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Abstract

We develop a non-convex optimization approach to correla-
tion clustering using the Frank-Wolfe (FW) framework. We
show that the basic approach leads to a simple and natural lo-
cal search algorithm with guaranteed convergence. This algo-
rithm already beats alternative algorithms by substantial mar-
gins in both running time and quality of the clustering. Us-
ing ideas from FW algorithms, we develop subsampling and
variance reduction paradigms for this approach. This yields
both a practical improvement of the algorithm and some in-
teresting further directions to investigate. We demonstrate the
performance on both synthetic and real world data sets.

Introduction
Clustering is a central task in exploratory data analytics with
applications in many domains including image processing,
compression, knowledge management, social media analyt-
ics, etc. Clustering models usually assume a set of n ob-
jects (for instance, a set of documents, images or users) and
the corresponding measurements in form of, e.g., the feature
vectors or the pairwise similarities. The latter form, consid-
ers a (weighted) graph where the objects are the nodes and
the pairwise similarities constitute the edge weights. Most of
graph clustering models, e.g., normalized cut (Shi and Ma-
lik 2000), spectral clustering (Ng, Jordan, and Weiss 2001;
von Luxburg 2007), power iteration clustering (Lin and Co-
hen 2010) and dominant set clustering (Pavan and Pelillo
2007; Haghir Chehreghani 2016), assume nonnegative pair-
wise similarities.

However, a particular clustering model, called correlation
clustering (Bansal, Blum, and Chawla 2004; Demaine et al.
2006; Williamson and Shmoys 2011) is a very useful and
flexible framework for unsupervised learning in the setting
when one has both similarity as well as dissimilarity judg-
ments between a set of objects. The problem has been exten-
sively studied in the literature on approximation algorithms
using linear programming (LP) and semi–definite program-
ming (SDP) techniques.

Here we introduce a new approach to the problem based
on a natural non–convex relaxation. We show that this re-
laxation is tight, in contrast to LP or SDP based relaxations.
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We then observe that our formulation is very well suited to
the classical Frank-Wolfe (FW) or conditional gradient op-
timization algorithm and develop new algorithms for corre-
lation clustering. There have been many recent advances in
the FW method that renders it very suitable for large scale
optimization and we take advantage of the block coordinate
version of the FW algorithm. Also, we leverage recent ad-
vances in acceleration of first order optimization methods
to develop several variants of our algorithms for correla-
tion clustering ranging from a very simple combinatorial lo-
cal search algorithm to various accelerated and randomized
methods which are highly scalable for ”Big Data” settings.
In all these versions, we can either specify the number of
clusters or we can have the algorithm discover the number
of clusters in a data driven fashion. Building on recent results
on the FW algorithm, we show that for multilinear functions
(not necessarily concave/convex), the block FW algorithm
has fast convergence properties. This translates into rigor-
ous guarantees for the running time of our combinatorial
correlation clustering algorithms. We also show that all our
algorithms can be implemented very efficiently to scale to
large scale systems (unlike previous methods based on LP
and SDP relaxations. We also show that the quality of re-
sults obtained are vastly superior to those obtained from the
methods from the approximation algorithms literature.

Background on Correlation Clustering
In the correlation clustering problem, we are given a graph
G = (V,E) with weights wi,j on the edges which may be
both positive and negative. In the maximizing agreements
version of the problem, we are required to partition the ver-
tices into clusters so that the sum of the weights of edges
within a cluster is maximized. We start with the exact formu-
lation similar to (6.7) from (Williamson and Shmoys 2011):

max
∑

(i,j)∈E

wi,jvi · vjz

vi ∈ {e1, · · · , ek}, i = 1 · · ·n (1)

(where ei, i = 1 · · · k are the basis vectors). In (Williamson
and Shmoys 2011) and in much approximation algorithm
literature, often the SDP relaxation of this formulation is
considered. In this high dimensional relaxation, the num-
ber of clusters k disappears (which could be both a strength
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and a weakness). A rounding step (typically randomized) is
needed to recover the clusters from the optimal solution to
the SDP relaxation.

FW Algorithms
The natural continuous relaxation of (1) is

max
∑

(i,j)∈E

wi,jvi · vj

vi ∈ ConvexHull {e1, · · · , ek} , i = 1 · · ·n. (2)

which is a non–convex (quadratic) optimization problem.
Here the number of clusters k is retained in the relax-
ation and the optimal solution to the relaxation immediately
translates into a clustering (with a simple rounding step if
needed). If k is unknown, then we can set it to a known up-
per bound (or to n as in the SDP relaxation approaches) and
we will show that the natural sparsity properties of the FW
algorithm will recover the true number of clusters.

