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Abstract
In several different applications, including data transforma-
tion and entity resolution, rules are used to capture aspects of
knowledge about the application at hand. Often, a large set of
such rules is generated automatically or semi-automatically,
and the challenge is to refine the encapsulated knowledge by
selecting a subset of rules based on the expected operational
behavior of the rules on available data. In this paper, we carry
out a systematic complexity-theoretic investigation of the fol-
lowing rule selection problem: given a set of rules specified
by Horn formulas, and a pair of an input database and an out-
put database, find a subset of the rules that minimizes the to-
tal error, that is, the number of false positive and false neg-
ative errors arising from the selected rules. We first estab-
lish computational hardness results for the decision problems
underlying this minimization problem, as well as upper and
lower bounds for its approximability. We then investigate a
bi-objective optimization version of the rule selection prob-
lem in which both the total error and the size of the selected
rules are taken into account. We show that testing for mem-
bership in the Pareto front of this bi-objective optimization
problem is DP-complete. Finally, we show that a similar DP-
completeness result holds for a bi-level optimization version
of the rule selection problem, where one minimizes first the
total error and then the size.

Rules, typically expressed as Horn formulas, are ubiqui-
tous in several different areas of computer science and ar-
tificial intelligence. For example, rules are the basic con-
struct of (function-free) logic programs. In data integration
(Lenzerini 2002) and data exchange (Fagin et al. 2005),
rules are known as GAV (global-as-view) constraints and
are used to specify data transformations between a local
(or source) schema and a global (or target) schema. In data
mining, rules have many uses, including the specification of
contextual preferences (Agrawal, Rantzau, and Terzi 2006;
de Amo et al. 2015). In entity resolution, rules have been
used to specify blocking functions (Bilenko, Kamath, and
Mooney 2006) and entity resolution algorithms (Qian, Popa,
and Sen 2017).

Often, a large set of rules is generated automatically or
semi-automatically, and the challenge is to refine the encap-
sulated knowledge by selecting a subset of rules based on
the expected operational behavior of the rules on available
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data. Rule selection arises naturally in all aforementioned
contexts and, in fact, in most contexts involving reasoning
about data. Here, we present an example motivated by a real-
life application in which we are building a knowledge base
of experts in the medical domain, based on public data, and
where entity resolution is one of the crucial first steps.

In entity resolution, the aim is to identify references of the
same real-world entity across multiple records or datasets.
Consider the scenario depicted in Figure 1, where the aim is
to identify occurrences of the same author across research
publications from PubMed1. This entity resolution task

Emerg Radiol 2010 Jan;17(1):65-7. 
Acute gastric outlet obstruction …
PMID: 19132421
Morgan J1, Sadler MA.
1 Dept. of Radiology, St Vincent's Hospital 
and Medical Center, New York, NY 10011 

Clin Imaging 2009, 33(1):67-9
Paratracheal air collection ...
PMID: 19135934
Morgan J1, Perone R, Yeghiayan P.
1 St Vincent's Hospital and Medical 
Center, New York, NY, USA.

Is Morgan J
same author?

YES/NO

Figure 1: An entity resolution task

can be modeled using a source schema that includes a re-
lation Author and a link schema that consists of a relation
SameAuthor. Sample facts (records) over the source and
the link relations are given in Figure 2. As in the frameworks
of Markov Logic Networks (Singla and Domingos 2006),
Dedupalog (Arasu, Re, and Suciu 2009), and declarative en-
tity linking (Burdick et al. 2016), explicit link relations are
used to represent entity resolution inferences. In particular,
the SameAuthor fact in Figure 2 represents that an infer-
ence was made to establish that the author in position 1 of
publication with pmid 19132421 is the same as the au-
thor in position 1 of publication with pmid 19135934.

For a given entity resolution task, there is typically a
large set of candidate rules that may apply on the input
data to form matches among the entities. For our concrete
scenario, Figure 3 gives a sample of candidate matching
rules. These rules involve the alignment of relevant attributes
(e.g., lastname with lastname, affiliation with
affiliation) and the subsequent application of simi-
larity predicates, filters, and thresholds. The challenge is to
find a subset of the candidate rules with the “right” combi-
nations of predicates and thresholds that will lead to high

1https://www.ncbi.nlm.nih.gov/pubmed
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Author (lastname, firstname, affiliation, pmid, author_pos, title, coauthors)
SameAuthor (pmid1, pos1, pmid2, pos2)

Author (“Morgan”, “J”, “Dept of Radiology …”, 19132421, 1, “Acute …”,  “Morgan J; Sadler MA”)
SameAuthor (19132421, 1, 19135934, 1)

Figure 2: Schemas and facts

Rule	
1

Author	(lastname,	firstname,	affiliation,	 pmid,	auth_pos,	 title,	coauthors)		∧
Author	(lastname,	firstname,	affiliation’,	 pmid’,	 auth_pos’,	 title’,	coauthors’)		∧
commonCoAuthors		(coauthors,	coauthors’,	2)

→ SameAuthor	(pmid,	 auth_pos,	 pmid’,	 auth_pos’)

√ Rule	
2

Author	(lastname,	firstname,	affiliation,	 pmid,	auth_pos,	 title,	coauthors)		∧
Author	(lastname,	firstname,	affiliation’,	 pmid’,	 auth_pos’,	 title’,	coauthors’)		∧
commonCoAuthors		(coauthors,	coauthors’,	3)	

→ SameAuthor	(pmid,	 auth_pos,	 pmid’,	 auth_pos’)

…

Rule	
5

Author	(lastname,	firstname, affiliation,	 pmid,	auth_pos,	 title,	coauthors)		∧
Author	(lastname,	firstname,	affiliation’,	pmid’,	 auth_pos’,	 title’,	coauthors’)	 	∧
jaccardSim	(	affiliation,	affiliation’,	20.0	)	
																				→ SameAuthor	 (pmid,	 auth_pos,	 pmid’,	 auth_pos’)

