1). Since π fails (3.1),
the allocation π∗ Pareto-dominates π, contradicting that π is
Pareto-optimal. Hence, π satisfies (3.1), as desired.

Building on this reduction, we find that it is also hard to find a
Pareto-efficient allocation if G is a tree (rather than a forest).

Theorem 4. Unless P = NP, there is no polynomial-time
algorithm which finds a Pareto-optimal connected allocation
when G is a tree, even if valuations are binary and additive.

Proof. To extend the reduction in the proof of Theorem 3 to
trees, we first ‘double’ the reduction, by making a copy of
each object and a copy of each agent with the same preference
as the original agent. Specifically, given an instance (X,S) of
X3C, we create the same instance as in the proof of Theorem
3; that is, we make a path PS = (vS,1, vS,2, vS,3) for each
S ∈ S, and construct agent ix for each x ∈ X and dummy
agents d1, d2, . . . , ds−r with the same binary valuations.

In addition, we make a path P̂S of copies v̂S,1, v̂S,2, v̂S,3
of each S ∈ S. We then make a copy îx of each agent ix
(x ∈ X) together with copies d̂1, d̂2, . . . , d̂s−r of the dummy
agents. We also introduce a new item c which serves as the
center of a tree; specifically, we attach the center to the middle
vertex vS,2 of the path PS , and the middle vertex v̂S,2 of the
path P̂S , for each S ∈ S. The resulting graph G is a tree
consisting of 2r + 2|S| paths of length 3, each attached to
the vertex c by their middle vertex. See Figure 1.

No agent has positive value for the center item c. Copied
agents only value copied objects and have the same valuations
as the corresponding original agents, and non-copied agents
only value non-copied objects. Formally, for each element
x ∈ X , each k ∈ [s − r], and each item v, agents’ binary
valuations are given as follows:

• uix(v) = 1 iff v = vS,j and Sj = x;
• udk

(v) = 1 iff v = vS,j for some S, j;
• uîx(v) = 1 iff v = v̂S,j and Sj = x;
• ud̂k

(v) = 1 iff v = v̂S,j for some S, j.

Write No = { ix : x ∈ X } ∪ {d1, d2, . . . , ds−r} for the set
of original agents, and Vo =

⋃
S∈S{vS,1, vS,2, vS,3} for the

set of original items.
Suppose we had an algorithm A which finds a Pareto-

optimal allocation. We show how to use A to solve X3C.
Run A on the allocation problem constructed above to ob-
tain a Pareto-optimum π. We may suppose without loss of
generality that c 6∈ π(i) for any i ∈ No, since otherwise we
can swap the roles of the originals and the copies. We may
further assume that each original agent i ∈ No only receives
original items, i.e., π(i) ⊆ Vo, since we can move any other
items from π(i) into other bundles without making anyone
worse off. Hence, since c 6∈ π(i), we see that π(i) ⊆ PS for
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· · ·

Figure 1: Graphs constructed in the proofs of Theorem 3, Theorem 4, and Theorem 5 (pictured left-to-right).

some S ∈ S because π(i) is connected in G. This shows that
uix(π(ix)) 6 1 for all x ∈ X and udk

(π(dk)) 6 3 for all
k ∈ [s− r]. We prove that the X3C instance has a solution iff

uix(π(ix)) = 1 for all x ∈ X and
udk

(π(dk)) = 3 for all k ∈ [s− r]. (3.2)

Since (3.2) is easy to check, this equivalence implies that A
can be used to solve X3C, and hence our problem is NP-hard.
If (3.2) holds, then the argument in the proof of Theorem 3
applies and shows that the X3C instance has a solution.