Tightness of Relaxation: Randomized Rounding
The natural randomized rounding algorithm based on the op-
timal solution (v∗i , i = 1 · · ·n) of (2) is:

Randomized Rounding For i = 1 · · ·n independently,
generate a distribution on 0/1 vectors with exactly one
1 (i.e. a distribution on e1, · · · ek) with marginals v∗i,j ,
and let v̂i = ek with this distribution. A simple way to
do this is as follows: divide the unit interval into k parts
with the the jth part having size v∗i,j . Then choose U uni-
formly at random in [0, 1]. If U falls into the jth interval,
set v̂i = ej .

Note that with this rule,

P [v̂i = v̂j ] =
∑
s

P [v̂i = es = v̂j ]

=
∑
s

P [v̂i = es]P [v̂j = es]

=
∑
s

v∗i,s · v∗j,s

= v∗i · v∗j .

and the expected value of the resulting solution is:

E[
∑

(i,j)∈E

1[v̂i = v̂j ]wi,j ] =
∑

(i,j)∈E

P [v̂i = v̂j ]wi,j

=
∑

(i,j)∈E

v∗i · v∗jwi,j

which is the optimal solution value of the relaxation (2).
By the probabilistic method, there must exist at least one 0/1
solution with this value, so this shows that

Theorem 1. The continuous relaxation (2) of (1) is tight.
This should be contrasted with the SDP relaxation which

is not tight and known to have an integrality gap of approx-
imately 0.87 (Feige and Schechtman 2002).

Block coordinate FW for non-convex functions
The classical Frank–Wolfe (1956) algorithm is one of the
oldest methods for nonlinear constrained optimization and
has seen an impressive revival recently in machine learn-
ing and signal processing to its low memory requirement
and projection-free iterations (Jaggi 2013). This algorithm
is perfectly tailored to solve the non–convex optimization
problem in (2). In its classical form, the Frank-Wolfe algo-
rithm can solve problems of the form maxx∈D f(x) where
f is differentiable with L-Lipschitz gradient (a very stan-
dard assumption in optimization, which can be intuitively
interpreted as requiring that the objective function must be
”smooth”) and the domain D is a convex and compact set.

Here we use the block coordinate version of the Frank–
Wolfe algorithm from (Lacoste-Julien et al. 2013). This
method applies to problem of the form

max
v∈M(1)×M(2)×...×M(n)

f(v)

where f is a concave function overM(1)×M(2)×...×M(n)

and M(i) ⊆ Rni is convex and compact for i = 1, ..., n.
This method works well when certain subproblems are com-
putationally cheap to solve when only considering the vari-
ables in one variable block M(i) at a time. The method is
described in Algorithm 1. Here we use ∇if to denote the
i:th block of gradient of f . For the relaxed Problem 2 the
natural block structure is to let each decision vector vi be-
long to its own variable block. This way, updating a block
simply means updating the cluster assignment of one node.
We will show that this arrangement leads to very computa-
tionally simple iterations. Before that, we observe that the

Algorithm 1 Block-coordinate Frank-Wolfe Algorithm on a
Product Domain

Let the initial solution v(0) ∈M(1)×M(2)× ...×M(n)

for t = 1,...,T do
Pick object i at random in {1, ..., n}
Find s(i) := argmaxs′i∈M(i) s′(i) · ∇if(v

(t))

Let γ = 2k
t+2k or optimize γ by line-search

Update v(t+1)
(i) := (1− γ)v(t)(i) + γs(i)

block–coordinate version of the algorithm can be shown
to converge for non–convex functions extending results of
(Lacoste-Julien et al. 2013; Reddi et al. 2016). The conver-
gence of Frank-Wolfe algorithms for non-concave problems
can be measured by the Frank-Wolfe duality gap

d(v) = max
s∈M

(s− v) · ∇f(v)

which is zero if and only v is a stationary point.

