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Abstract
This paper considers extractive summarisation in a comparative
setting: given two or more document groups (e.g., separated
by publication time), the goal is to select a small number of
documents that are representative of each group, and also
maximally distinguishable from other groups. We formulate a
set of new objective functions for this problem that connect
recent literature on document summarisation, interpretable
machine learning, and data subset selection. In particular, by
casting the problem as a binary classification amongst dif-
ferent groups, we derive objectives based on the notion of
maximum mean discrepancy, as well as a simple yet effective
gradient-based optimisation strategy. Our new formulation
allows scalable evaluations of comparative summarisation as a
classification task, both automatically and via crowd-sourcing.
To this end, we evaluate comparative summarisation methods
on a newly curated collection of controversial news topics over
13months.We observe that gradient-based optimisation outper-
forms discrete and baseline approaches in 15 out of 24 different
automatic evaluation settings. In crowd-sourced evaluations,
summaries from gradient optimisation elicit 7% more accurate
classification from human workers than discrete optimisation.
Our result contrasts with recent literature on submodular data
subset selection that favours discrete optimisation. We posit
that our formulation of comparative summarisation will prove
useful in a diverse range of use cases such as comparing content
sources, authors, related topics, or distinct view points.

1 Introduction
Extractive summarisation is the task of selecting a few repre-
sentative documents from a larger collection. In this paper, we
consider comparative summarisation: given groups of docu-
ment collections, the aim is to select documents that represent
each group, but also highlight differences between groups.
This is in contrast to traditional document summaries which
aim to represent each group by independently optimising
for coverage and diversity, without considering other groups.
As a concrete example, given thousands of news articles per
month on a certain topic, groups can be formed by publication
time, by source, or by political leaning. Comparative sum-
marisation systems can then help answer user questions such
as: what is new on the topic of climate change this week, what
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Figure 1: An illustrative example of comparative summarisa-
tion. Squares are news articles, rows denote different news
outlets, and the x-axis denotes time. The shaded articles are
chosen to represent AI-related news during Feb and March
2018, respectively. They aim to summarise topics in each
month, and also highlight differences between the twomonths.

is different between the coverage in NYTimes and BBC, or
what are the key articles covering the carbon tax and the Paris
agreement? In this work, we focus on highlighting changes
within a long running news topic over time; see Figure 1 for
an illustration.
Existing methods for extractive summarisation use a va-

riety of formulations such as structured prediction (Li et
al. 2009), optimisation of submodular functions (Lin and
Bilmes 2011), dataset interpretability (Kim, Khanna, and
Koyejo 2016), and dataset selection via submodular opti-
misation (Mirzasoleiman, Badanidiyuru, and Karbasi 2016;
Wei, Iyer, and Bilmes 2015; Mitrovic et al. 2018). More-
over, recent formulations of comparative summarisation
use discriminative sentence selection (Wang et al. 2012;
Li, Li, and Li 2012), or highlight differences in common con-
cepts across documents (Huang, Wan, and Xiao 2011). But
the connections and distinctions of these approaches has yet
to be clearly articulated. To evaluate summaries, traditional
approaches employ automatic metrics such as ROUGE (Lin
2004) on manually constructed summaries (Lin and Hovy
2003; Nenkova, Passonneau, and McKeown 2007). This is
difficult to employ for new tasks and new datasets, and does
not scale.

Our approach to comparative summarisation is based on a
novel formulation of the problem in terms of two competing
classification tasks. Specifically, we formulate the problem
as finding summaries for each group such that a powerful

20



classifier can distinguish them from documents belonging to
other groups, but cannot distinguish them from documents
belonging to the same group. We show how this framework
encompasses an existing nearest neighbour objective for
summarisation, and propose two new objectives based on the
maximum mean discrepancy (Gretton et al. 2012) – mmd-diff
which emphasises classification accuracy and mmd-div which
emphasises summary diversity – as well as new gradient-
based optimisation strategies for these objectives.
A key advantage of our discriminative problem setting is

that it allows summarisation to be evaluated as a classification
task. To this end, we design automatic and crowd-sourced
evaluations for comparative summaries, which we apply on a
new dataset of three ongoing controversial news topics. We
observe that the new objectives with gradient optimisation
are top-performing in 15 out of 24 settings (across news
topics, summary size, and classifiers) (§6.2). We design a new
crowd-sourced article classification task for human evaluation.
We find that workers are on average 7% more accurate in
classifying articles using summaries generated by mmd-diff
with gradient-based optimisation than all alternatives. Inter-
estingly, our results contrast with the body of work on dataset
selection and summarisation that favour discrete greedy op-
timisation of submodular objectives due to approximation
guarantees. We hypothesise that the comparative summari-
sation problem is particularly amenable to gradient-based
optimisation due to the small number of prototypes needed.
Moreover, gradient-based approaches can further improve
solutions found by greedy approaches.

