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Abstract

Lipreading is the process of understanding and interpreting
speech by observing a speaker’s lip movements. In the past,
most of the work in lipreading has been limited to classifying
silent videos to a fixed number of text classes. However, this
limits the applications of the lipreading since human language
cannot be bound to a fixed set of words or languages. The aim
of this work is to reconstruct intelligible acoustic speech sig-
nals from silent videos from various poses of a person which
Lipper has never seen before. Lipper, therefore is a vocab-
ulary and language agnostic, speaker independent and a
near real-time model that deals with a variety of poses of a
speaker. The model leverages silent video feeds from multi-
ple cameras recording a subject to generate intelligent speech
of a speaker. It uses a deep learning based STCNN+BiGRU
architecture to achieve this goal. We evaluate speech recon-
struction for speaker independent scenarios and demonstrate
the speech output by overlaying the audios reconstructed by
Lipper on the corresponding videos.

Introduction

Lipreading is the process of understanding and interpreting
speech by observing a speaker’s lip movements. Lipper is a
multi-view speech reconstruction model unlike most of the
work in this field in the past which deal with classifying
speech videos into restricted text classes. It is easy to get
confused between speech reconstruction, recognition and
reading systems. Speech recognition systems help in iden-
tification of the speaker of a speech. Speech-reading sys-
tems involve identifying what a person says. The ‘what’
part in these classification models is given by text-class
of the video. Speech-reconstruction systems generate the
speech of a person. They deal with the problem by con-
sidering it as a regression and not a classification problem.
Speech-reconstruction normally does not identify speech but
just reconstructs it. The reason for this is that speech can
be produced even for those sounds for which one may not
have any vocabulary in a particular language (e.g, a Televi-
sion plays the sounds in a show without knowing the lan-
guage or vocabulary). Due to these reasons, speechreading
models suffer from the following limitations: non-real time
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output and language and vocabulary dependency. Speech-
reconstruction systems are not marred by these since they
map lip movements directly to sound.

Lipper, to the best of our knowledge, is the first sys-
tem to attempt speaker independent multi-view speech
reconstruction. Both speech reconstruction using lipread-
ing and multi-view lipreading have not seen much research.
There have been only three deep learning based previous
works which have leveraged multiple views to build lipread-
ing based speechreading (and not speech reconstruction)
models (Petridis et al. 2017; Zimmermann et al. 2016;
Lee, Lee, and Kim 2016). These systems being speechread-
ing systems, suffer from all the constraints of a speechread-
ing system as pointed out above. Moreover, few authors
have worked on speech reconstruction systems (Ephrat and
Peleg 2017; Cornu and Milner 2015; Kumar et al. 2018a;
2018b) and the major limitations with these models were,
neither did they work for speaker-independent settings nor
did they utilize multiple views. Due to these shortcomings,
they effectively ignored the pose problem with real-world
visual feeds. We address that problem and also produce the
results on all speakers without re-training the model from
scratch for every new speaker we have to use it for. For the
complete results and explanation of the model, readers are
encouraged to refer to (Kumar et al. 2019).

Lipper: Design and Development

Lipper uses deep learning based neural network model for
speech reconstruction. We build STCNN+BiGRU (Spatio-
Temporal CNN in conjugation with Bidirectional Gated Re-
current Units) architecture (as shown in Figure 1) to uti-
lize multiple visual feeds of different views to finally recon-
struct the speech of a speaker. While STCNN layers help
the system to extract visual features, BiGRU layers help it
to take care of the time dependencies in the speech videos.
The architecture is composed of seven layers of STCNN fol-
lowed by two layers of Bi-GRU layers whose output is sub-
sequently fed to a dense layer that produces the final output.

Audio Features: Raw audio wave cannot be used for
training of the model due to a lack of suitable loss function.
Lipper uses Linear Predictive Coding (LPC) for representing
the audio speech (Fant 2012). LPC is a technique to repre-
sent the compressed spectral envelope of speech using a lin-
ear predictive model. It produces high-quality speech using



a low bit-rate. The order P of LPC was varied and chosen
so as to get the best quality speech. Through experiments,
the LPC order was found to be giving optimal results at the
value 24.

Database

We use the speakers present in the OuluVS2 database for the
current analysis (Anina et al. 2015) as was used in (Kumar
et al. 2018a). Cameras recorded the subjects present in the
dataset from five different angles: 0°, 30°, 45°, 60°, and,
90°. The speakers have different ethnicities thus allowing
Lipper to be trained for various accents, tones, efc.

Training-Testing Configuration

For the speaker-independent experiments, we trained the
model on all the videos for the fifty speakers and tested the
system on all the videos for the rest two.

Single Stream Training Each visual input stream is first
trained independently. Each network corresponding to the
five views is trained for 80 epochs with a batch-size of 10.
With experimentation, the timesteps parameter of BiGRU
was set to 5. Once the output is obtained, it is then decoded
and compared with original audio for its quality.

Multi-Stream Training Once the single streams have
been trained, then the obtained individual networks are
stacked together with the outputs of BiGRUs concatenated
to perform multi-view training. Finally, the entire network
thus obtained was trained jointly on the multi-view visual
input feeds. The output thus obtained from the last layer was
decoded and compared with the original audio.

Speaker Independent Results

Due to the paucity of space, we do not evaluate the speaker
independent results on every combination of multiple views.
We choose those combinations which prove to be the best in
the comprehensive experiments conducted. The results for
the male and female speakers (Speakers 38 and 39, respec-
tively), are presented in the Table 1. It can also be noted that
results for male speaker are better than the female one, we
believe this is so since the number of male speakers in the
dataset are in a majority.

Table 1: Readings for best-view combinations PESQ scores
for Speaker Independent models

View Union Male Female
0° 190 1.76
0°+45° 2.03 1.85
0°+45° + 60° 1.94 1.86
0°445° + 60° + 90° 1.91 1.82

0°+30°+45° +60° +90° 191 1.83

Demonstration of Reconstructed Audios

Just numeric results cannot do justice to reconstructed
speech output. Thus the readers are encouraged to view the
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Figure 1: STCNN and BiGRU based architecture used for
speech reading and reconstruction

video playlist at http://bit.ly/2qNqFns showcasing all the re-
constructed audios obtained. Please use headphones to be
able to listen to the reconstructed speech better. It is worth
noting that in the demonstration', the audio is in sync with
the video in addition to the speaker’s human voice being in-
telligible.
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"We play the reconstructed videos with the best 3-view (0°, 45°
and 60° combination) three times so that readers can easily under-
stand the audio.
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