…

√ Rule	
8

Author	(lastname,	firstname,	affiliation,	 pmid,	auth_pos,	 title,	coauthors)		∧
Author	(lastname,	firstname,	affiliation’,	 pmid’,	 auth_pos’,	 title’,	coauthors’)		∧
jaccardSim	(	affiliation,	affiliation’,	50.0	)	

→ SameAuthor	(pmid,	 auth_pos,	 pmid’,	 auth_pos’)

…

Figure 3: Candidate rules for an entity resolution task

precision and recall with respect to a given set of ground
truth data. As an example, both Rule 1 and Rule 2 in
Figure 3 generate a SameAuthor link between two author
occurrences on two different publications, provided that the
last names and first names are identical and provided that
there is a sufficient number of common coauthors on the two
publications. However, Rule 1, which checks for at least
two common coauthors, may turn out to be too imprecise
(i.e., may yield too many false positives), while Rule 2,
which checks for at least three common coauthors, may re-
sult into fewer errors. Different rules may use different pred-
icates in their premises. For example, Rules 5-8 exploit
the Jaccard similarity of affiliation, but have different simi-
larity thresholds. Only one of them (Rule 8, with similar-
ity threshold of 50%) may achieve high enough precision.

Thus, the problem becomes how to select a set of rules
that achieve high precision (i.e., minimize the number of
false positives) and high recall (i.e., minimize the number
of false negatives) with respect to a given set of ground truth
data; furthermore, one would also like to select a compact
(in terms of size) such set of rules.

Similar rule selection problems have been studied in sev-
eral different contexts. In data exchange, (Kimmig et al.
2017) have investigated the mapping selection problem:
given a set C of rules expressing data transformations be-
tween a source and a target schema, and a pair (I, J) of a
source database I and a target database J , find a subset C′
of the rules that minimizes the sum of the false positive er-
rors, the false negative errors, and the sizes of the rules in
C′. (Sarma et al. 2010) have investigated the view selection
problem: given a materialized view V , a database D, and

a collection S of sets of rules on D, find a set of rules in
S that is as “close” to the view V and as compact as pos-
sible. In data mining, (Agrawal, Rantzau, and Terzi 2006;
Davis, Schwarz, and Terzi 2009) investigated the prob-
lems of selecting contextual preference rules and associa-
tion rules; these problems can be cast as variants of the rule
selection problem considered here.

Summary of Results We formalize the rule selection
problem with rules specified by Horn formulas of first-order
logic; the relation symbols in the premises of the Horn for-
mulas come from a premise schema, while those in the con-
clusions come from a conclusion schema that is disjoint
from the premise schema. This formalization captures rule
selection problems in a variety of contexts.

An input to the rule selection problem consists of a fi-
nite set C of rules and a pair (I, J) of a premise database
I and a conclusion database J that represents ground truth.
When a subset C′ of C is evaluated on the premise instance
I , it produces a conclusion instance Eval(C′, I). The set
Eval(C′, I) \ J is the set of the false positive errors, while
the set J \ Eval(C′, I) is the set of false negative errors. We
study the optimization problem MIN RULE-SELECTFP+FN in
which, given C, (I, J) as above, the goal is to find a subset
C′ of C so that the number of false positive and false neg-
ative errors is minimized. We also study the optimization
problem MIN RULE-SELECTFP in which the goal is to find
a subset C′ of C so that the number of false positive errors
is minimized and there are no false negative errors (this is
meaningful when J ⊆ Eval(C, I)).

To gauge the difficulty of these two optimization prob-
lems, we first examine their underlying decision problems.
We show that the decision problems involving a bound on
the error are NP-hard. We also show that the exact decision
problems asking if the error is equal to a given value are
DP-hard; in particular, they are both NP-hard and coNP-hard
(thus, unlikely to be in NP ∪ coNP). In view of these hard-
ness results, we focus on the approximation properties of the
two rule selection optimization problems. We show that, in a
precise sense, MIN RULE-SELECTFP has the same approxi-
mation properties as the RED-BLUE SET COVER problem,
while MIN RULE-SELECTFP+FN has the same approxima-
tion properties as the POSITIVE-NEGATIVE PARTIAL SET
COVER problem. These results yield both polynomial-time
approximation algorithms and lower bounds for the approx-
imability of our problems.

The preceding results focus on the minimization of the er-
ror produced by the selected rules. What if one wants to also
take the size of the selected rules into account? Since error
and size are qualitatively incomparable quantities, it is not
meaningful to add them or even to take a linear combination
of the two. Instead, we consider pairs of values (e, s) of er-
ror and size that are Pareto optimal, that is, neither of these
values can be decreased without increasing the other value
at the same time. The Pareto front of an instance is the set
of all Pareto optimal pairs. Even though the study of Pareto
optimality has been a central theme of multi-objective opti-
mization for decades, it appears that no such study has been
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carried out for rule selection problems in any of the con-
texts discussed earlier. Here, we initiate such a study and
show that the following problem is DP-hard: given a set C
of rules, a pair (I, J) of a premise database and a conclu-
sion database, and a pair (e, s) of integers, does (e, s) be-
long to the Pareto front of MIN RULE-SELECTFP+FN? We
also show that a similar DP-hardness result holds for MIN
RULE-SELECTFP.

Finally, we investigate a bi-level optimization version of
MIN RULE-SELECTFP+FN, where one minimizes first the to-
tal error and then the size. We show that the following prob-
lem is DP-hard: given a set C of rules, a pair (I, J) of a
premise database and a conclusion database, and a pair (e, s)
of integers, is e the minimum possible error and is s the min-
imum size of subsets of rules having the minimum error? We
also show a similar DP-hardness result holds for the bi-level
optimization version of MIN RULE-SELECTFP.

The main results of this paper are summarized in Table 1,
which can be found in a subsequent section.