Conversely, suppose there is a solution S ′ ⊆ S to the
X3C instance. Then, as in the proof of Theorem 3, there is
an allocation π∗ : No → C(Vo) of the original items to the
original agents such that uix(π∗(ix)) = 1 for all x ∈ X and
udk

(π∗(dk)) = 3 for all k ∈ [s− r]. Extend π∗ to all agents
by defining π∗(ĵ) = π(ĵ)∩(V \Vo) for every copied agent ĵ.
It is easy to check that π∗ is a connected allocation. For each
copied agent ĵ, we have uĵ(π

∗(ĵ)) = uĵ(π(ĵ)), since ĵ has
a valuation of 0 for every item in Vo. Also, for each original
agent i ∈ No, we have ui(π∗(i)) > ui(π(i)), since i obtains
an optimal bundle under π∗. It follows that if π fails (3.2),
then π∗ is a Pareto-improvement of π, contradicting that π is
Pareto-optimal. So π satisfies (3.2).

Note that the graph constructed in the above proof has path-
width 2 and diameter 4, so hardness holds even for trees of
bounded pathwidth and bounded diameter. One can adapt our
reduction to show that hardness holds on trees with maximum
degree 3, by copying our original reduction many times.

Theorem 5. Unless P = NP, there is no polynomial-time
algorithm which finds a Pareto-optimal connected allocation
when G is a tree with maximum degree 3, even if valuations
are binary and additive.

In the last section, we saw positive results for paths and
stars when valuations are additive. For more general prefer-
ences over bundles, we again obtain a hardness result. Refer
to the full version of this paper for definitions of 2-additive
and of dichotomous valuations.

Theorem 6. Unless P = NP, there is no polynomial-time
algorithm which finds a Pareto-optimal connected alloca-
tion when G is a path, when valuations are 2-additive. The
problem is also hard when G is a star and valuations are
2-additive. Both problems are also hard for dichotomous
valuations specified by a formula of propositional logic.

4 Pareto-Optimality & EF1 on Paths
In Section 3, we were aiming to find some Pareto-optimum,
and obtained a positive result for the important case where
G is a path. Now we aim higher, wanting to find an efficient
allocation which is also fair, where by fairness we mean EF1.

When there are no connectivity requirements, it is known
that efficiency and fairness are compatible: Caragiannis et
al. (2016) showed that an allocation maximizing the Nash
product of agents’ valuations is both Pareto-optimal and EF1.
While it is NP-hard to compute the Nash solution, Barman,
Murthy, and Vaish (2018) designed a (pseudo-)polynomial-
time algorithm which finds an allocation satisfying these two
properties.

In our model, unfortunately, EF1 is incompatible with
Pareto-optimality, even when G is a path. The following
examples only require binary additive valuations and only
two or three agents. Note that Bilò et al. (2018) proved that an
EF1 allocation always exists on a path for up to four agents.
Also, it follows from results of Barrera et al. (2015) that an
EF1 allocation always exists on a path with binary additive
valuations and any number of agents.

Example 1. Consider an instance with two agents a, b and a
path with five items v1, . . . , v5, and binary additive valuations
as shown below.

v1 v2 v3 v4 v5

a : 1 0 1 1 0
b : 0 1 1 0 1

Write an allocation π as a pair (π(a), π(b)), omitting set
braces for brevity. Then the allocation

• (v1, v2v3v4v5) is not EF1,
• (v1v2, v3v4v5) is Pareto-dominated by (v1, v2v3v4v5),
• (v1v2v3, v4v5) is Pareto-dominated by (v1v2v3v4, v5),
• (v1v2v3v4, v5) is not EF1.

The other allocations also fail Pareto-optimality or EF1, by
symmetry.

The following alternative example shows that Pareto-
optimality and EF1 conflict in another restricted setting,
where each agent’s approval set is an interval.

