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Abstract

Obstetric ultrasound examination of physiological parame-
ters has been mainly used to estimate the fetal weight dur-
ing pregnancy and baby weight before labour to monitor fetal
growth and reduce prenatal morbidity and mortality. How-
ever, the problem is that ultrasound estimation of fetal weight
is subject to populations’ difference, strict operating require-
ments for sonographers, and poor access to ultrasound in
low-resource areas. Inaccurate estimations may lead to neg-
ative perinatal outcomes. We consider that machine learning
can provide an accurate estimation for obstetricians alongside
traditional clinical practices, as well as an efficient and ef-
fective support tool for pregnant women for self-monitoring.
We present a robust methodology using a data set compris-
ing 4,212 intrapartum recordings. The cubic spline function
is used to fit the curves of several key characteristics that are
extracted from ultrasound reports. A number of simple and
powerful machine learning algorithms are trained, and their
performance is evaluated with real test data. We also propose
a novel evaluation performance index called the intersection-
over-union (loU) for our study. The results are encouraging
using an ensemble model consisting of Random Forest, XG-
Boost, and LightGBM algorithms. The experimental results
show an loU of 0.64 between predicted range of fetal weight
at any gestational age from the ensemble model and that from
ultrasound. Comparing with the ultrasound method, the esti-
mation accuracy is improved by 12%, and the mean relative
error is reduced by 3%.

Introduction
In obstetrics, both abnormal fetal growth and fetal develop-
ment are monitored via prenatal testing. However, there are
few biomarkers that can be used to accurately predict the fe-
tal growth restrictions (FGR) (Conde-Agudelo et al. 2013),
macrosomia, and other abnormalities. Currently, estimated
fetal weight (EFW) has became a central indicator for this
purpose. It is essential to obtain an accurate estimation of
antenatal fetal weight because potential complications may
arise from excessive or low fetal birth weight during and af-
ter delivery.

The prediction of a fetal birth weight just before the de-
livery is able to effectively guide obstetricians to choose a
more reasonable delivery mode for pregnant women. This
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can result in an improved delivery outcome during labour
and further reduce complications for mothers and infants af-
ter labour (Pressman et al. 2000). Moreover, if the FGR and
adverse conditions such as intrauterine hypoxia can be de-
tected in time, it would be greatly beneficial to further reduce
the possibility of perinatal mortality of fetuses (Miller and
Huppi 2016). Therefore, it is desired that the EFW can be
accurate as possible not only at the end of the third trimester
but also at any gestational week during pregnancy.

Several methods can be used to predict fetal weight in
clinical practice, consisting of abdominal palpation, parturi-
ent symphysio-fundal height and abdominal girth measure-
ments, and obstetric ultrasound. Among them, the ultra-
sound based estimation method is most reliable and objec-
tive, and has been used extensively by obstetricians in China.
Its principle lies is the use of a class of well-established re-
gression models with multiple parameters standards for fe-
tuses. But, there a number of limitations of such method.
First, these regression models were proposed by different
clinicians, and are not generally applicable to all popula-
tions in the world. As a result, the direct use of such class
of models on Chinese population may result in inaccuracy,
particularly for excessive or low fetal birth weight. Second,
there are also strict requirements for sonographers and spe-
cific standards for equipment for performing ultrasound ex-
aminations. Factors like deformed fetal head, existence of
oligohydramnios and abdominal fat, and poor image quality
may all affect the final estimation. Another limitation is that
access to obstetric ultrasound remains poor in some most
low-resource rural areas and this has significantly affected
fetal weight estimation (Wanyonyi and Mutiso 2018).

Other than the traditional methods introduced, machine
learning techniques can be applied in this field (Naimi,
Platt, and Larkin 2018; Podda, Bacciu, and Micheli 2018;
Zhu et al. 2018). The historical data of prenatal examinations
can be analysed and the relationship between conceptual en-
tities can be explored through their own training, generalisa-
tion, self-organisation, and learning ability. Thus, they are a
preferable candidate to make more efficient and reasonable
decisions such as fetal weight estimation.