In sum, the main contributions of this work are:
• A new formulation of comparative document summari-
sation in terms of competing binary classifiers, two new
objectives based on this formulation, and their correspond-
ing gradient-based optimisation strategies.

• Design of a scalable automatic and human evaluation
methodology for comparative summarisation models, with
results showing that the newobjectives out-perform existing
submodular objectives.

• A use case of comparatively summarising articles over time
from a news topic on a new dataset1 of three controversial
news topics from 2017 to 2018.

2 Related Works
The broader context of this work is extractive summarisation.
Approaches to this problem include incorporating diversity
measures from information-retrieval (Carbonell andGoldstein
1998), structured SVM regularised by constraints for diversity,
coverage, and balance (Li et al. 2009), or topic models for sum-
marisation (Haghighi and Vanderwende 2009). Time-aware
summarisation is an emerging subproblem, where the current
focus is on modeling continuity (Ren et al. 2016) or contin-
uously updating summaries (Rücklé and Gurevych 2017),
rather than formulating comparisons. (Li, Li, and Li 2012;
Wang et al. 2012) present methods to extract one or few

1Code, datasets and a supplementary appendix are available at
https://github.com/computationalmedia/compsumm

discriminative sentences from a small multi-document cor-
pus utilising greedy optimisation and evaluating qualitatively.
(Huang, Wan, and Xiao 2011) compares descriptions about
similar concepts in closely related document pairs, leveraging
an integer linear program and evaluating with few manually
created ground truth summaries. While these works exist in
the domain of comparative summarisation, they are either
specific to a data domain or have evaluations which are hard
to scale up. In this paper we present approaches to compar-
ative summarisation with intuition from competing binary
classifiers, leading to different objectives and evaluation. We
demonstrate and evaluate the application of these approaches
to multiple data domains such as images and text.
Submodular functions have been the preferred form of

discrete objectives for summarising text (Lin and Bilmes
2011), images (Simon, Snavely, and Seitz 2007) and data
subset selection (Wei, Iyer, and Bilmes 2015; Mitrovic et
al. 2018), since they can be optimised greedily with tightly-
bounded guarantees. The topic of interpreting dataset and
models use similar strategies (Kim, Khanna, and Koyejo 2016;
Bien and Tibshirani 2011). This work re-investigates classic
continuous optimisation for comparative summarisation, and
puts it back on the map as a competitive strategy.

3 Comparative Summarisation as
Classification

Formally, the comparative summarisation problem is defined
on G groups of document collections {X1, . . . ,XG}, where
a group may, for example, correspond to news articles about
a specific topic published in a certain month. We write the
document collection for group g as

Xg = {xg,1,xg,2, . . . ,xg,Ng
}

where Ng is the total number of documents in group g. We
represent individual documents as vector xg,i ∈ Rd (see §6).
Our goal is to summarise each document collection Xg

with a set of summary documents or prototypes X̄g ⊂ Xg,
written

X̄g = {x̄g,1, x̄g,2, . . . , x̄g,M}

For simplicity, we assume the number of prototypes M is
the same for each group. The selected prototypes should
represent the documents in the group achieving coverage
(Figure 2a) and diversity (Figure 2c), while simultaneously
discriminating documents from other groups (Figure 2b). For
example, if we have news articles on theClimate Change topic
then they may discuss the paris agreement in February, coral
bleaching in March, and rising sea levels in both months. A
comparative summary should include documents about the
paris agreement in February and coral bleaching in March,
but potentially not on rising sea levels as they are common to
both time ranges and hence do not discriminate.

3.1 A Binary Classification Perspective
We now cast comparative summarisation as a binary classifi-
cation problem. To do so, let us re-interpret the two defining
characteristics of prototypes X̄g for the gth group:
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(a) Coverage is the average similarity between
the test prototype document and all other doc-
uments in the test documents’s group.

Previously selected 
prototype

Current test 
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(b) Discriminativeness is the average similarity
between the test prototype document and all
documents not in the test document’s group.

Previously selected 
prototype

Current test 
prototype

(c) Diversity is the average dissimilarity be-
tween the test prototype document and all se-
lected prototypes in the test document’s group.

