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Abstract

Jointly learning representations of 3D shapes and text is cru-
cial to support tasks such as cross-modal retrieval or shape
captioning. A recent method employs 3D voxels to repre-
sent 3D shapes, but this limits the approach to low reso-
lutions due to the computational cost caused by the cubic
complexity of 3D voxels. Hence the method suffers from a
lack of detailed geometry. To resolve this issue, we propose
Y2Seq2Seq, a view-based model, to learn cross-modal rep-
resentations by joint reconstruction and prediction of view
and word sequences. Specifically, the network architecture
of Y2Seq2Seq bridges the semantic meaning embedded in
the two modalities by two coupled “Y” like sequence-to-
sequence (Seq2Seq) structures. In addition, our novel hierar-
chical constraints further increase the discriminability of the
cross-modal representations by employing more detailed dis-
criminative information. Experimental results on cross-modal
retrieval and 3D shape captioning show that Y2Seq2Seq out-
performs the state-of-the-art methods.

Introduction
With the development of 3D modeling and scanning tech-
niques, more and more 3D shapes become available on the
Internet with detailed physical properties, such as texture,
color, and material. With large 3D datasets, however, shape
class labels are becoming too coarse of a tool to help peo-
ple efficiently find what they want, and visually browsing
through shape classes is cumbersome. To alleviate this is-
sue, an intuitive approach is to allow users to describe the
desired 3D object using a text description. Jointly under-
standing 3D shape and text by learning a cross-modal rep-
resentation, however, is still a challenge because it requires
an efficient 3D shape representation that can capture highly
detailed 3D shape structures.

To overcome this challenge, a 3D-Text cross-modal
dataset was recently released in (Chen et al. 2018), where a
combined multimodal association model was also proposed
to capture the many-to-many relations between 3D voxels
and text descriptions. This model employed a shape encoder
to compute the embeddings of 3D shapes directly from 3D
voxels. However, this strategy is limited to learning from low
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resolution voxel representations due to the computational
cost caused by the cubic complexity of 3D voxels. This leads
to low discriminability of learned cross-modal representa-
tions due to a lack of detailed geometry information.

We resolve this issue by proposing to learn cross-modal
representations of 3D shape and text from view sequences
and word sequences, where each 3D shape is represented
by a view sequence. Our deep learning model captures the
correlation between 3D shape and text by the joint recon-
struction and prediction of view and word sequences from
each modality. This strategy aims to get part-level informa-
tion as much as possible to understand mainly part-related
descriptions, which remedies a lack of part prior knowledge
in 3D-Text understanding. We call our model Y2Seq2Seq,
since it is implemented by two coupled “Y” like sequence-
to-sequence (Seq2Seq) structures. In addition, we employ
novel hierarchical constraints that can be easily added to ex-
tract more detailed discriminative information from differ-
ent aspects. Specifically, Y2Seq2Seq consists of a 3D shape
branch and a text branch. Starting from the encoding of ei-
ther 3D shape modality or text modality, each branch jointly
reconstructs the modality itself and predicts the counter-
part modality using one RNN encoder and two RNN de-
coders. The two branches are coupled by sharing parame-
ters in decoders for reconstruction and prediction, which is
effective to bridge the semantic meaning embedded in 3D
shape modality and text modality. In addition, we propose
to employ the discriminative information at the class level,
instance pair level, and instance level as constraints in the
training procedure. Our significant contributions are list be-
low.

• We propose a deep learning model called Y2Seq2Seq,
which enables to learn cross-modal representations of 3D
shape and text from view sequences and word sequences.

• Our novel coupled “Y” like Seq2Seq structures have a
powerful capability to bridge the semantic meaning of
two sequence-represented modalities by joint reconstruc-
tion and prediction.

• Our results demonstrate that our novel hierarchical con-
straints can further increase the discriminability of learned
cross-modal representations by employing more detailed
discriminative information.
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Related work

Joint 3D-Text representation learning. In a recent pioneer-
ing study, a combined multimodal association model (Chen
et al. 2018) was proposed to jointly understand 3D shape
and text based on a novel 3D-Text cross-modal dataset.
This model employs a CNN+RNN and a 3D-CNN to ex-
tract single-modal features of text and 3D shape respectively,
where the 3D-CNN learns from 3D voxels. Then, similari-
ties within each modality and cross modality are learned by a
metric learning method. However, due to the computational
cost caused by the cubic complexity of 3D voxels, this model
is limited to learning from low resolution voxels, and a lack
of detailed geometry information affects the discriminabil-
ity of the learned joint representations. To resolve this issue,
Y2Seq2Seq aims to learn features of 3D shapes from view
sequences.
Joint 2D sequence-Text representation learning. Learn-
ing from view sequences makes Y2Seq2Seq related to joint
2D sequence-Text representation learning, such as video
captioning (Shen et al. 2018; Wang et al. 2018; Venu-
gopalan et al. 2015) and the recent GIF-Text cross-modal
retrieval (Song and Soleymani 2018).

Besides the rendered views that we use rather than nat-
ural images, the main difference between Y2Seq2Seq and
these studies is that Y2Seq2Seq is required to focus more
on part-level understanding rather than object-level under-
standing. This is because our approach works on individual
3D objects, and there is only one object in a view. Hence,
the corresponding representation mainly captures informa-
tion about parts of this object. For better joint understanding
of rendered view and text, Y2Seq2Seq employs two coupled
“Y” like Seq2Seq branches, and each branch simultaneously
conducts joint reconstruction and prediction in both modali-
ties. This novel structure is able to learn from discriminative
information in both modalities as much as possible, which
we also facilitate by including additional constraints. In ad-
dition, another difference between Y2Seq2Seq and these
studies is that we aim to explicitly learn cross-modal rep-
resentations, which enables Y2Seq2Seq for cross-modal re-
trieval and captioning at the same time, rather than merely
retrieval (Song and Soleymani 2018) or captioning (Wang et
al. 2018; Venugopalan et al. 2015).