Related Work
We already mentioned that (Kimmig et al. 2017) studied
the mapping selection problem in the context of data ex-
change. In addition to considering rules specified by Horn
formulas (GAV constraints in data exchange), they also con-
sidered richer rules in which the conclusion involves exis-
tential quantification over a conjunction of atoms (GLAV
- global and local as view - constraints in data exchange).
They established that the mapping selection problem is NP-
hard even for GAV constraints, but did not explore approx-
imation algorithms for this optimization problem; instead,
they designed an algorithm that uses probabilistic soft logic
(Bach et al. 2017) to solve a relaxation of the mapping se-
lection problem and then carried out a detailed experimen-
tal evaluation of this approach. Its many technical merits
notwithstanding, the work of (Kimmig et al. 2017) suffers
from a serious drawback, namely, the objective function of
the mapping selection problem is defined to be the sum of
the size of the rules and the error (the number of the false
positives and the false negatives). As stated earlier, however,
size and error are qualitatively different quantities, thus it is
simply not meaningful to add them, the same way it is not
meaningful to add dollars and miles if one is interested in a
hotel room near the White House and is trying to minimize
the cost of the room and the distance from the White House.
This is why, to avoid this pitfall here, we first focus on error
minimization alone and then study the Pareto optimality of
pairs of size and error values.

In the rule selection problem, the aim is to select a set
of rules from a larger set of candidate rules based on some
given data. There is a large body of work on the problem of
deriving a set of rules in data exchange and data integration
from just one or more given data examples. There are sev-
eral different approaches to this problem, including casting
it as an optimization problem (Gottlob and Senellart 2010;
ten Cate et al. 2017), as a “fitting” problem (Alexe et al.
2011a; 2011b), as an interactive derivation problem (Boni-
fati et al. 2017), or as a learning problem (ten Cate, Dalmau,
and Kolaitis 2013; ten Cate et al. 2018). Clearly, this is a

related but rather different problem because, in contrast to
the rule selection problem, no candidate rules are part of the
input.

Basic Concepts and Algorithmic Problems
Schemas and Instances A schema R is a set {R1, . . . , Rk}
of relation symbols, each with a specified arity indicat-
ing the number of its arguments. An R-instance I is a set
{RI1, . . . , RIk} of relations whose arities match those of the
corresponding relation symbols. An R-instance can be iden-
tified with the set of all facts Ri(a1, . . . , am), such that Ri
is a relation symbol in R and (a1, . . . , am) is a tuple in the
relation RIi of I interpreting the relation symbol Ri.
Rules. Let S and T be two disjoint relational schemas. In the
rest of the paper, we will refer to S as the premise schema
and to T as the conclusion schema. A rule over S and T is a
Horn formula of first-order logic of the form

∀x (ψ(x)→ P (x)),

where the premise ψ(x) is a conjunction of atoms over S and
the conclusion T (x) is a single atom over T with variables
among those in x. For example, the rule

∀x, y, z(E(x, z) ∧ E(z, y)→ F (x, y))

asserts that F contains all pairs of nodes connected via an
E-path of length 2. For simplicity, we will be dropping the
universal quantifiers ∀, so that the preceding rule about paths
of length 2 will be written as (E(x, z)∧E(z, y)→ F (x, y)).

The atoms in the premises may contain constants or they
may be built-in predicates, such as jaccardSim. However,
none of the lower-bound complexity results established here
uses such atoms, while the upper-bound complexity results
hold true even in the presence of such atoms, provided the
built-in predicates are polynomial-time computable.

The size of a rule ρ, denoted by |ρ|, is the number of atoms
in the premise of ρ. The size of a collection C of rules, de-
noted by |C|, is the sum of the sizes of the rules in C.
Data example. A data example is a pair (I, J), where I is
an instance over the premise schema S and J is an instance
over the conclusion schema T.
Rule evaluation. Given a rule ρ and an instance I , we write
Eval(ρ, I) to denote the result of evaluating the premise of
ρ on I and then populating the conclusion of ρ accordingly.
For example, if ρ is the rule (E(x, z) ∧E(z, y)→ F (x, y))
and E is a graph, then Eval(ρ,E) is the set F consisting
of all pairs of nodes of E connected via a path of length
2. If C is a set of rules, then Eval(C, I) is the set of facts⋃
ρ∈C Eval(ρ, I). In data exchange, computing Eval(C, I)

amounts to running the chase procedure (Fagin et al. 2005).
In general, given a collection C of rules and an instance I ,

computing Eval(C, I) is an exponential-time task; the source
of the exponentiality is the maximum number of atoms in
the premises of the rules in C and the maximum arity of
the relation symbols in the conclusions of the rules. If, how-
ever, both these quantities are bounded by constants, then
Eval(C, I) is computable in polynomial time, according to
the following fact (e.g., see (Fagin et al. 2005)).
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Proposition 1. Let a and r be two fixed positive integers.
Then the following problem is solvable in polynomial time:
given an instance I and a collection C of rules such that the
maximum number of atoms in the premises of rules in C is at
most a and the maximum arity of the relation symbols in the
conclusions of these rules is at most r, compute Eval(C, I).
False positive errors and false negative errors. Given a
collection C of rules and a data example (I, J), a false pos-
itive error is a fact f in Eval(C, I) that is not in J , while a
false negative error is a fact f in J that is not in Eval(C, I).
We write FP(C, (I, J)) and FN(C, (I, J)) (or, simply, FP
and FN) for the set of false positive and false negative er-
rors with of C with respect to (I, J), that is,

FP = Eval(C, I) \ J and FN = J \ Eval(C, I).
We will focus on the following two optimization problems
concerning the minimization of the number of errors.
Definition 1. [MIN RULE-SELECTFP+FN]
Input: A set C of rules and a data example (I, J).
Goal: Find a subset C∗ ⊆ C such that the sum of the number
of the false positive errors and the number of false negative
errors of C∗ with respect to (I, J), is minimized.