Figure 2: Illustration of coverage, discriminativeness and diversity criteria for selecting prototypes. The two document groups are
shown as blue circles and red squares. The dotted lines represent comparisons between pairs of documents.

(i) they must represent the documents belonging to that
group. Intuitively, this means that each x̄g,i ∈ X̄g must
be indistinguishable from all xg,j ∈ Xg .

(ii) they must discriminate against documents from all other
groups. Intuitively, this means that each x̄g,i ∈ X̄g

must be distinguishable from x¬g,j ∈ X¬g , where X¬g
denotes the set of all documents belonging to all groups
except g.

This lets us relate prototype selection to the familiar binary
classification problem: for a good set of prototypes,
(a) there cannot exist a classifier that can accurately discrim-

inate between them and documents from that group. For
example, even a powerful classifier should not be able to
discriminate prototype documents about the Great Barrier
Reef from other documents about the Great Barrier Reef.

(b) there must exist a classifier that can accurately discrimi-
nate them against documents from all other groups. For
example, a reasonable classifier should be able to dis-
criminate prototypes about the Great Barrier Reef from
documents about emission targets.

Consequently, we can think of prototype selection in terms
of two competing binary classification objectives: one distin-
guishing X̄g fromXg, and another distinguishing X̄g from
X¬g . In abstract, this suggests a multi-objective optimisation
problem of the form

max
X̄1,...,X̄G

(
G∑
g=1

−Acc(X̄g,Xg),

G∑
g=1

Acc(X̄g,X¬g)

)
, (1)

where Acc(X,Y) estimates the accuracy of the best possible
classifier for distinguishing between the datasets X and Y.
Making this idea practical requires committing to a particular
means of balancing the two competing objectives. More
interestingly, one also needs to find a tractable way to estimate
Acc(·, ·): explicitly searching over rich classifiers such as deep
neural networks, would lead to a computationally challenging
nested optimisation problem.

In the following we discuss a set of objective functions that
avoid such nested optimisation. We also discuss two simple
optimisation strategies for these objectives in §4.

3.2 Prototype Selection via Nearest-neighbour
One existing prototype selection method involves approxi-
mating the intragroup Acc(·, ·) term in Eq 1 using nearest-
neighbour classifiers, while ignoring the intergroup accuracy
term. Specifically, a formulation of prototype selection in
(Wei, Iyer, and Bilmes 2015) maximises the total similarity
of every point to its nearest prototype from the same class:

Unn(X̄) =

G∑
g=1

Ng∑
i=1

max
m∈{1,...,M}

Sim(x̄g,m,xg,i) (2)

Here, Sim is any similarity function, with admissible choices
including a negative distance, or valid kernel functions.
The nearest neighbour utility function is simple and intu-

itive. However, it only considers the most similar prototype for
each datapoint which misses our second desirable property of
prototypes: that they explicitly distinguish between different
classes. Moreover, the nearest neighbour utility function can
be challenging to optimise because of the max function. The
rest of this section introduces three other utilities that address
these concerns.

3.3 Preliminaries: Maximum Mean Discrepancy
Themaximum mean discrepancy (MMD) (Gretton et al. 2012)
measures the distance between two distributions by leverag-
ing the kernel trick (Schölkopf and Smola 2002). Intuitively,
MMD deems two distributions to be close if themean of every
function in some rich class F is close under both distributions.
For suitable F, this is equivalent to comparing the moments
of the two distributions; however, a naïve implementation of
this idea would require a prohibitive number of evaluations.
Fortunately, choosing F to be a reproducing kernel Hilbert
space (RKHS) with kernel function k(·, ·) leads to an expres-
sion that is defined only in terms of document interactions
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via the kernel function (Gretton et al. 2012):

MMD2(X,Y) =Ex,x′ [k(x,x′)]− 2 · Ex,y[k(x,y)]+

Ey,y′ [k(y,y′)] (3)

where x ∼ X,y ∼ Y are observations from two datasets
X,Y. In practice, it is common to use the radial basis function
(RBF) or Gaussian kernel k(x,y) = e−γ·‖x−y‖

2
2 with fixed

bandwidth γ > 0.
One often approximates MMD using sample expecta-

tions: given n samples x1, . . . ,xn from X, and m samples
y1, . . . ,yn from Y, we may compute

MMD2(X,Y) =
1

n2

n∑
i=1

n∑
j=1

k(xi,xj)

− 2

mn

n∑
i=1

m∑
j=1

k(xi,yj) +
1

m2

m∑
i=1

m∑
j=1

k(yi,yj) (4)