The main contributions of this paper are threefold. First,
we establish a dataset consisting of 4,212 clinical records
based on the electronic health record of pregnant women
from a large hospital in China. Second, we establish a tem-
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poral relationship between the gestational age and the main
characteristics of fetal growth on Chinese population. The
cubic spline function method was used to fit the relation-
ship between characteristics such as the biparietal diameter
(BPD), abdominal circumference (AC), head circumference
(HC), and femur length (FL) and the gestational age. In ad-
dition, we also consider maternal physiological character-
istics, such as the pre-pregnancy body mass index (BMI),
uterine height and abdominal circumference. Third, we pro-
pose an ensemble learning model, which has obtained better
prediction results than any single model. Our model is con-
structed based on three machine learning algorithms and op-
timised in parallel via a multi-parameter genetic algorithm,
and it has been evaluated on our real dataset and compared
to several other methods.

Methodology
Preprocessing
The experimental data are obtained from Shenzhen Bao’an
Maternity & Child Healthcare Hospital. A total number of
5,000 samples from 2017 are randomly selected, and no gen-
eral obstetrics, gynaecology and other general medical his-
tories regarding prenatal care are screened out. It was started
before 16 weeks of gestation, as measured by the menstrual
date and nutritional health, including the maternal height
(≥153 cm), BMI (18.5 ≤ BMI < 30kg/m2), erythro-
protein concentration (≥110 g/L), and whether the pregnant
women receive anaemia treatments, or have any special diet
recipes. It can effectively reduce the risk factors in the FGR
and preterm birth.

At the same time, the distribution of pregnancy tests is not
equal, and their types are different during the long observa-
tion period of the pregnant women. To ensure sufficient sam-
ple distributions, the examination data must be after the 16th
week of pregnancy. Effective preprocessing of the data is a
key step to improve the accuracy of the prediction model.

Parameters of Predictive Model A hospital identification
number for the pregnant women is used as the main index to
extract the health records from the beginning of the preg-
nancy to the delivery for obtaining the birth weight. Y is
defined as the EFW from ultrasound examination, and X is
defined as the set of input parameters for the model. The fi-
nal dataset X consists of 14 parameters, consisting of xh,
xpw, xp, xn, xa, xg , xgg , xfw, xpb, xcb, xBPD, xAC , xHC ,
and xFL, and the meaning of each parameter is shown in
Table 1.

Feature Standardisation After data preprocessing, 4,212
samples meet the underlying conditions. However, the dif-
ferent physiological parameters have different units and or-
ders of magnitude. To reduce these influences on the predic-
tion results, the data need to be normalised before the model
is trained to ensure that each feature is at the same order of
magnitude. The normalisation is shown as Equation (1):

y =
2(x− xmin)
xmax − xmin

− 1 (1)

where x represents the current feature value, xmin and xmax
represent the minimum and maximum values of the current

Table 1: Symbol definition of different parameters.

Parameters Definition

xh Height of a pregnant woman (cm)
xpw Weight of a pregnant woman (kg)
xp Gestational week
xn Number of pregnancy
xa Age of a pregnant woman
xg Weight gain of a pregnant woman (kg)
xgg Fundal height of a pregnant woman
xfw Abdominal circumference
xpb BMI of pre-pregnancy
xcb BMI of current pregnancy
xBPD Fetal biparietal diameter (cm)
xAC Fetal abdominal circumference (cm)
xHC Fetal head circumference (cm)
xFL Fetal femur length (cm)

feature, respectively, and y is the normalised feature value.
The data range is [−1, 1].
Construction of Fitted Function Despite the widespread
use of ultrasound technology worldwide, people are con-
cerned about the low rate of detection of fetal developmental
abnormalities in routine clinical practice (Ewigman, Crane,
and Frigoletto 1993). However, there is a lack of appropri-
ate international standards similar to those used to monitor
infant growth (de Onis 2006). In addition, there are some dif-
ferences in fetal growth characteristics in different regions.
Therefore, this study uses the cubic spline function method
to fit four characteristics of ultrasound detection.