A feasible solution of a given instance C, (I, J) of MIN
RULE-SELECTFP+FN(a,r) is a subset C′ of C. We write
ERRORFP+FN(C′, (I, J)) to denote the error of C′ with re-
spect to (I, J), i.e., the sum of the number of the false posi-
tive errors and the number of false negative errors.
Definition 2. [MIN RULE-SELECTFP]
Input: A set C of rules and a data example (I, J) such that
J ⊆ Eval(C, I).
Goal: Find a subset C∗ ⊆ C such that the number of false
negative errors is zero and the number of false positive errors
of C∗ with respect to (I, J) is minimized.

A feasible solution of a given instance C, (I, J) of MIN
RULE-SELECTFP(a,r) is a subset C′ of C such that J ⊆
Eval(C′, I). Feasible solutions always exist because C is one.
We write ERRORFP(C′, (I, J)) to denote the error of C′ with
respect to (I, J), i.e., the number of the false positive errors.

We do not consider MIN RULE-SELECTFN, i.e., the opti-
mization problem that aims to minimize the number of false
negative errors. The reason is that there is a trivial solution
to this problem, namely, we can select all the rules (if the
number of false positive errors is not required to be zero) or
select all the rules that produce no false positive errors (if
the number of false positive errors is required to be zero).

To gauge the difficulty of solving an optimization prob-
lem, one often studies two decision problems that underlie
the optimization problem at hand: a decision problem about
bounds on the optimum value and a decision problem about
the exact optimum value. We introduce these two problems
for each of the optimization problems in Definitions 1 and 2.
Definition 3. Given a set C of rules, a data example (I, J),
and an integer k,
• RULE-SELECTFP+FN asks: is there a subset C′ of C such

that ERRORFP+FN(C′, (I, J)) ≤ k?
• EXACT RULE-SELECTFP+FN asks: is the optimum value

of MIN RULE-SELECTFP+FN on C and (I, J) equal to k?

Definition 4. Given a set C of rules, a data example (I, J)
such that J ⊆ Eval(C, I), and an integer k,
• RULE-SELECTFP asks: is there a subset C′ ⊆ C such that

the number of false negative errors of C′ with respect to
(I, J) is zero and ERRORFP(C′, (I, J)) ≤ k?

• EXACT RULE-SELECTFP asks: is the optimum value of
MIN RULE-SELECTFP on C and (I, J) equal to k?

The Complexity of Error Minimization
We will investigate the computational complexity of the de-
cision problems introduced in Definitions 3 and 4 by consid-
ering parameterized versions of these problems with param-
eters the maximum number of atoms in the premises of the
rules and the maximum arity of the relation symbols in the
conclusion of the rules.
Definition 5. Let a and r be two fixed positive integers.
• RULE-SELECTFP+FN(a,r) is the restriction of RULE-

SELECTFP+FN to inputs in which the maximum number
of atoms in the premises of rules in the given set C of
rules is at most a and the maximum arity of the relation
symbols in the conclusions of these rules is at most r.

• The decision problems RULE-SELECTFP(a,r), EXACT
RULE-SELECTFP+FN(a,r), EXACT RULE-SELECTFP(a,r),
MIN RULE-SELECTFP+FN(a,r), and MIN RULE-
SELECTFP(a,r) are defined in an analogous way.

Theorem 1. Let a and r be two fixed positive integers.
The decision problems RULE-SELECTFP(a,r) and RULE-
SELECTFP+FN(a,r) are NP-complete.

Proof. (Sketch) Membership in NP follows easily from
Proposition 1. The NP-hardness of RULE-SELECTFP(a,r)
and RULE-SELECTFP+FN(a,r) is proved using a polynomial-
time reduction from SET COVER, a problem which was
among the twenty one NP-complete problems in Karp’s
seminal paper (Karp 1972). The same reduction is used for
both RULE-SELECTFP(a,r) and RULE-SELECTFP+FN(a,r);
however, the argument for the correctness of the reduction
is different in each case. We give the argument for RULE-
SELECTFP+FN(a,r).

The SET COVER problem asks: given a finite set U =
{u1, . . . , um}, a collection S = {S1, . . . , Sp} of subsets of
U whose union is U , and an integer k, is there a cover of U
of size at most k? (i.e., a subset S ′ ⊆ S such that the union
of the members of S ′ is equal to U and |S ′| ≤ k.)

Let U = {u1, . . . , um}, S = {S1, . . . , Sp}, k be an in-
stance of SET COVER. For every i with 1 ≤ i ≤ p, we
introduce the rule Seti(x) → B(x) and we let C be the set
of all these rules. Thus, the premise schema consists of the
unary relation symbols Seti, 1 ≤ i ≤ p, and the conclusion
schema consists of the unary relation symbol B. We intro-
duce p new elements a1, . . . , ap and construct the premise
instance I with SetIi = Si ∪ {ai}, 1 ≤ i ≤ p (intuitively,
each new element ai encodes the index of the set Si). We
also construct the conclusion instance J with BJ = U .

We claim that there is a cover of U of size at most
k if and only if there is a subset C′ of C such that
ERRORFP+FN(C′, (I, J)) ≤ k. If there is a cover of
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False Positive Errors False Positive + False Negative Errors
RULE-SELECT(a,r) NP-complete NP-complete
EXACT RULE-SELECT(a,r) DP-complete DP-complete

MIN RULE-SELECT(a,r) approx. upper bound 2
√
|C| log |J | 2

√
(|C|+ |J |) log |J |

approx. lower bound 2log
1−ε(|C|), for every ε > 0 2log

1−ε(|J|), for every ε > 0

PARETO OPT SOLUTION(a,r) coNP-complete coNP-complete
PARETO FRONT MEMBERSHIP(a,r) DP-complete DP-complete
BI-LEVEL OPT SOLUTION(a,r) coNP-complete coNP-complete
BI-LEVEL OPT VALUE(a,r) DP-complete DP-complete

Table 1: Summary of Results (C: set of input rules; J : input conclusion instance; approx. lower bounds assume that P6=NP)