3.4 Prototype Selection via MMD
One can think of MMD as implicitly computing a (kernelised)
nearest centroid classifier to distinguish between X and
Y: MMD is small when this classifier has high expected
error. Thus, MMD can be seen as an efficient approximation
to classification accuracy Acc(·, ·). This intuition lead to a
practical utility function that approximates Equation 1 by
taking the difference of two MMD terms:

Udiff(X̄) =
∑
g(−MMD2(X̄g,Xg) + λ ·MMD2(X̄g,X¬g)) (5)

The hyper-parameter λ trades off how well the proto-
type represents its group, against how well it distinguishes
between groups (Figure 2b). Intuitively, when the term
MMD2(X̄g,X¬g) is large then the prototypes X̄g are dissim-
ilar from documents X¬g of other groups. Similarly, when
MMD2(X̄g,Xg) is small then the prototypes are similar to
documents of that group. Maximising −MMD2 gives proto-
types that are both close to the empirical samples (as seen by
the Ex,y term in Equation 3 and illustrated by Figure 2a) and
far from one another (as seen by the Ey,y′ term and illustrated
by Figure 2c).

While the objective of Equation 5 provides the core of our
approach, we also present a variant that increases the diversity
of prototypes chosen for each group. A closer examination
of the difference of MMD2 in Equation 5 – by expanding
both using Equation 3 – reveals two separate prototype di-
versity terms −Ex̄g,x̄′

g
[k(x̄g, x̄

′
g)] and λEx̄g,x̄′

g
[k(x̄g, x̄

′
g)].

The latter counteracts the former and decreases prototype
diversity (details in Appendix1). On the expanded form of
λMMD2(X̄g,X¬g), we remove the terms not involving x̄g,
as they are constants and have no effect on the solution, and
also remove the conflicting diversity termλEx̄g,x̄′

g
[k(x̄g, x̄

′
g)].

This gives a new objective:

Udiv(X̄) =
∑
g(−MMD2(X̄g,Xg)− 2λEx̄g,x¬g

[k(x̄g,x¬g)]) (6)

Maximising −λEx̄g,x¬g
[k(x̄g,x¬g)] encourages proto-

types in group g to be far from data points in other groups.
One can envision another variant that explicitly optimises

the diversity between prototypes of different classes, rather

than between prototypes of class g against data points in other
classes. This is computationally more efficient, and reflects
similar intuitions. However, it did not outperformUdiff,Udiv in
summarisation tasks, and is omitted due to space limitations.
Differences to related objectives. The nearest-neighbour
objective was articulated in (Wei, Iyer, and Bilmes 2015) and
earlier in (Bien and Tibshirani 2011), and used for classi-
fication tasks. Recently, (Kim, Khanna, and Koyejo 2016)
proposedMMD-critic, which selects prototypes X̄ for a single
group of documentsX by maximizing−MMD2(X̄,X). The
first term in Equation 5 builds on this formulation, applying
this idea independently for each group. Our second term
is crucial to encourage prototypes that only represent their
own group and none of the other groups. MMD-critic also
containsmodel criticisms, which have to be optimized sequen-
tially after obtaining prototypes. As shown in §6,MMD-critic
under-performs in comparison tasks by a significant margin.

4 Optimising Utility Functions
There are two general strategies for optimising the utility func-
tions outlined in §3 to generate summaries that are a subset
of the original dataset: greedy and gradient optimisation.
Greedy optimisation. The first strategy involves directly
choosingM prototypes for each group. Obtaining the exact
solution to this discrete optimisation problem is intractable;
however, approximations such as greedy selection can work
well in practice, and may also have theoretical guarantees.

Specifically, suppose we wish to maximise a utility set
function F : 2|V | → R defined on ground set V . For S ⊂ V
and s ∈ V \ S, the marginal gain of adding element s to
an existing set S is known as the discrete derivative, and
is defined by ∆F (s|S) = F (S ∪ s) − F (S). We say F is
monotone if and only if the discrete derivatives are non-
negative, i.e. ∆F (s|S) ≥ 0, and is submodular if and only
if the marginal gain satisfies diminishing returns, i.e. for
S ⊆ T ⊂ V, s ∈ V \T , ∆F (s|S) ≥ ∆F (s|T ). (Nemhauser,
Wolsey, and Fisher 1978) showed that if F is submodular and
monotone, greedy maximisation of F yields an approximate
solution no worse than 1− 1

e ≈ 0.63 of the optimal solution
under cardinality and matroid constraints. (Lin and Bilmes
2010) showed this approximation holds with high probability
even for non-monotone submodular objectives.
In our context, given a utility function U, the greedy