Example 2. Consider an instance with three agents a1, a2,
and b, and a path with eleven items v1, . . . , v11, and binary
additive valuations as shown below.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

a1, a2 : 1 1 1 1 1 1 1 1 1 1 1
b : 0 0 0 1 1 0 0 0 0 0 0

Suppose π is a Pareto-optimal EF1 allocation. Then, for each
i = 1, 2, because b does not envy ai up to one good, we
have {v4, v5} 6⊆ π(ai). Thus, for each i = 1, 2, we have
either π(ai) ⊆ {v1, . . . , v4} (and we say ai is in group L)
or π(ai) ⊆ {v5, . . . , v11} (and ai is in group R). Now, a1

and a2 are not both in group L, since then there would be
a Pareto-improvement by giving the six items {v6, . . . , v11}
to a1. Also, a1 and a2 are not both in group R, since then
one of them (say a1) would receive at most 3 approved items,
and there would be a Pareto-improvement by giving items
{v1, v2, v3} to a1 and {v6, . . . , v11} to a2. Hence, without
loss of generality, a1 is in group L and a2 is in group R. Since
π is Pareto-optimal, we have π(b) ⊆ {v4, v5}; if b were to
obtain any other items, then we can reallocate these items to
a1 and a2 to obtain a Pareto-improvement. Thus, a1 obtains
at most four approved items (as π(a1) ⊆ {v1, . . . , v4}), but
a2 receives at least six approved items (as {v6, . . . , v11} ⊆
π(a2)), so π is not EF1, a contradiction.

Given that we do not have an existence guarantee, a natu-
ral question is whether it is easy to decide whether a given
instance admits a Pareto-optimal allocation satisfying EF1.
Using the above examples, we prove that the problem is NP-
hard. The obvious complexity upper bound is Σp

2; an open
problem is whether the problem is complete for this class. A
related result of de Keijzer et al. (2009) shows that without
connectivity constraints and with additive valuations, it is Σp

2-
complete to decide whether a Pareto optimal and envy-free
allocation exists; see also Bouveret and Lang (2008).

Theorem 7. It is NP-hard to decide whether a connected
allocation that is Pareto-optimal and satisfies EF1 exists
when G is a path, even if valuations are binary and additive.

Note that in Examples 1 and 2, there are two different
types of agents’ valuations. Invoking a recent result inde-
pendently obtained by Bilò et al. (2018) and Oh, Procaccia,
and Suksompong (2019), we can show that a Pareto-optimal
EF1 allocation exists on paths for agents with additive valua-
tions that are identical, i.e., ui(X) = ui(X) for all bundles
X ∈ C(V ) and all i, j ∈ N .

Proposition 1. When G is a path and agents have identical
additive valuations, a connected allocation that is Pareto-
optimal and satisfies EF1 exists and can be found efficiently.

Proof. When agents have identical additive valuations, ev-
ery allocation π has the same utilitarian social welfare∑

i∈N ui(π(i)) =
∑

v∈V u1(v). Hence, every allocation
maximizes social welfare and is thus Pareto-optimal. Now,
Bilò et al. (2019, Theorem 7.1) and Oh, Procaccia, and Suk-
sompong (2019, Lemma C.2) show that if G is a path, a
connected EF1 allocation exists, which, by the above rea-
soning, is also Pareto-optimal. This allocation can be found
efficiently since the existence results of Bilò et al. (2018) and
Oh, Procaccia, and Suksompong (2019) both come with an
efficient algorithm.

For identical valuations that are not additive, Pareto-
optimality and EF1 are again incompatible on a path.
Example 3. There are four items a, b, c, d arranged on a path,
and two agents with the following identical valuations:

X u(X) X u(X) X u(X)

{a} 2 {a, b} 2 {a, b, c} 3
{b} 2 {b, c} 3 {b, c, d} 4
{c} 2 {c, d} 3 {a, b, c, d} 4
{d} 1

These valuations are subadditive. Then the allocation
• {{a, b, c, d}, ∅} is not EF1,
• {{a, b, c}, {d}} is not EF1,
• {{a, b}, {c, d}} is Pareto-dominated by {{a}, {b, c, d}},
• {{a}, {b, c, d}} is not EF1.