Theorem 2. Let d̃t := min0≤s≤t−1 d(v
(t)). For f continu-

ously differentiable (but not necessarily concave) with finite
curvature constant C overM, we have that the Frank-Wolfe
iterates with line search satisfy

E[d̃t] ≤
Cn√
t

5160



If f is multilinear in the variable blocks,

E[d̃t] ≤
(f? − f(v0))n

t
. (3)

This convergence rate ofO( 1t ) (in expectation) for block-
coordinate Frank-Wolfe should be compared to the (deter-
ministic) convergence of the duality gap of O( 1√

t
) for gen-

eral non-concave functions with ordinary Frank-Wolfe de-
veloped in (Reddi et al. 2016).

Proof. We prove the second part of the theorem since this
is simple and applies to correlation clustering. The general
result follows by combining the ideas in (Reddi et al. 2016;
Lacoste-Julien et al. 2013). Duality in block-gap is closely
related to gap over all variables. Following (Lacoste-Julien
et al. 2013) we have

d(v) =

n∑
i=1

max
si∈Mi

(si − vi) · ∇if.

Let di(v) := maxsi∈M(i)(si − vi) · ∇if . We have
E[di(v

(t))|v(t)] = 1
nd(v

(t)) when choosing i u.a.r from [n].
Taking the expectation of this w.r.t to all randomly chosen
blocks prior, we have E[di(v

(t))] = 1
nE[d(v(t))]. Since f is

linear when fixing all variables except vi, the optimal step
length is γ = 1 and for this choice of step length we have
f(v(t+1))− f(v(t)) = di(v

(t)) (see equation 4). Taking the
expectation and summing over t yields

1

n

T−1∑
t=0

E[di(v
(t))] =

T−1∑
t=0

E[f(v(t+1))− f(v(t))]

= E[f(v(T ))]− f(v(0))
≤ f? − f(v(0))

Using 1
n

∑T−1
t=0 E[di(v

(t))] ≥ T
n d̃T yields the result.

Combinatorial Local Search
Using the line search version of the FW algorithm, we ob-
serve that it simplifies to the combinatorial local search al-
gorithm in Algorithm 2. To see why this holds, consider the
so called linear programming oracle from algorithm 1

s(i) := argmax
s′i∈M(i)

s′i · ∇if(v
(t)). (4)

Here ∇if(v
(t)) =

∑
j wi,jv

(t)
j . The k:th element of this

vector is (assuming all vi integer) the cost associated with
assigning node i to cluster k. It’s easy to see that a solution
to (4) is given by si = ej? where j? = argmaxj∈[k](∇if)j .
Therefore, the LPO returns a 0/1 vector which has the high-
est objective when all other variables remain fixed.

This particular instantiation of our FW framework is sim-
ilar to the greedy method in (Elsner and Schudy 2009),
called BOEM. However, our approach enables us to ana-
lyze this local search method and very importantly to obtain
a rigorous convergence rate. In addition, this framework al-
lows us to utilize further improvements such as subsampling
(stochastic FW) and variance reduction.1

1Moreover, BOEM at each step finds the object that yields a
maximal improvement, which can be computationally expensive.

Algorithm 2 Local search for correlation clustering
Initialize vi ∈ {e1, ..., ek} randomly for i = 1, ..., n
while not converged do

Select i uniformly at random from [n]
Assign i to a cluster which maximizes the correlation

clustering objective

Using the result in Theorem 2, we get a rigorous conver-
gence result for this simple local search algorithm:
Theorem 3. The local search algorithm converges (i.e., the
expected duality gap E[d̃t] becomes ε-close to zero) at most
in n

∑
i,j |wi,j |/ε steps.

This should be compared to the PTAS result of (Giotis and
Guruswami 2006). Our algorithm is very efficient in practice
unlike theirs.

Sparsity for data driven number of clusters For the typ-
ical clustering application, the number of clusters is not
known. The FW algorithm is known to have favorable spar-
sity properties (Jaggi 2013) and we exploit this to discover
the optimal number of clusters. In our experiments we have
found that using a loose upper bound on k often yields very
good results. We show empirically that we can even use
k = n in high noise settings and still retrieve the optimal
number of clusters.

Algorithm 3 Stochastic Block-coordinate Frank-Wolfe
Initialize vi ∈ ConvexHull(e1, ..., ek) for i = 1, ..., n
for t = 1, ..., T do

Select i uniformly at random from [n]
Let S be a random subset of [n] (of fixed size)
Let∇if :=

∑
j∈S wi,jvj

Let j? := argmaxj∈[k](∇if)j
Update vi ← (1− γt)vi + γtej?