algorithm (see Appendix1) works by iteratively picking the
xg that provides the largest marginal gain (∆U(xg|X̄g))
one at a time for each group. Among the utility functions
mentioned in §3, the nearest-neighbour objective Unn is
submodular-monotone (Wei, Iyer, and Bilmes 2015). The
MMD function in Equation 3 is submodular-monotone under
mild assumptions on the kernel matrix (Kim, Khanna, and
Koyejo 2016). The MMD objective Udiff is the difference
between two submodular-monotone functions, which is not
submodular in general. On the other hand, the second term
in Udiv is modular with respect to X̄g, when the number of
prototypes M fixed and known in advance. Therefore, the
diversity objectiveUdiv is the difference between a submodular
function and a modular function, and thus submodular.
Gradient optimisation The second strategy is to re-cast
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the problem to allow for continuous optimisation in the
feature space, e.g. using standard gradient descent. To generate
prototypes, the solutions to this optimisation can then be
snapped to the nearest data points as a post-processing step.

Concretely, rather than searching for optimal prototypes X̄g

directly, we seek “meta-prototypes” Āg = {āg,1, . . . , āg,M},
drawn from the same space as the document embeddings.
We now modify Udiff (Equation 5) to incorporate “meta-
prototypes”. Note that Udiv can be similarly modified, but
Unn cannot, since the max function is not differentiable. The
“meta-prototypes” for Udiff are chosen to optimise

max
Ā1,...,ĀG

∑
g

(−MMD2(Āg,Xg) + λ · MMD2(Āg,X¬g)) (7)

The only difference to Equation 5 is that we do not enforce
that Āg ⊂ Xg . This subtle, but significant, difference allows
Equation 7 to be optimized using gradient-following methods.
We use L-BFGS (Byrd et al. 1995) with analytical gradients
found in online appendix1. The selected meta-prototypes Āg

are then snapped to the nearest document in the group: to
construct the ith prototype for the gth group, we find

x̄g,i = argmin
x

g,j

∈X
g

‖āg,i − xg,j‖22. (8)

On a problem often tackled with discrete greedy optimisation,
one may wonder if gradient-based methods can be competi-
tive; we answer this in the affirmative in our experiments.

5 Datasets on Controversial News Topics
Exploring the evolution of controversial news topics is a nat-
ural application of comparative summarisation. Comparative
summarisation could help to better understand the role of
news media in such a setting. Recent work on controversial
topics (Garimella et al. 2018) focused on the social network
and interaction around controversial topics, but did not ex-
plicitly consider the content of news articles on these topics.
To this end, we curate a set of news articles on long-running
controversial topics using tweets which link to news articles.
We choose several long-running controversial topics with
significant news coverage in 2017 and 2018. To find articles
relevant to these topics we use keywords to filter the Twitter
stream, and adopt a snowball strategy to add additional key-
words (Verkamp and Gupta 2013). The articles linked in these
tweets are then de-duplicated and filtered for spam. Article
timestamps correspond to the creation time of the first tweet
linking to it. Full details of the data collection procedure are
described in online appendix1.
In this work, we use news articles on three topics that

appeared in a 14 month period (June 2017 – July 2018).
Within each topic we comparatively summarise news articles
in different time periods to identify what has changed in
that topic between the summarisation periods. To ensure our
method works on a range of topics we chose substantially
different long running topics: Beef Ban – controversy over
the slaughter and sale of beef on religious grounds (1543
articles) is localised to a particular region, mainly Indian
subcontinent, while Gun Control – restrictions on carrying,
using, or purchasing firearms (6494 articles) and Capital
Punishment – use of the death penalty (7905 articles) are
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Figure 3: Data volume over time for each topic

topical in various regions around the world. Figure 3 shows
the number of new articles on each topic over time.

6 Experiments and Results
We evaluate approaches to comparative summarisation using
both automatic and crowd-sourced human classification tasks.
This choice stems from with our classification perspective
(see §3.1), and has been used in the prototype selection
literature (Bien and Tibshirani 2011; Kim, Khanna, and
Koyejo 2016). Intuitively, a good set of prototype articles
should uniquely identify a new article’s group.
Datasets and features. We empirically validate classifica-
tion and prototype selection methods on a well known USPS
dataset (Bien and Tibshirani 2011; Kim, Khanna, and Koyejo
2016). USPS contains 16× 16 grayscale handwritten digits
in 10 classes (i.e., digits 0 through 9). To reduce the dimen-
sionality we use PCA, projecting the 256 dimensional image
vectors into 39 features that explain 85% of the variance.
The USPS dataset provides 7291 training and 2007 test im-
ages. We generate another 9 random splits with exactly the
same number of training and test images for the purposes of
estimating confidence intervals.
In using the USPS dataset our aims are twofold. First, it