Specifically, at the interval [a, b], a = t0 < t1 < ... <
tn < t(n+1) = b, f(x) is defined as a function of [tn, b]. If
f(x) meets the following two conditions: (1) f(x) is a cubic
polynomial on each interval of [a, t1], [t1, t2],..., [tn, b] and
(2) f(x) and its second derivative are continuous at ti(i =
1, 2, ..., n), then the piecewise polynomial function is called
the cubic spline function. The point ti is called the node of
the spline function. The cubic spline function can be shown
in Equation (2):
f(x) = di(x− ti)3 + ci(x− ti)2 + bi(x− ti) + ai (2)

where ti ≤ x ≤ ti+1, i = 0, 1, ..., n. The sum of squared
residuals for ti is

∑
(yi − g(ti))

2, and the penalised sum
of the squares of the above selection functions is shown in
Equation (3):

S(f) =
∑

(yi − f(xi)) + γ

∫ b

a

(f ′′(x))2dx (3)

For a given smoothing parameter γ (whereby γ > 0),
the estimation function f(x) minimises the values of S(f),
which is referred to as a penalty least squares estimate. The
smoothing parameter γ can be given by γ = CQ3/1000, C
is a given constant, and Q is the interquartile range of the
explanatory variable.

Ensemble Machine Learning
Ensemble methods in machine learning that create multi-
ple models are powerful prediction techniques since they
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can increase the diversity of algorithms and reduce gener-
alisation error to improve the accuracy of the results (Diet-
terich 2000). This method is divided into stacking, blend-
ing and voting. Ensemble methods have two basic elements:
one is that the correlation between single models should be
as small as possible, and the other is that the performance
between single models is not too different. In practice, it is
often the case that a single model with a low correlation co-
efficient and good performance can significantly improve the
final prediction result.

Random forest is a supervised learning algorithm
(Breiman 2001). The random forest regression algorithm is
a combined model, which incorporates a regression decision
subtree. According to the principle of ensemble learning, the
mean of each decision subtree is taken as the regression pre-
diction result. The random forest is a kind of bagging al-
gorithm, which focuses on reducing the variance. XGBoost
(Chen and Guestrin 2006) is a boosting algorithm (Schapire
1990), which focuses on reducing the bias. However, Light-
GBM (Ke, Meng, and Finley 2017) is a recently proposed
algorithm. Therefore, the three classes of algorithms in this
paper satisfy the diversity, correlation, and performance re-
quirements. In this study, voting is used to construct an en-
semble model, which is shown in Equation (4):

hα(f) = α0 + α1f
i
1 + α2f

i
2 + α3f

i
3 (4)

where α1, α2, α3 are the weight parameters, α0 is a con-
stant, i represents the number of i-th samples i = 1, 2, ..., n
and f1, f2, f3 represent the predicted values of the random
forest, XGboost, and LightGBM models, respectively.

Optimisation based on Genetic Algorithm
According to the above basic model analysis, the parameters
that have a large impact on the prediction results of the ran-
dom forest model, consisting of the following: the maximum
number of features is used by a single decision tree δmax f ,
the minimum number of leaf nodes δmin l, the maximum
depth of the decision tree δmax d, and the minimum number
of samples required for the internal node subdivision δmin s.
For the XGBoost model, the influence factor mainly in-
cludes the learning rate θeta, the maximum depth of the tree
θmax d, and the minimum leaf node sample weight θmin w.

Regarding the LlightGBM model, the influence factors
consist of the tree model depth γmax d, the minimum num-
ber of leaf nodes γmin l, the minimum leaf node weight
γmin w, and the learning rate γeta. If a traditional grid search
method is used to optimise 15 parameters, then optimisation
takes a very long time. The genetic algorithm, as an intelli-
gent evolutionary algorithm, has a strong global search ca-
pability. Therefore, this study proposes an ensemble model
based on the multi-parameter parallel optimisation of the ge-
netic algorithm. The specific steps are as follows:

1. Data preprocessing: the original data is preprocessed and
divided into a training set and a testing set.

2. Initialise parameters of the genetic algorithm such as
the population size, crossover probability, and mutation
probability.

3. Select the optimisation parameters and interval. Accord-
ing to the above analysis, there are a total of 15 param-
eters to be optimised: 4 parameters of the random forest
model, 3 parameters of the XGBoost model, 4 param-
eters of the LightGBM model, and 4 parameters of the
ensemble model. The optimal interval is determined by
chromosome coding.