Stochastic Block FW
It is a common theme in machine learning to use random-
ness to speed up computation. The non-convex stochastic
FW has been investigated in (Reddi et al. 2016). Algorithm
4 shows the pseudo code for a block-coordinate version of
this algorithm. The non-block version of this algorithm is
known to have inferior theoretical convergence properties,
however, in our case one can show, using concentration of
measure that if, for example, the ratio n

k is large enough,
taking only a subsample of the gradient will with high prob-
ability yield an exact update. This is a property of the block
algorithm which might hold for other problems which has a
natural block structure. Thus this algorithm is easy to imple-
ment and highly scalable and works very well in practice.
We found that using γ = 1 works well in practice.

Variance reduced Block FW
Using stochastic steps in the optimization yields cheap it-
erations at the cost of inducing noise. An important tech-
nique in stochastic optimization to reduce the noise is the
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use of variance reduction techniques on the stochastic gradi-
ents. A number of recent advances have resulted in variance
reduction techniques for acceleration of first order meth-
ods in convex optimization, in particular the SVRG and
SAGA methods (Bottou, Curtis, and Nocedal 2018). Re-
cently (Reddi et al. 2016) showed that the main ideas from
SVRG and SAGA can be adapted to improve performance
of FW algorithms in the non-convex setting. SAGA mini-
mizes a sum 1

n

∑n
i fi(v) similar to stochastic gradient de-

scent. However, in the general setup with SAGA, instead of
moving in the direction of −∇fi(v) for a randomly chosen
function fi, we follow the average direction as

∇fi(v)−∇fi(φi) +
1

n

n∑
j=1

∇fi(φj)

where φi is the latest value of the variable vi in which ∇fi
was evaluated. This yields an unbiased estimate of the gradi-
ent with typically lower variance. This allows for the use of
larger step sizes. We adapt the SAGA based algorithm from
(Reddi et al. 2016) to our framework. The result is described
in Algorithm 4.

Algorithm 4 Stochastic FW with SAGA variance reduction
Initialize v0i ∈ ConvexHull(e1, ..., ek) for i = 1, ..., n

Let gi,j := wijv
(0)
j . Memory of gradient

Let gi :=
∑

j gi,j for i = 1, ..., n
for t = 1, ..., T do

Select i uniformly at random from [n]
Let I and J be random subsets of [n] (sampling with

replacement) of size b
Let∇if :=

∑
i∈I wi,jv

(t)
j

Let ĝi := n
b (∇if −

∑
i∈I g

(t)
i ) + g

(t)
i

Let s(t) ∈ argmaxs∈M(i)(s− v(t)i ) · ĝi
Update v(t+1)

i ← (1− γt)v(t)i + γts
(t)

Update g(t+1)
i,j ← wi,jv

(t+1)
j for j ∈ J

Update g(t+1)
i ← g

(t)
i −

∑
j∈J g

(t)
i,j +

∑
j∈J g

(t+1)
i,j

Experiments
In this section, we describe several experimental scenarios to
investigate the different aspects of our algorithms and com-
parisons to other algorithms.

Robustness and quality
We investigate the quality, robustness and scalability of dif-
ferent algorithms. For this, we follow a generative approach
to produce graphs with positive and negative edge weights,
as follows. We fix the number of cluster k = 5. Then for a
selected n, we assign each object randomly to one of the five
different clusters. The weight between two nodes (objects) is
a standard normal random variable. With probability 1 − p
the sign of the weight is fixed such that the objects in the
same cluster have positive edge weights and the objects in

different clusters have negative edge weights. With proba-
bility p, the sign of a weight is random, i.e., p indicates the
noise level. We repeat each setup 10 times and report the
average results.

Figure 1: Comparison of FW and the other algorithms with
respect to robustness to the noise p. FW yields more robust
solutions with higher quality.

We first study the robustness of the different algorithms
with respect to noise. For this, we fix the number of objects
to n = 2000 and vary the noise level p from 0.0 to 0.9.
The alternative methods are: PIVOT (Ailon, Charikar, and
Newman 2008), and the three other heuristics BEST, FIRST
and VOTE proposed in (Elsner and Schudy 2009). Figure 1
shows the objective of the clustering solutions computed by
different methods. We observe that FW consistently yields
the highest objectives for all noise levels, and for all prob-
lem instances. When the noise is low or intermediate, FW’s
superiority is more significant. As the noise level increases,
the different methods perform more similarly, even though
FW is still the best option.