5 Pareto-Optimality & MMS on Paths
In the previous section, we saw that deciding the existence of
an allocation that is Pareto-efficient and satisfies EF1 is com-
putationally hard, even for a path, and saw examples where no
such allocation exists. Part of the reason is that envy-freeness
notions and Pareto-optimality are not natural companions:
it is easy to construct envy-free allocations, which, after a
Pareto-improvement, are not envy-free anymore.

An alternative notion of fairness avoids this problem:
Pareto-improving upon an MMS allocation preserves the
MMS property, because MMS only specifies a lower bound
on agents’ utilities. Bouveret et al. (2017) showed that if G
is a tree, then an MMS allocation always exists (and can be
found efficiently). Hence, if G is a tree, there is an allocation
that is both Pareto-optimal and MMS: take an MMS alloca-
tion, and repeatedly find Pareto-improvements until reaching
a Pareto-optimum, which must still satisfy the MMS property.

While existence is guaranteed, it is unclear whether we can
find an allocation satisfying both properties in polynomial
time. Certainly, by the negative result of Theorem 4, this
is not possible when G is an arbitrary tree. What about the
case when G is a path? The answer is also negative: a Pareto-
optimal MMS allocation cannot be found efficiently.
Theorem 8. Unless P = NP, there is no polynomial-time
algorithm which finds a Pareto-optimal MMS allocation when
G is a path, even if valuations are binary and additive.

Proof. We again give a Turing reduction from X3C, building
on the reduction of Theorem 3. Suppose we are given an
instance (X,S) of X3C, where X = {x1, x2, . . . , x3r} and
S = {S1, . . . , Ss}. Construct the paths PS1

, PS2
, . . . , PSs

and agents ix for each x ∈ X and dk for each k ∈ [s − r]
with binary utilities like in the proof of Theorem 3. We
write No = { ix : x ∈ X } ∪ {d1, d2, . . . , ds−r} and
Vo =

⋃
S∈S{vS,1, vS,2, vS,3} for the sets of agents and items

introduced so far. In addition, for each k ∈ [s], we construct
a path Bk of 2r + 2s new vertices b1k, b

2
k, . . . , b

2r+2s
k . The

graph G is obtained by concatenating these paths in the order
P1, B1, . . . , Ps, Bs. Finally, for each k ∈ [s], we introduce
an agent zk who approves exactly the vertices on Bk. The
agents in No do not approve any of the items in B1, . . . , Bs.
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Note that, in total, there are 3r + (s− r) + s = 2r + 2s
agents. Since each agent zk approves 2r + 2s vertices, each
agent zk has positive MMS value, namely mmszk = 1.

Suppose we had an algorithm A which finds a Pareto-
optimal MMS allocation on a path. We show how to use A
to solve X3C. Run A on the allocation problem constructed
above to obtain a Pareto-optimum π which satisfies MMS.
Then, for each k ∈ [s], the agent zk receives at least one
vertex from Bk since π is MMS. It follows that no agent
i ∈ N0 can receive items from two different paths PSj

and
PSk

, j < k, since these paths are separated by Bj . Thus,
for each i ∈ N0, there is some j ∈ [s] with π(i) ⊆ Bj−1 ∪
PSj
∪ Bj . By suitably reallocating items that agent i does

not approve, we can in fact assume that π(i) ⊆ PSj
for some

j ∈ [s]. This implies that uix(π(ix)) 6 1 for all x ∈ X and
udk

(π(dk)) 6 3 for all k ∈ [s− r].
We now prove that the X3C instance has a solution iff

uix(π(ix)) = 1 for all x ∈ X and
udk

(π(dk)) = 3 for all k ∈ [s− r]. (5.1)

Since (5.1) is easy to check, this equivalence implies that A
can be used to solve X3C, and hence our problem is NP-hard.

If (5.1) holds, then the argument in the proof of Theorem 3
applies and shows that the X3C instance has a solution.