4. Determine the fitness function. Calculate the average rel-
ative error between the predicted value and the true value,
so the fitness function is shown in Equation (5):

MAPE =
1

n

n∑
i=1

(
hα(f

i)− yi
yi

+ |f
i
1 − yi
yi

|

+ |f
i
2 − yi
yi

|+ |f
i
3 − yi
yi

|)

(5)

where hα(f i) represents the ensemble model predictive
value, and yi denotes the true value. Moreover, f i1, f

i
2, f

i
3

are the output values of the random forest, XGBoost, and
LightGBM models, respectively, and n is the number of
training sets.

5. Parameter optimisation: First, decode the chromosomes
in the population; then calculate the fitness value of each
generation of the population, and perform the survival of
the fittest. Finally, determine whether the population per-
formance satisfies the maximum number of genetics, and
if so, the optimal parameter is output; otherwise, accord-
ing to the genetic strategy, the selection, crossover and
mutation operations are used to obtain the offspring.

6. Result judgement: if the MAPE error requirement is sat-
isfied, then the optimisation is finished. Otherwise, repeat
step 4.

7. Input the test sample to obtain the best prediction result.
The detailed process is shown in Figure 1.

Performance Evaluation Index
This paper uses two indices to measure the performance of
the ensemble model. The first index is the mean relative er-
ror (MRE), which is a measure of the credibility. If n is the
number of samples, then the MRE is shown in Equation (6):

MRE =
1

n

n∑
i=1

|ytrue − ypred|
ytrue

(6)

where ytrue denotes the true label and ypred denotes the pre-
dicted fetal weight.

To better reflect the coincidence between different inter-
vals, this paper introduces a novel concept, originally used
in the field of image processing, namely, loU. This method
can reflect the coincidence degree of different learning al-
gorithms for predicting the fetal weight interval, and it is
shown in Equation (7):

IoU =
f1scope ∩ f2scope
f1scope ∪ f2scope

(7)

where f1scope represents the fetal weight prediction range of
the algorithm model and f2scope represents the fetal weight
range of the ultrasound examination.
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Figure 1: Fetal weight estimation process based on the ge-
netic algorithm.

Results
Based on the screening steps in the previous sections, a to-
tal of 4,212 samples were selected, of which 3,370 samples
are used as the training sets and 842 samples are used as the
test sets. Then, a cubic spline function was used to establish
a functional relationship between the four indexes of ultra-
sound examination and the pregnancy. The fitting results are
shown in Figure 2.

The fitting results of the percentile curves are shown in
Table 2. Among the percentiles, the R2 (determination coef-
ficient) of the BPD is at least 0.953, and the MRE is at most

Figure 2: Four feature fitting curves.

0.20. The minimum R2 of the AC is 0.955, and the maxi-
mum MRE is 0.22. The minimum R2 of the HC is 0.950,
and the maximum MRE is 0.24. The minimum R2 of the FL
is 0.951, and the maximum MRE is 0.16. The R2 of each
index is above 0.95, and the MRE is within the tolerance;
thus, the fitting result is satisfactory.

Evaluation of Prediction
The random forest, XGboost, LightGBM models and the en-
semble model are based on the genetic algorithm. Multi-
parameter parallel optimisation is used to predict the fetal
weight, which is compared with the multi-parameter for-
mula (Hadlock 1990) used in an ultrasonic examination. The
experimental results are shown in Figure 3.

As shown in Figure 3, the MRE based on the single ma-
chine learning algorithm model is approximately 8%. The
MRE of the formula method in (Hadlock 1990) is 14.6%.
The MRE of the ensemble model is approximately 6%. In
the absence of ultrasound detection, the fitting function is
used to fit the four eigenvalues as shown in Figure 2, and
then the integrated model is used to predict the fetal weight
range. The loU index is used to prove the effectiveness of
the algorithm (see Table 3).

In Table 3, in the absence of an ultrasound examina-
tion, the ensemble model, can predict the fetal weight range.
Compared with the ultrasonic examination, the loU value is
greater than 0.6. To some extent, the fetal weight can be pre-
dicted at any gestation according to the maternal character-
istic parameters and the fitted four ultrasonic characteristic
values. The prediction results of some samples are shown in
Figure 4.

In Figure 4, the “0”, “1”, “2”, “3” and “4” values on the
horizontal axis represent the ultrasonic examination, the en-
semble model in this paper, the XGBoost, the LightGBM,
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Table 2: Fitting results of each percentile curve.