We then study the scalability of different methods and
demonstrate how they perform as the data size increases.
Here, we fix k = 5 and p = 0.3, and vary n, the number of
objects. Figure 2 shows the performance of different meth-
ods as function of n. We observe that FW again outperforms
the alternative methods. For small n, the differences are less
visible and as we increase n, they become more significant.
This is due to the fact that the objective is quadratic with
respect to n and thus grows faster. We realize the quadratic
form of results for FW, consistent with the form of the ob-
jective function. It is important to notice that consistent to
the results in (Elsner and Schudy 2009), we observe that the
algorithms based on SDP or integer linear programming are
very slow in practice, in fact they are applicable to only a
few hundred objects. Moreover, they often yield worse so-
lutions compared to the alternatives in terms of quality (for
example, for n = 200 the SDP relaxation takes about 15
hours, whereas our method takes only a few seconds).
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Figure 2: Comparison of the performance of different algo-
rithms with respect to the problem size n. The y-axis shows
the computed objective.

Model order selection
A unique property of correlation clustering is that increasing
the number of clusters does not always yield a solution with
a lower cost (higher objective), rather, the objective might
be optimal for a finite number of clusters. For example, con-
sider a graph whose all edge weights are positive. Then a
solution with only one cluster would have the highest ob-
jective, whereas increasing the effective (nonempty) num-
ber of clusters yields cutting some positive edges and thus
decreases the objective. However, for example, the k-means
optimal objective (negative cost function) improves as we
increase the number of clusters (up to n clusters).

In this section, we investigate the ability of FW to iden-
tify the correct number of clusters (model order selection) in
correlation clustering.

We use the aforementioned generative approach to pro-
duce data with different noise rates p, where k is fixed to 5.
We investigate two cases where n = 200 and n = 2000.
Figure 3 shows the number of clusters estimated by FW,
respectively when n = 200 and n = 2000 (FW is initial-
ized by k̂ = n clusters, and we report the average results on
10 different problem instantiations). We observe that in both
settings, FW finds the optimal number of clusters correctly
up to a high noise rate. However, as we increase n, the model
becomes more robust to noise as the number of objects per
cluster and per p increases too.

Note that in a similar way, our method can identify the
outliers, as they establish negative edges with many other
objects and occur in singleton clusters.

Subsampling
The local search FW algorithm is efficient and produces
clusters of higher quality compared to the alternatives. How-
ever, the runtime might be still too high in particular on
large-scale data. Hence, we have proposed subsampling (Al-
gorithm 4) in order to reduce even more the computational
burden.

Figure 3: Number of clusters found by the FW (local search)
algorithm at different noise levels. FW is often able to obtain
the precise number of clusters even it is not fixed in advance.

In Figure 4, we study subsampling for different values
of the batch size, on a subset of 20 newsgroup data col-
lection. Given the ground-truth with k = 5 clusters, the
weight between two articles is 1 if they come from the
same newsgroup, and −1 otherwise. With probability p the
weight is corrupted to a random uniform value in [−1, 1].
In this experiment, we study the correlation clustering ob-
jective (the measure of quality) versus the effective number
of passes through the FW blocks (as a measure of complex-
ity). We observe that with a small subsampling ratio (i.e.,
q = |S|/n = 0.1, corresponding to a batch size of b = 20)
we attain the maximal objective with a minimal numbers of
passes. As we increase the batch size or q, we essentially re-
quire more computation in overall. on the other hand, a too
small batch size (e.g., 10) leads to very unstable and noisy
estimation of the gradient and, therefore, the optimization
might fluctuate and fail (see Figure 5).

Variance reduction
Subsampling typically works well as long as the batch size
is sufficiently large compared to n

k . In Figure 4 we see that
decreasing the subsampling ratio q down to 0.1 yields com-
putational efficiency. For subsampling ratios larger than 0.1,
it is likely that the stochastic gradient provides very accurate
updates and thus we do not observe a significant improve-
ment if we use the variance reduction method. However, the
other end of this spectrum is using very small batch sizes,
where the gradient estimations are very poor and thus vari-
ance reduction could be more useful. Figure 5 illustrates the
impact of variance reduction in such a setting, where we
show the trajectory of the objective for subsampling with
(SAGA) and without variance reduction. The parameters
are: n = 300, k = 10, p = 0.3, and the batch size b = 10
(i.e., q = 0.03). Even though at the very early iterations
the two methods perform rather similarly, variance reduc-
tion very quickly starts out performing the other. After a suf-
ficient number of iterations, it yields a significant objective
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Figure 4: Frank-Wolfe with subsampling. The x-axis shows
the effective number of passes through the blocks and y-axis
is the correlation clustering objective. Subsampling helps to
significantly reduce the computations.