shows the versatility of the method: the domain need not be
text, collections need not be separated by time, and it operates
with more than two classes. Indeed, by thinking of each digit
as a group, our method can identify representative and diverse
examples of digits. Second, ourmethod can be seen as a special
kind of prototype selection for which the USPS dataset has
been used as a standard benchmark (Bien and Tibshirani 2011;
Kim, Khanna, and Koyejo 2016).
We further use the controversial news dataset described

in §5 to evaluate comparative summarisation. We adopt the
pre-trained GloVe-300 (Pennington, Socher, and Manning
2014) vector representation for each word, and then represent
the article as an average of the word vectors from its the
title and first 3 sentences – the most important text due to
the inverted pyramid structure in news style (Pöttker 2003).
This feature performs competitively in retrieval tasks despite
its simplicity (Joulin et al. 2016). For each news topic, we
generate 10 random splits with 80% training articles and 20%
test articles for automatic evaluation. One of these splits is
used for human evaluation.
Approaches and baselines. We compare:
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Figure 4: Comparative summarisation methods evaluated using the balanced accuracy of 1-NN (left) and SVM (right) classifiers.
Each row represent a dataset. Error bars show 95% confidence intervals.

• nn-comp-greedy represents the nearest neighbour objective
Unn, optimised in a greedy manner.

• mmd-diff represents the difference of MMD objective Udiff.
mmd-diff-grad uses gradient based optimisationwhilemmd-
diff-greedy is optimised greedily.

• mmd-div-grad and mmd-div-greedy are the gradient-based
and greedy variants of the diverse MMD objective Udiv.

with three baseline approaches:
• kmeans clusters with kmeans++ initialisation (Arthur and
Vassilvitskii 2007) found separately for each document
group. TheM cluster centers for each group are snapped
to the nearest data point using Equation 8.

• kmedoids (Kaufman and Rousseeuw 1987) clustering algo-
rithm with kmeans++ initialisation, computed separately
for each document group. The medoids become the proto-
types themselves.

• mmd-critic (Kim, Khanna, and Koyejo 2016) selects proto-
types using greedy optimisation of MMD2 and criticisms
by choosing points that deviate from the prototypes. The
summary is selected from the unlabeled training set and
consists of prototypes and criticisms in a one-to-one ratio.
We use the Radial Basis Function (RBF) kernel when

applicable. The hyper-parameter γ is chosen along with the
trade-off factor λ, and SVM soft margin C using grid search
3 fold cross-validation on the training set. Note that 1NN
has no tunable parameters. The grad optimisation approach
uses the L-BFGS algorithm (Byrd et al. 1995), with initial
prototype guesses chosen by the greedy algorithm for news
dataset and K-means for USPS dataset.

6.1 Automatic Evaluation Settings
The controversial news dataset topics are divided into two
groups of equal duration based on article timestamp. Note

that typically the number of documents in each time range is
imbalanced. The USPS hand written digits dataset is divided
into 10 groups corresponding to the 10 different digits. On
each training split we select the prototypes for each group
and then train an SVM or 1NN on the set of prototypes.

We measure the classifier performance on the test set using
balanced accuracy, defined as the average accuracy of all
classes (Brodersen et al. 2010). For binary classification
this is 1

2 (TP
P + TN

N ), defined in terms of total positives P,
total negatives N, true negatives TN, and true positives
TP. Balanced accuracy accounts for class imbalance, and
is applicable to both binary and multi-class classification
tasks (whereas AUC and average precision are not). For all
approaches, we report the mean and 95% confidence interval
of the 10 random splits.

We report results on 2, 4, 8, or 16 prototypes per group – a
small number of prototypes is necessary for the summaries to
bemeaningful to humans. This is in contrast to the hundreds of
prototypes used by (Bien and Tibshirani 2011; Kim, Khanna,
and Koyejo 2016), in automatic evaluations of the predictive
quality of prototypes.

6.2 Automatic Evaluation Results
Figure 4 reports balanced accuracy for all methods using
SVM and 1-NN across different datasets and numbers of
prototypes. On the USPS dataset, most methods perform well.
The differences are small, if at all distinguishable. mmd-critic
performs poorly onUSPS; this is because it does not guarantee
a fixed number of prototypes per group, and sometimesmisses
a group all together. Note that this is very unlikely to occur
with only 2 groups in the news dataset.