Centile BPD AC HC FL
γ MER R2 γ MER R2 γ MER R2 γ MER R2

P95 0.3 0.16 0.954 0.4 0.22 0.958 0.4 0.20 0.956 0.4 0.16 0.951
P75 0.2 0.12 0.960 0.3 0.18 0.966 0.2 0.17 0.961 0.3 0.12 0.953
P50 0.1 0.09 0.965 0.2 0.13 0.970 0.2 0.15 0.962 0.2 0.08 0.967
P25 0.2 0.20 0.953 0.3 0.17 0.963 0.3 0.24 0.950 0.1 0.11 0.955
P10 0.3 0.15 0.955 0.1 0.23 0.955 0.1 0.18 0.957 0.2 0.09 0.960

Figure 3: Mean relative error of different models.

Table 3: IoU based on different machine learning algorithms.

Algorithms Intersection-over-Union

Random forest 0.607
XGBoost 0.623
LightGBM 0.610
Our model 0.650

and the random forest models, respectively, and the ordi-
nate expresses by the predicted fetal weight range. From
the graph results, after optimising the multi-model param-
eters based on the genetic algorithm, the advantages of each
model can be effectively utilised, so that the fetal weight
prediction interval is closer to the fetal weight range of the
ultrasound examination.

Analysis of Fetal Growth Change
The fetal growth curve is an important index of the fetal
health status, which can provide a basis for early diagno-
sis and the prevention of fetal abnormalities. At the same
time, pregnant women can observe the trend of fetal weight
changes in each gestational week, including the average fe-
tal weight curve, the 10th percentile curve and the 90th per-
centile curve. Therefore, based on the characteristic param-
eters of pregnant women and the fitted ultrasound charac-

Figure 4: Mean relative error of different models.

teristic parameters, this study uses the ensemble model to
predict the fetal weight at the current moment and to timely
understand the trend of fetal growth.

When comparing with the 10th and 90th percentiles of
China’s fetal growth standard curve (Lei and Wen 1998),
if the curve is lower than the 10th percentile, the fetus is
small for its gestational age (SGA), and conversely, when the
curve is greater than the 90th percentile, the fetus is large for
its gestational age (LGA). A sample was randomly selected
from the testing set, and the fetal weight is predicted by the
ensemble model proposed in this study. The experimental
results are shown in Figure 5.

Discussion
To verify the superiority of the model, the ensemble model is
used to predict the birth weight of the fetus. From the testing
sets, 527 samples have a record of an ultrasound examina-
tion within one week prior to delivery. In addition, it is more
objective to evaluate the accuracy of different algorithms,
this study uses another criterion, that is, the error between
the predicted and actual fetal weight is within ±250g, and
the prediction is considered to be accurate (Jain, Duin, and
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Figure 5: Fetal growth prediction curve.

Mao 2000). Therefore, different algorithms are used to pre-
dict fetal birth weight. The experimental results are shown
in Table 4.

Table 4: Different methods that predict the fetal birth weight.

Parameters MRE (%) Accuracy (%)

Hadlock (Hadlock 1990) 10.2 52.3
GA-BP (Zhu et al. 2018) 7.5 63.1
Random forest 8.3 60.0
XGBoost 8.2 62.1
LightGBM 8.4 59.4
Proposed ensemble model 7.0 64.3

Table 4 shows that the ensemble model proposed in this
paper predicts the fetal birth weight and has a certain degree
of improvement in the MRE and accuracy compared with
the single machine learning algorithm model and the multi-
parameter method. The MRE is reduced by approximately
3%, and the accuracy is improved by approximately 12%.

Conclusion
This paper proposed a novel approach to estimating fetal
weight using ensemble machine learning algorithms. The
cubic spline function has been used to fit the functional re-
lationship between the BPD, AC, HC, and FL and the ges-
tational age based on the health records of pregnant women.
An ensemble machine learning model has been proposed
based on the genetic algorithm with parallel optimisation
of multiple parameters to predict the fetal weight at vary-
ing gestational age. We have also evaluated the applicability
of the ensemble model for the domain of on real datasets.
Comparing with the traditional ultrasound-based estimation
methods, it obtains the EFW more accurately and efficiently.
Next, there are further clinical tests in different hospitals,
and software for both home and hospital applications are
under development and soon to be deployed. Estimation of
fetal birth weight among twins is another direction of future
research.
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