(because of more informative estimation of the gradients),
whereas the subsampling without variance reduction always
yields very low objectives. Note that other variance reduc-
tion methods such as SVRG can be employed as well.

Figure 5: Correlation clustering objective for stochastic FW
(SFW) with and without variance reduction, where both of
the variants use batch size = 10. Due to small batch size,
variance reduction is useful to compute more informative
gradients.

Partitions in World Color Survey
The nature of color categories in the world’s languages is
contested. One major view holds that color categories are
organized around universal focal colors, whereas an oppos-
ing view holds instead that categories are defined at their
boundaries by linguistic convention. An influential proposal

k 7 9 11
FW -321 76 283

Human -2350 -1820 -886
normalized Rand 0.3 0.37 0.44

Table 1: The results of the color partitioning task.

Figure 6: Clustering of color tiles. Top plot is a clustering
based on majority vote by humans.

from cognitive scientists posits that color naming across lan-
guages reflects optimal or near-optimal partitions of an ir-
regularly shaped perceptual color space (Regier, Kay, and
Khetarpal 2007). We formalize this idea using the World
Color Survey dataset consisting of human labellings of 330
color tiles in different languages. Psychologists have devel-
oped an embedding of these color tiles in 3-dimensional eu-
clidean space. We use this embedding to calculate a weight
between two color tiles with embeddings x and y in the fol-
lowing way

w(x, y) = exp(−c||x− y||2)− 1

2

with c = 0.001. We apply our local search correlation clus-
tering algorithm to cluster the color tiles based on these
weights. Using k = n our solution uses 32 different clusters.
We also fix k for several different small values. It is interest-
ing to see if the clusters we find correspond to color clusters
which naturally emerge in human language. To this end we
use the World color survey to construct human clustering of
the color tiles. We compare the rand index and cluster cost of
the clusters and compare it against color-naming data from a
broad range of languages that use a similar amount of clus-
ters. The result shows that it accounts for some universal
tendencies in color naming while also accommodating some
observed cross-language variation. The results are reported
in Table 1 and in Figure 6.

Twenty newsgroup dataset
In this section, we study the performance of different algo-
rithms on several subsets of 20 newsgroup data collection.
1. data1: the documents in categories ‘rec.sport.baseball,
soc.religion.christian, rec.autos, talk.politics.mideast,
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Algorithm CC objective Rand NMI k̂
FW 179456.94 0.31 0.49 7.4

PIVOT 79681.22 0.09 0.14 10.6
FIRST 43722.62 0 0.01 3.4
BEST 88304.08 0.11 0.18 3
VOTE 171163.20 0.27 0.39 6.2

Table 2: Performance on data1.

Algorithm CC objective Rand NMI k̂
FW 163563.83 0.25 0.39 6.2

PIVOT 95860.46 0.06 0.12 10.2
FIRST 45206.78 0 0.01 2.6
BEST 67322.08 0.04 0.08 2.4
VOTE 156492.40 0.19 0.32 6.6

Table 3: Performance on data2.

misc.forsale’.
2. data2: the documents in categories ‘rec.autos,
comp.sys.mac.hardware, misc.forsale, talk.politics.mideast,
sci.electronics’.
3. data3: the documents in categories ‘talk.politics.mideast,
rec.motorcycles, rec.sport.hockey, soc.religion.christian,
comp.sys.mac.hardware’.
4. data4: the documents in categories ‘misc.forsale,
sci.space, comp.sys.ibm.pc.hardware, talk.politics.misc,
rec.motorcycles’.
5. data5: the documents in categories ‘rec.sport.hockey,
soc.religion.christian, talk.politics.guns, rec.motorcycles,
sci.space’.

Each dataset consists of 5 clusters corresponding to the
randomly selected categories. For each dataset, we compute
the PCA of the TF-IDF vectors using 40 principal vectors.2
The similarity between two documents is defined as the co-
sine similarity between the PCA vectors, which is a number
in [−1,+1].