On the three news datasets, comparative summaries based
on nn and mmd objectives are the best-performing approach
in 22 out of 24 evaluations (2 classifiers x 4 prototype sizes x
3 news topics (details in Appendix1) . In the remaining two
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cases, they are the second-best with overlapping confidence
intervals against the best (kmeans). Despite the lack of opti-
misation guarantees, grad optimisation produces prototypes
of better quality in 15 out of 24 settings.
Generally, all methods produce better classification accu-

racy as the number of prototypes increases. This indicates
that the chosen prototypes do introduce new information that
helps with the classification. In the limit, where all documents
are selected as prototypes – a setting that is clearly unreason-
able when summarisation is the goal – the performance is
determined by the classifier alone. SVM achieves 0.763 on
Capital Punishment and Beef Ban, 0.707 on Gun Control,
while 1-NN achieves 0.762 on Capital Punishment, 0.763 on
Beef Ban and 0.702 on Gun Control. As seen in Figure 4 no
prototype selection method approaches this accuracy. This
highlights the difficulty of selecting only a few prototypes to
represent complex distributions of news articles over time.

6.3 Crowd-sourced Evaluation Settings
We conduct a user study on the crowd-sourcing platform
figure-eight2 with two questions in mind: (1) using article
classification accuracy as a proxy, do people perform similarly
to automatic evaluation? (2) how useful do people find the
comparative summaries? This is an acid test on providing
value to users who need comprehend large document corpora.
Human evaluations in this work are designed to grade our
method in a real world task: accurately identifying a news
articles group (e.g. the month it is published) given only a
few (4) articles from each month. The automatic evaluations
in §6.2 are instructive proxies for efficacy, but inherently
incomplete without human evaluation.
Generating summaries for the crowd. We present sum-
maries from four methods kmeans, nn-comp-greedy, mmd-
diff-greedy, andmmd-diff-grad – chosen because they perform
well in automatic evaluation and together form a cross-section
of different method types. We opt to vary the groups of news
articles being summarised by choosing many pairs of time
ranges, since summaries on the same pair of groups (by
definition) tend to be very similar or identical, which incurs
user fatigue. We use the Beef Ban topic because it has the
longest time range: June 2017 to July 2018 inclusive. The
articles are grouped into each of the 14 months, and then 91
(i.e., 14 choose 2) pairs are formed. We take the top 10 pairs
by performance according automatic evaluation using each
of the four approaches, the union of these lead to 21 pairs.
We pick top-performing pairs because preliminary human
experiments showed that humans seem unable to classify
an article when automatic results do poorly (e.g. <0.65 in
balanced accuracy). Articles from each of the 21 pairs of
months are randomly split into training and testing sets. We
ask participants to classify six randomly sampled test articles.
To reduce evaluation variance, all methods share the same
test articles, different methods are randomized and are blind
to workers. We record three independent judgments for each
(test article, month-pair) tuple – totaling 1,512 judgments
from 126 test questions over four methods. We also restrict
the crowd workers to be from India, where Beef Ban is locally

2https://www.figure-eight.com

Figure 5: An example questionnaire used for crowd-sourced
evaluation. It consists of: (a) instructions, (b) two groups of
summaries, (c) question articles, and (d) a comment box for
feedback. See §6.3.

relevant, and workers will be familiar with the people, places
and organisations mentioned news articles.
Questionnaire design. Figure 5 shows the questionnaires
we designed for human evaluation. Each questionnaire has
4 parts: (a) instructions, (b) two groups of prototypes, (c)
test articles that must be classified into a group, and (c) a
comment box for free-form feedback.
In the instruction (a), we explain that the two groups of

representative articles (the prototypes for each time range)
are articles from different time ranges and lay out the steps
to complete the questionnaire. We ask participants not to use
external sources to help classify test articles.

The two groups of prototype articles (b) are chosen by one
of the method being evaluated (e.g.,mmd-diff-grad or kmeans)
from articles in two different time ranges. Each group has
four representative articles and each article has a title and a
couple of sentences to help understand the content. We assign
a different background colour to each group of summaries to
give participants a visual guide.