U of size at most k, then there is a subset C′ of C
that has no false negative errors with respect to (I, J)
and is such that ERRORFP(C′, (I, J)) ≤ k. Therefore,
ERRORFP+FN(C′, (I, J)) = ERRORFP(C′, (I, J)) ≤ k. Con-
versely, assume that there is a subset C′ of C such that
ERRORFP+FN(C′, (I, J)) ≤ k. If there are no false negative
errors, then C′ corresponds to a cover of U of size at most k.
So, assume there are t false negative errors, for some t > 0.
These must result from elements ui1 , . . . , uit of U that are
not in any of the sets Sj that produce rules Setj(x)→ B(x)
in C′. For each such element, there is a set in S contain-
ing it; thus, the elements ui1 , . . . , uit can be covered using
at most t sets in S. Let C′′ be the subset of C obtained by
adding to C′ the rules arising from these sets. Clearly, C′′
has no false negative errors, so it has t fewer negative errors
than C′ does and at most t more positive errors than C′ does
with respect to (I, J). Thus, ERRORFP+FN(C′′, (I, J)) ≤
ERRORFP+FN(C′, (I, J)) ≤ k. It follows that the subset C′′
gives rise to a cover of U of size at most k. This completes
the proof that RULE-SELECTFP+FN(a,r) is NP-hard.

Next, we consider the problems EXACT RULE-
SELECTFP(a,r) and EXACT RULE-SELECTFP+FN(a,r).
The class DP consists of all decision problems that can
be written as the conjunction of a problem in NP and a
problem in coNP (Papadimitriou and Yannakakis 1982).
The prototypical DP-complete problem is SAT-UNSAT:
given two Boolean formulas ϕ and ψ, is ϕ satisfiable and
ψ unsatisfiable? Furthermore, EXACT CLIQUE is DP-
complete: given a graph G and an integer k, is the size of
the largest clique in G exactly k? Note that a DP-complete
problem is both NP-hard and coNP-hard.

Theorem 2. Let a and r be two fixed positive integers.
The decision problems EXACT RULE-SELECTFP(a,r) and
EXACT RULE-SELECTFP+FN(a,r) are DP-complete.

Proof. (Hint) Using Proposition 1, it is easy to see that both
these problems are in the class DP. The problem EXACT SET
COVER asks: given a set U , a collection S of subsets of U ,
and an integer k, is the size of smallest cover of U exactly k?
Using the DP-hardness of EXACT CLIQUE and reductions
in (Karp 1972), one can show that EXACT SET COVER is
DP-hard. Finally, the reduction in the proof of Theorem 1
is also a polynomial-time reduction of EXACT SET COVER
to both EXACT RULE-SELECTFP(a,r) and EXACT RULE-
SELECTFP+FN(a,r). Consequently, these two problems are

DP-complete.

In Theorems 1 and 2, the restriction to sets of rules with
a bound a on the number of premise atoms and a bound r
on the arity of relation symbols in the conclusion schema
was used to obtain the complexity-theoretic upper bounds
(membership in NP and, respectively, membership in DP).
The matching lower bounds hold true even if a = 1 and r =
1, because the rules used to prove NP-hardness in Theorem
1 and DP-hardness in Theorem 2 have the form Seti(x) →
B(x).

Observe also that, in the proofs of Theorems 1 and 2,
there is no fixed bound on the number of relation symbols
in the premise schema; instead, this number depends on the
size of the given instance of SET COVER and EXACT SET
COVER. If we also impose a fixed bound on the number of
relation symbols, then the rule selection problems trivializes
because, in this case, there is a fixed number of rules. Our
next result shows that the rule selection problems become
intractable if we fix the premise schema (hence, we also fix
the number of relation symbols occurring in it), but impose
no bounds on the number of atoms in the premises of the
rules.

Theorem 3. Let S be a premise schema consisting of one
unary and four binary relation symbols, and let T be a target
schema consisting of a single unary relation symbol.

If the rules contain an arbitrary finite number of atoms in
their premises, then RULE-SELECTFP is NP-hard and EX-
ACT RULE-SELECTFP is DP-hard. Similar results hold for
RULE-SELECTFP+FN and EXACT RULE-SELECTFP+FN.

Proof. (Hint) Assume that the premise schema S consists
of the unary relation symbol One and binary relation sym-
bols S,Bit0, Bit1, Succ; assume also that the conclusion
schema consists of the unary relation symbol B. We sim-
ulate each rule Seti(x) → B(x), 1 ≤ i ≤ p, via a rule σi,p
that, intuitively, asserts that “if z = i and x ∈ Seti, then
x ∈ B”. Since i ≤ p, we can write i in binary notation using
dlog pe bits. We encode this binary representation of i via
a conjunction of premise atoms involving the binary rela-
tion symbols Bit0, Bit1, Succ and the unary relation sym-
bol One. A typical rule σi,p is of the form

Bit0(i1, z)∧Bit1(i2, z)∧ · · · ∧Bit1(idlog pe, z)∧One(i1)

∧Succ(i1, i2) ∧ · · · ∧ Succ(idlog pe−1, idlog pe) ∧ S(x, z)→ B(x),
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where the binary representation of i using dlog pe bits gives
rise to the sequence of atoms Bit0 and Bit1 in the premise
of the rule. If an instance of SET COVER contains a set U
and a collection S = {S1, . . . , Sp} of subsets of U , then we
construct a premise instance I as follows:

• SI = {(x, i) : x ∈ Si ∪ {ai}, 1 ≤ i ≤ p}, where each ai
is a new element;

• BitIk = {(j, i) : i ≤ p ∧ the j-th bit of i is k}, k = 0, 1;

• OneI = {1}; SuccI = {(j, j+1) : 1 ≤ j ≤ dlog pe−1}.

As a conclusion instance, we construct J withBJ = U .