In Tables 2-6, we compare the results of different algo-
rithms with respect to the correlation objective, normalized
Rand score and normalized mutual information. For each
dataset, we run the algorithms 10 times and take the average
results. According to the results, FW performs significantly
better than the other algorithms in terms of all the three eval-
uations criteria. As mentioned, correlation clustering has the
property to obtain the number of clusters. In the case of FW,
we initialize the solution by a large number, e.g. 20, com-
pared to the true number of clusters, and at the end only
choose the non-empty clusters. Other methods compute the
number of clusters automatically. We observe that FW also
provides to compute more correctly the true number of clus-
ters.

In Tables 2-6, we also report the estimated number of
clusters by each method (we run FW with 20 initial clusters).

2Before we calculate TF-IDF we remove all headers and foot-
ers from the documents. Our results are consistent among different
reasonable number of principal components.

Algorithm CC objective Rand NMI k̂
FW 194525.12 0.41 0.56 5.6

PIVOT 91475.30 0.11 0.17 10
FIRST 48596.36 0 0.01 2.6
BEST 105004.22 0.13 0.23 2.6
VOTE 188895.60 0.36 0.51 5.6

Table 4: Performance on data3.

Algorithm CC objective Rand NMI k̂
FW 154102.30 0.24 0.38 5.2

PIVOT 82156.26 0.09 0.12 9.8
FIRST 48596.36 0 0.01 2
BEST 60007.92 0.03 0.09 2.4
VOTE 147882 0.21 0.33 6.6

Table 5: Performance on data4.

We again observe that FW provides very precise estimation
of the correct number of clusters. Except data1, FW’s esti-
mations are the most accurate numbers, and even on data5
it gives exactly the correct number of clusters.

Related Work
Correlation clustering was first introduced in (Bansal, Blum,
and Chawla 2004) where the model and the approxima-
tion algorithms assume a complete graph with edge weights
in {−1,+1}. Then, several methods (e.g., (Demaine et
al. 2006; Charikar, Guruswami, and Wirth 2003; Ailon,
Charikar, and Newman 2008)) developed approximation al-
gorithms for general graphs in different setups, i.e, for max-
imizing the agreements or minimizing the disagreements.
However, while minimizing the disagreements is even APX-
hard (Demaine et al. 2006), for the maximum agreements
variant polynomial-time approximation scheme (PTAS) re-
sults have been proposed (Bansal, Blum, and Chawla 2004;
Giotis and Guruswami 2006). (Charikar, Guruswami, and
Wirth 2003) prove that even finding a PTAS is APX-hard
for minimizing the disagreements.

In practice, such approximation algorithms are often inef-
ficient and/or the approximation gap is huge leading to low-
quality solutions in terms of objective (Elsner and Schudy
2009). Semidefinite programming (SDP) relaxation of cor-
relation clustering (e.g., (Charikar, Guruswami, and Wirth
2003; Mathieu and Schudy 2010; Williamson and Shmoys
2011)) has shown to yield a tighter bound on the quality

Algorithm CC objective Rand NMI k̂
FW 179930.28 0.33 0.51 5.0

PIVOT 84201.86 0.09 0.13 10.6
FIRST 41136.74 0 0.01 1.8
BEST 66779.60 0.06 0.10 2.2
VOTE 171585.60 0.26 0.42 5.8

Table 6: Performance on data5.
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and a more efficient optimization algorithm. However, it is
still slow and impractical on fairly large datasets (Elsner and
Schudy 2009). Methods like PIVOT (Ailon, Charikar, and
Newman 2008), and the several heuristics proposed in (El-
sner and Schudy 2009) (e.g., BEST, FIRST and VOTE) are
efficient but yield poor results, as demonstrated by our nu-
merical studies. Recently, (Haghir Chehreghani 2017) has
developed an alternative regularization of the k-way min cut
cost function and a local search optimization for that, which
corresponds to correlation clustering in some cases.

Conclusion
We proposed an efficient optimization framework for cor-
relation clustering based on Frank-Wolfe (FW) optimiza-
tion techniques. We showed that the well-known block-
coordinate FW with the line search step size becomes a
natural local search algorithm with guaranteed convergence.
This algorithm outperforms the alternatives in terms of qual-
ity and robustness, and is applicable to large datasets. More-
over, we developed subsampling (stochastic) and variance
reduction to improve even further the scalability of the
method. Finally, we performed several numerical studies to
investigate the different aspects of the framework.
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