Conversely, suppose there is a solution S ′ ⊆ S to the
X3C instance. Then, as in the proof of Theorem 3, there is
an allocation π∗ : No → C(Vo) of the original items to the
original agents such that uix(π∗(ix)) = 1 for all x ∈ X
and udk

(π∗(dk)) = 3 for all k ∈ [s − r]. Extend π∗ to
all agents by defining π∗(zk) = Bk for each k ∈ [s]. It is
easy to check that π∗ is a connected allocation. For each
k ∈ [s], we have uzk(zk) = uzk(π(zk)), since zk receives
all approved items in π∗ Also, for each original agent i ∈ No,
we have ui(π∗(i)) > ui(π(i)), since i obtains an optimal
bundle under π∗. Hence, if π fails (5.1), then π∗ is a Pareto-
improvement of π, a contradiction. So π satisfies (5.1).

For α ∈ (0, 1], we say that an allocation π is α-MMS if
ui(π(i)) > α ·mmsi for all i ∈ N . The above proof implies
that we cannot in polynomial time find a Pareto-optimal
allocation that is α-MMS, for fixed α > 0. The reduction can
also easily be adapted to the case when G is a cycle.

Next, we show that when G is a path, we can find a Pareto-
optimal MMS allocation in polynomial time for a restricted
class of valuations. We assume that agents’ valuations are
binary and additive, and for each voter, the set of approved
vertices forms an interval of the path G, and finally these
intervals are non-nested. Formally, for agent i ∈ N , we let
A(i) = {v ∈ V : ui(v) = 1} be the set of vertices which i
approves. For a path P = (1, 2, . . . ,m), we say that binary
and additive valuations are given by non-nested intervals if
A(i) is connected on the path for each i ∈ N , and there
is no pair of agents i, j ∈ N with minA(i) < minA(j)
and maxA(j) < maxA(i). This restriction is plausible,
for instance, when several groups wish to book the same
conference venue; each group specifies a period of contiguous
dates of (almost) equal length that are suitable for them.

We show that when valuations have this form, there is a
polynomial-time algorithm which yields an MMS allocation

that is Pareto-optimal. The algorithm is an adaptation of
the moving-knife algorithm of Bouveret et al. (2017). The
non-nestedness assumption means that agents can be ordered
naturally from left to right. Our algorithm then allocates
bundles to agents in that order. In the process, we can ensure
that every item has been allocated to an agent who approves
of it. Hence, the resulting allocation maximizes utilitarian
social welfare and thus is Pareto-optimal.
Theorem 9. When G is a path and valuations are binary
and additive given by non-nested intervals, there exists a
polynomial-time algorithm that finds a connected MMS allo-
cation that maximizes utilitarian social welfare.
As the following example shows, the non-nestedness assump-
tion is necessary for the result of Theorem 9 to hold.
Example 4. Consider an instance with two agents and five
vertices on a path, with binary additive valuations as below.

v1 v2 v3 v4 v5

Alice: 1 1 1 1 1
Bob: 0 1 1 0 0

The unique connected allocation maximizing utilitarian wel-
fare is the allocation giving all items to Alice, which violates
the MMS requirement for Bob.

6 Conclusion
In this work, we have studied the computational complexity
of finding Pareto-efficient outcomes, in the natural setting
where we need to allocate indivisible items into connected
bundles. We showed that although finding a Pareto-optimal
allocation is easy for some topologies, this does not extend
to general trees. Further, we proved that when imposing ad-
ditional fairness requirements, finding a Pareto-optimum be-
comes NP-hard even when the underlying item graph is a
path. We have also seen that a Pareto-optimal EF1 allocation
may not exist with the contiguity requirement while such an
allocation always exists when these requirements are ignored.

While we have focused on the divisions of goods, study-
ing an allocation of chores (bads) with graph-connectivity
constraints is an interesting future direction. In particular,
one may ask what graph structures give positive results in
terms of both existence and computational complexity. Some
of the questions studied in this paper are of interest also
in the setting without connectivity constraints: What is the
complexity of finding a Pareto-optimum with non-additive
valuations? Are there polynomial-time algorithms finding a
Pareto-optimal α-MMS allocation for constant α > 0?
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