The Approximation of Error Minimization
The hardness results in Theorems 1 and 2 imply that, unless
P=NP, there is no polynomial-time algorithm for solving ex-
actly the optimization problems MIN RULE-SELECTFP(a,r)
and MIN RULE-SELECTFP+FN(a,r). As detailed in (Garey
and Johnson 1979), approximation algorithms offer a way to
cope with the computational hardness of optimization prob-
lems. In the case of minimization problems, the goal is to
design a polynomial-time algorithm that, given an instance
of the optimization problem at hand, returns a feasible solu-
tion such that the the approximate value is less than or equal
to a certain factor of the optimum value; in general, the fac-
tor depends on the size of the instance. For example, there is
a polynomial-time algorithm that, given an instance (U,S)
of the MIN SET COVER problem, the algorithm returns a
cover whose size is less than or equal to ln(|S|) times the
size of the optimal cover of the instance (U,S).

It is well known that different optimization problems may
have widely different approximation properties; for exam-
ple, KNAPSACK is ε-approximable, for every ε > 0, while
MIN SET COVER is not ε-approximable for any ε > 0, un-
less P= NP (see (Arora and Barak 2009) for an exposition).

Let a and r be two fixed positive integers. What are the
approximation properties of MIN RULE-SELECTFP(a,r) and
MIN RULE-SELECTFP+FN(a,r)? At first sight and in view
of the reduction from SET COVER in Theorems 1 and 2,
one may guess that they ought to be the same as those of
MIN SET COVER. As we shall see, though, the approxima-
tion properties of MIN RULE-SELECTFP+FN(a,r) appear to
be worse than those of MIN RULE-SELECTFP(a,r), which,
in turn, appear to be worse than those of MIN SET COVER.

Note that polynomial time reductions between two deci-
sion problems need not preserve the approximation prop-
erties of the corresponding optimization problems. For ex-
ample, SET COVER is polynomial-time reducible to NODE
COVER, yet MIN NODE COVER is constant-approximable,
but MIN SET COVER is not. There is, however, a finer notion
of polynomial-time reduction, called L-reduction, that pre-
serves approximation properties between optimization prob-
lems; this notion, which was introduced in (Papadimitriou
and Yannakakis 1991), is defined next.

Let Q and Q′ be two optimization problems. We say that
Q L-reduces to Q′ if there are two polynomial-time algo-
rithms f , g, and two positive constants α, β such that for
every instance I of Q, the following hold:

• Algorithm f produces an instance I ′ = f(I) of Q′ such
that the optimum values optQ(I) of Q on I and optQ′(I

′)

of Q′ on I and I ′ satisfy optQ(I) ≤ αoptQ′(I
′).

• For every solution I ′ of Q′ with value c′, algorithm g
produces a solution I of Q with value c such that |c −
optQ(I)| ≤ β|c′ − optQ′(I

′)|.
By Proposition 2 in (Papadimitriou and Yannakakis

1991), ifQ reduces toQ′ via an L-reduction in which α = 1
and β = 1, then every polynomial-time approximation algo-
rithm for Q′ with factor ε gives rise to a polynomial-time
approximation algorithm for Q with the same factor ε. We
say that two optimization problems Q and Q′ have the same
approximation properties if there are L-reductions from Q
to Q′ and from Q′ to Q in both of which α = 1 and β = 1.

We now bring into the picture the RED-BLUE SET
COVER problem, a variant of MIN SET COVER that will
turn out to have the same approximation properties as MIN
RULE-SELECTFP(a,r). The properties of RED-BLUE SET
COVER were studied in (Carr et al. 2000), where both up-
per and lower bounds for its approximability were obtained;
improved upper bounds were obtained in (Peleg 2007).
Definition 6. [RED-BLUE SET COVER problem]
Input: Two disjoint sets R = {r1, . . . , rα} and B =

{b1, . . . , bβ} of “red” and “blue” elements, and a collection
S = {S1, . . . , Sm} of subsets of R ∪B.
Goal: Find a subset S∗ ⊆ S that covers all blue elements,
but covers as few red elements as possible.
Theorem 4. Let a and r be two fixed positive integers. MIN
RULE-SELECTFP(a,r) and RED-BLUE SET COVER have the
same approximation properties. Consequently, the following
hold true for MIN RULE-SELECTFP(a,r).
• MIN RULE-SELECTFP(a,r) is approximable within a fac-

tor of 2
√
|C| log |J |, where |C| is the number of input rules

and |J | is the size of the input conclusion instance J .
• Unless P=NP, for every ε > 0, there is no polynomial time

algorithm that approximates MIN RULE-SELECTFP(a,r)
within a factor of 2log

1−ε(|C|), where |C| is as above.

Proof. (Sketch) We show that MIN RULE-SELECTFP(a,r)
reduces to RED-BLUE SET COVER via a L-reduction with
α = 1 and β = 1. Given an instanceK = (C, (I, J)) of MIN
RULE-SELECTFP(a,r), we construct the following instance
K ′ = (R,B,S) of RED-BLUE SET COVER.

We put B = J and R = Eval(C, I) \ J . Thus, the blue
elements are the facts of J , while the red elements are the
facts of Eval(C, I) that are not in J . We form the collection
S consisting of all sets Eval(r, I), where r is a rule in C.

It is easy to see that this is a L-reduction with α = 1
and β = 1. Thus, every approximation algorithm for RED-
BLUE SET COVER gives rise to an approximation algorithm
for MIN RULE-SELECTFP(a,r) with the same approxima-
tion factor. In (Peleg 2007), a polynomial-time algorithm
with approximation factor of 2

√
|S| log β for RED-BLUE

SET COVER is described, where S is the given collection
of sets and β is the number of blue elements. This yields
a polynomial-time algorithm for MIN RULE-SELECTFP(a,r)
with an approximation factor of 2

√
|C| log |J |.
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Next, we show that RED-BLUE SET COVER reduces to
MIN RULE-SELECTFP(a,r) via a L-reduction with α = 1
and β = 1. Given an instance K ′ = (R,B,S) of RED-
BLUE SET COVER, we construct the following instance
K = (C, (I, J)) of MIN RULE-SELECTFP(a,r).