Below the groups of summary articles are three questions
(c), though for brevity only two are shown in Figure 5. Each
question asks participants to decide which of the two time
ranges a test article belongs to.
We add a comment box (d) to gather free-form feedback

fromparticipants. This helps to quickly uncover problemswith
the task, provides valuable insight into how participants use
the summaries to make their choices, and gives an indication
of how difficult users find the task. As a quality-control
measure, we include questions with known ground truth
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Figure 6: Classification accuracies for 21 pairs of summaries.
(a) Automatic classification using prototypes (by SVM) on the
entire test set. The green avg SVM line is the mean accuracy
of SVMs trained on the entire training set. (b) Automatic
classification evaluated on 6 test articles per pair. (c) Human
classification accuracy on 6 test articles per pair.

amongst the test questions. These ground truth questions are
manually curated and reviewed if many workers fail on them.
Each unit of work includes 4 questionnaires (of 3 questions
each), one of which is a group of ground truth questions
randomly positioned. Note that ground truth questions are
only used to filter out participants and are not included in the
evaluation results.

6.4 Crowd-sourced Evaluation Results
Worker profile. The number of unique participants answer-
ing test questions ranged from 25 to 31 for each method,
indicating that the results were not dominated a small number
of participants. On average, participants spent 51 seconds on
each test question and 2 minutes 33 seconds on each summary.
Quantitative results Figure 6 shows that on average crowd
workers with mmd-diff-grad summaries classify an article
more accurately than summaries from other approaches by at
least 7%. The results are statistically significant with p < 0.05
under a one sided sign test; which applies because the 126
test questions where answered by three random people and
we cannot assume normality. It also has the highest number
of consensus correct judgments (details in Appendix1). mmd-
diff-greedy performs worse than mmd-diff-grad.

We also compute the Fleiss Kappa statistic to measure inter-
annotator agreement. The statistics are: 0.418 for kmeans,
0.456 formmd-diff-grad, 0.435 for nn-comp-greedy, and 0.483
for mmd-diff-greedy and a combined statistic of 0.451. All
statistics fall into the range of moderate agreement (Lan-
dis and Koch 1977), which means the results we obtain in
crowdsourced evaluations are reliable.
The good performance of gradient-based optimisation is

surprising given greedy approaches are usually preferred
in subset selection tasks, due to approximation guarantees
for submodular objectives. One plausible explanation is that
early prototypes selected by greedy tend to cluster around
the first prototype, whereas the simultaneous optimisation
in grad tend to spread prototypes in feature space. With
only four prototypes being shown to users, diversity is an
important factor for human classification. Previous studies of

greedy methods for prototype selection have used hundreds
of prototypes (Bien and Tibshirani 2011) – a setting in
which the diversity of the early prototypes matters less – or
used criticisms (Kim, Khanna, and Koyejo 2016) to improve
diversity in tandem.

Comparing Figure 6 (a) – (c), automatic classifiers trained
on both the entire training set and prototypes have higher
classification accuracy than humanworkers across allmethods.
This observation indicates that using summaries to classify
articles is difficult for humans. It could also indicate that
humans use different features for article grouping, and word
vectors alone may not capture those features.
Qualitative observations. Results from the optional free-
form comments show that the participants found the classifi-
cation difficulty to vary wildly. While some sets of articles
were apparently easy to classify (e.g., “Group articles are
distinct in their manner, among which all are articles are easy
to determine."), other articles were difficult to classify (e.g.,
“Although two groups are clearly distinct, this one (news
article) was pretty difficult to ascertain in which group it
belongs to.") In some cases poor summaries seem to have
made the task exceedingly difficult; e.g., “Q1, Q2, Q3 all are
not belongs to group 1 and group 2 any topic I think." (quoted
verbatim).

We found that the Beef Ban topic interested many of
our participants, with some expressing their views on the
summarised articles, for example “Firstly we should define
what is beef ..is it a cow or any animal?" and “It is a broad
matter, what we should eat or not, it cannot be decided by
government." (edited for clarity).
Participant comments also give some insight into what

features were used to make classification. In particular, word
and entity matching were frequently mentioned, a representa-
tive user comment is “None of the questions match the given
article, but I had to go by words used." All crowd-sourced
evaluation results and comments are available in the dataset
github repository1.

7 Conclusion
We formulated the comparative document summarisation
in terms of competing binary classifiers. This inspired new
MMD based objectives amenable to both gradient and greedy
optimisation. Moreover, the setting enabled us to design effi-
cient automatic and human evaluations to compare different
objectives and optimisation methods on a new, highly rele-
vant dataset of news articles. We found that our new MMD
approaches, optimised by gradient methods, frequently out-
performed all alternatives, including the greedy approaches
currently favoured by the literature. Future work can include
new use cases for comparative summarisation, such as authors
or view points; richer text features; extensions to cross-modal
comparative summarisation.
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