Let S = {S1, . . . , Sm}. The premise schema consists of
unary relation symbols Seti, 1 ≤ i ≤ m, and the conclusion
schema consists of a unary relation symbol R. We put C =
{Seti(x) → R(x) : 1 ≤ i ≤ m}. We construct the premise
instance I by putting SetIi = Si, 1 ≤ i ≤ m; we construct
the conclusion instance J by putting RJ = B.

It is easy to see that this is a L-reduction with α = 1
and β = 1. Thus, inapproximability results for RED-BLUE
SET COVER transfer to inapproximability results for MIN
RULE-SELECTFP(a,r). In (Carr et al. 2000), it was shown
that, unless P=NP, for every ε > 0, there is no polynomial
time algorithm that approximates RED-BLUE SET COVER

within a factor of 2log
1−ε(|S|). Thus, unless P=NP, for ev-

ery ε > 0, there is no polynomial time algorithm that ap-
proximates MIN RULE-SELECTFP(a,r) within a factor of
2log

1−ε(|C|).

Finally, we bring into the picture the POSITIVE-
NEGATIVE PARTIAL SET COVER (±PSC) problem, a vari-
ant of MIN SET COVER that will turn out to have the same
approximation properties as MIN RULE-SELECTFP+FN(a,r).
The ±PSC problem has been studied in (Miettinen 2008).
Definition 7. [POSITIVE-NEGATIVE PARTIAL SET
COVER]
Input: Two disjoint sets P and N of “positive” and “neg-
ative” elements, and a collection S = {S1, . . . , Sm} of
subsets of P ∪N .
Goal: Find a subset S∗ ⊆ S that minimizes the sum of the
number of uncovered positive elements and the number of
covered negative elements, i.e., the quantity

cost(S∗) = |P \ (∪S∗)|+ |N ∩ (∪S∗)|.

Theorem 5. Let a and r be two fixed positive integers. MIN
RULE-SELECTFP+FN(a,r) and ±PSC have the same approx-
imation properties. Consequently, the following hold true for
MIN RULE-SELECTFP+FN(a,r).
• MIN RULE-SELECTFP+FN(a,r) is approximable within a

factor of 2
√
(|C|+ |J |) log |J |, where |C| is the number

of input rules and |J | is the size of the input conclusion
instance J .

• Unless P=NP, for every ε > 0, there is no poly-
nomial time algorithm that approximates MIN RULE-
SELECTFP+FN(a,r) within a factor of 2log

1−ε(|J|), where
|J | is as above.

Proof. (Hint) The L-reductions between MIN RULE-
SELECTFP+FN(a,r) and ±PSC are the same as those between
MIN RULE-SELECTFP(a,r) and RED-BLUE SET COVER in
the proof of Theorem 4, but with the positive elements
playing the role of the red elements and with the nega-
tive elements that of the negative elements. The upper
and lower bounds for the approximability of MIN RULE-
SELECTFP+FN(a,r) follow from such bounds for ±PSC.

Bi-Objective and Bi-Level Minimization
The optimization problems MIN RULE-SELECTFP(a,r) and
MIN RULE-SELECTFP+FN(a,r) have a single objective,
namely, the minimization of the error. Thus, all feasible so-
lutions of minimum error are optimal, even though they may
differ in size. What if one is also interested in taking the
size of the solution into account? Since error and size are
qualitatively incomparable quantities, it is not meaningful
to combine them into a single objective function by tak-
ing, say, a linear combination of the two. Instead, we can
cast the problem as a bi-objective optimization problem and
study the Pareto optimal solutions that strike the right bal-
ance between error and size by capturing the trade-offs be-
tween these two quantities.

If (a, b) and (c, d) are two pairs of integers, then (a, b) ≤
(c, d) denotes that a ≤ c and b ≤ d, while (a, b) < (c, d)
denotes that (a, b) ≤ (c, d) and (a, b) 6= (c, d).

Definition 8. [Pareto Optimal Solution and Pareto Front]
Let a and r be two fixed positive integers and let K =
(C, (I, J)) be an instance of MIN RULE-SELECTFP+FN(a,r).

• A Pareto optimal solution for K is a subset C∗ of C for
which there is no subset C′ ⊆ C such that (e′, |C′|) <
(e∗, |C∗|), where e′ = ERRORFP+FN(C′, (I, J)) and e∗ =
ERRORFP+FN(C∗, (I, J)).

• The Pareto front of K is the set of all pairs (e∗, s∗) of
integers such that there is a Pareto optimal solution C∗ for
K with ERRORFP+FN(C∗, (I, J))) = e∗ and |C∗| = s∗.

The preceding notions of Pareto optimal solution and
Pareto membership front give rise to natural decision prob-
lems. In what follows, we give the definitions for the param-
eterized versions of these problems.

Definition 9. [Pareto Optimal Solution Problem]
Let a and r be two fixed positive integers.

The PARETO OPT SOLUTION RULE-SELECTFP+FN(a,r)
problem asks: given an instance K = (C, (I, J)) of MIN
RULE-SELECTFP+FN(a,r), and a subset C∗ of C, is C∗ a Pareto
optimal solution for K?

Definition 10. [Pareto Front Membership Problem]
Let a and r be two fixed positive integers.

The PARETO FRONT MEMBERSHIP RULE-
SELECTFP+FN(a,r) problem asks: given an instance
K = (C, (I, J)) of MIN RULE-SELECTFP+FN(a,r) and a pair
(e, s) of integers, is (e, s) on the Pareto front of K?

The decision problems PARETO OPT SOLUTION RULE-
SELECTFP(a,r) and PARETO FRONT MEMBERSHIP RULE-
SELECTFP(a,r) are defined in an analogous manner.

Theorem 6. Let a and r be two fixed positive integers. The
following statements are true.

• The decision problems PARETO OPT SOLUTION RULE-
SELECTFP(a,r) and PARETO OPT SOLUTION RULE-
SELECTFP+FN(a,r) are coNP-complete.

• The decision problems PARETO FRONT MEMBERSHIP
RULE-SELECTFP(a,r) and PARETO FRONT MEMBER-
SHIP RULE-SELECTFP+FN(a,r) are DP-complete.
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Proof. (Sketch) The coNP-hardness of the two Pareto op-
timality problems is shown via reductions from the coNP-
complete problem SET-COVER OPTIMALITY: given a set
U , a collection S = {S1, . . . , Sp} of subsets of U whose
union isU , and a subset S ′ of S, is S ′ an optimal cover ofU?
The DP-hardness of the two Pareto front membership prob-
lems is shown via reductions from the EXACT SET COVER
problem, encountered in the proof of Theorem 2. In what
follows, we outline the reduction of EXACT SET COVER to
PARETO FRONT MEMBERSHIP RULE-SELECTFP+FN(a,r).

Let U = {u1, . . . , um}, S = {S1, . . . , Sp}, k be an in-
stance of EXACT SET COVER. For each i, 1 ≤ i ≤ p, we
introduce the rule Seti(x) → B(x) and we let C be the set
of all these rules. We introduce p new elements a1, . . . , ap;
furthermore, for every element uj ∈ U , 1 ≤ j ≤ m, we
introduce p new elements b1j , . . . , b

p
j , which can be thought

of as “clones” of uj . We construct the premise instance I
with SetIi = Si ∪ {ai} ∪

⋃
uj∈Si{b

1
j , . . . , b

p
j}, 1 ≤ i ≤ p,

that is, SetIi consists of ai, the elements of the set Si, and
all their clones. We also construct the conclusion instance J
with BJ = U ∪

⋃
uj∈U{b

1
j , . . . , b

p
j}, that is BJ consists of

the elements of U and all their clones. Let K = (C, (I, J))
be the resulting instance of MIN RULE-SELECTFP+FN(a,r).

We claim that the optimum size of the SET COVER in-
stance (U,S) is k if and only if the pair (k, k) is on the
Pareto front of the instance K. This claim follows by com-
bining the following two facts. First, there is a 1-1 corre-
spondence between covers S ′ of U and subsets C′ of C of
the same size that have no negative errors with respect to
(I, J); moreover, for such subsets S ′, we have that |S ′| =
ERRORFP+FN(C′, (I, J)). Second, if a subset C′ of C does not
correspond to a cover of U , then ERRORFP+FN(C′, (I, J)) ≥
p + 1 > k, since k ≤ p and, in this case, there are at least
p + 1 false positives arising from an uncovered element of
U and its p-many clones.

For bi-objective optimization problems, one would ide-
ally like to efficiently produce the Pareto front of a given in-
stance. For some such problems, this is impossible because
the size (i.e., the number of points) of the Pareto front can
be exponential in the size of a given instance. In the case of
the Pareto front of rule selection problems, the size of the
Pareto front is polynomial in the size of any given instance;
nonetheless, Theorem 6 implies the following result.

Corollary 1. Let a and r be two fixed positive integers. Un-
less P=NP, there is no polynomial-time algorithm that, given
an instance K of MIN RULE-SELECTFP(a,r) (or of MIN
RULE-SELECTFP+FN(a,r)), constructs the Pareto front of K.

We conclude this section by identifying the complexity of
the following two bi-level minimization problems in which
one minimizes first for error and then for size.

Definition 11. [Bi-level Optimal Solution Problem]
Let a and r be two fixed positive integers.

The BI-LEVEL OPT SOLUTION RULE-SELECTFP+FN(a,r)
problem asks: given an instance K = (C, (I, J)) of MIN
RULE-SELECTFP+FN(a,r), and a subset C∗ of C, is C∗ a bi-
level optimal solution? (i.e., is C∗ an optimal solution of

MIN RULE-SELECTFP+FN(a,r) that also has minimal size
among all such optimal solutions?)

Definition 12. [Bi-level Optimal Value Problem]
Let a and r be two fixed positive integers.

The BI-LEVEL OPT VALUE RULE-SELECTFP+FN(a,r)
problem asks: given an instance K = (C, (I, J)) of MIN
RULE-SELECTFP+FN(a,r) and a pair (e, s) of integers, is e
the error of a bi-level optimal solution and is s its size?

The decision problems BI-LEVEL OPT SOLUTION
RULE-SELECTFP(a,r) and BI-LEVEL OPT VALUE RULE-
SELECTFP(a,r) are defined in an analogous manner. Note
that if a pair (e, s) is a bi-level optimal value, then it is a
point on the Pareto front. Moreover, (e, s) is a special point
because e is the minimum possible error and s is the min-
imum size of subsets of the given set of rules having this
minimum error e.

The following result can be obtained by analyzing the
proof of Theorem 6.

Corollary 2. Let a and r be two fixed positive integers. The
following statements are true.

• The decision problems BI-LEVEL OPT SOLUTION RULE-
SELECTFP(a,r) and BI-LEVEL OPT SOLUTION RULE-
SELECTFP+FN(a,r) are coNP-complete.

• The decision problems BI-LEVEL OPT VALUE RULE-
SELECTFP(a,r) and BI-LEVEL OPT VALUE RULE-
SELECTFP+FN(a,r) are DP-complete.

Concluding Remarks
We carried out a systematic complexity-theoretic investiga-
tion of rule selection problems from several different an-
gles, including an exploration of their complexity when
they are cast as bi-objective optimization problems. A natu-
ral next step is the implementation and experimental eval-
uation of the approximation algorithms for MIN RULE-
SELECTFP(a,r) and MIN RULE-SELECTFP+FN(a,r) based on
corresponding approximation algorithms for RED-BLUE
SET COVER and POSITIVE-NEGATIVE PARTIAL SET
COVER. Note that the approximation algorithms for the lat-
ter problems have been used for blocking function selection
in entity resolution (Bilenko, Kamath, and Mooney 2006)
and in view selection (Sarma et al. 2010). A different next
step is to leverage the large literature on bi-objective opti-
mization, including (Legriel et al. 2010), and design heuris-
tic algorithms for approximating the Pareto front of rule se-
lection problems.
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