In terms of the model structure, Y2Seq2Seq is similar
to the prototype bimodal deep autoencoder (Ngiam et al.
2011) which was also adopted by Shared Latent Represen-
tation (SLR) learning with variational autoencoder back-
ground (Shen et al. 2018). However, these models contain
only a single branch, which makes it hard to employ ad-
ditional constraints on the learned cross-modal representa-
tions. The encoder-decoder-reconstructor structure (Wang et
al. 2018) also suffers from this issue. The correspondence
fully-modal autoencoder (Feng, Wang, and Li 2014) also
employed a similar structure to Y2Seq2Seq for image cap-
tioning. However, this method cannot handle 2D sequences,
and moreover, regards the sentence as a whole, which means
that it could not learn the relationship between words and
shape characteristics.

Y2Seq2Seq
Overview. The framework of Y2Seq2Seq is illustrated in
Fig. 1. Y2Seq2Seq is formed by a 3D shape branch S and
a text branch T. Each branch is a “Y” like seq2seq model
which is formed by one RNN encoder and two RNN de-
coders, and the two RNN decoders jointly reconstruct within
the modality and predict across modalities. S and T are cou-
pled by sharing weights involved in the decoders. Note that
in Fig. 1, the “Y” structure of the shape branch is rotated by
90 degrees in counter-clockwise orientation, and the one of
the text branch is rotated in clockwise orientation.
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Figure 1: The framework of Y2Seq2Seq consists of a 3D
shape branch S and text branch T. Each branch jointly re-
constructs within the modality and predicts across modali-
ties.

For each pair of 3D shape s and its description t, (s, t)
is learned in both branches. In the shape branch S, the
multi-view encoder EV aims to learn the feature Fs of
s by aggregating N views v = [v1, ..., vi, ..., vN ], where
i ∈ [1, N ]. The first decoder in the shape branch is a
multi-view reconstructor RV to reconstruct the low-level
feature fi of each view vi. The second decoder is a de-
scription predictor PW to generate t by predicting M words
w = [w1, ..., wj , ..., wM ], where j ∈ [1,M ]. On the other
hand, in the text branch T, the description encoderEW aims
to learn the feature Ft of t by aggregating its M words w.
The first decoder is a description reconstructorRW to recon-
struct w, and the second one is a multi-view predictor PV

to predict the low-level feature fi of each view vi.
Finally, we include additional hierarchical constraints to

learn the cross-modal representations Fs and Ft. The con-
straints aim to capture the hierarchically discriminative in-
formation at the class level (using a classification con-
straint), at the instance pair level (using a triplet constraint),
and at the instance level (using a joint embedding con-
straint).
View sequence capturing. A view sequence v is formed by
uniformly capturing N sequential views vi around a shape
m on a circle. We render shapes that are represented us-
ing 3D voxel grids. The cameras are elevated 30◦ from the
ground plane, pointing to the centroid of m. In our experi-
ments, we set N to 12.
3D shape branch S. S is formed by a multi-view encoder
EV , a multi-view reconstructor RV , and a description pre-
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dictor PW .
EV is implemented by a VGG19 (Simonyan and Zisser-

man 2014) and a RNN. The VGG19 first extracts low-level
feature fi of each view vi in the view sequence v from
the last 4096 dimensional fully connected layer. Then, EV

learns the feature Fs of shape s by aggregating all the N
view features, where Fs is the hidden state at the N -th step
of the RNN.

Starting from Fs, RV and PW , which are also imple-
mented by a RNN, jointly reconstruct the view features in
sequence v and predict the word sequence w. The recon-
structed view features f ′

i and predicted word sequence w′

are expected to be close to the ground truth view features fi

and word sequence w. Thus, the loss of branch S is formed
by the lossLV 2V from view to view and the lossLV 2W from
view to word, as defined below,

LS = αLV 2V + βLV 2W ,

LV 2V =
1

N

∑
i∈[1,N ]

∥f ′
i − fi∥22,

LV 2W = −
∑

j∈[1,M ]

log p(wj |w<j ,v),

(1)

where wj is the j-th word in the word sequence w, w<j rep-
resents the words in front of wj , p(wj |w<j ,v) is the proba-
bility of correctly predicting j-th word according to the pre-
vious words w<j and the view sequence v, and α and β are
two balance weights.
Text branch T. T is formed by a description encoder EW ,
a description reconstructor RW and a multi-view predictor
PV . Note that T is coupled with S by sharing weights inRW

with description predictor PW in S and sharing weights in
PV with multi-view reconstructor RV in S.
EW , RW and PV are all implemented by a RNN. EW

learns the feature Ft of the description t of shape s by ag-
gregating the embedding ej of wordswj in sequence w. The
word embedding ej is learned with the other parameters in
Y2Seq2Seq together. The feature Ft is represented by the
hidden state at the M -th step of EW .

Starting from Ft, RW and PV jointly reconstruct the
word sequence w and predict the view features in sequence
v. The reconstructed word sequence w′′ and predicted view
features f ′′

i are expected to be close to the ground truth word
sequence w and view features fi. Thus, the loss of branch
T is formed by the loss LW2W from word to word and the
loss LW2V from word to view, as defined below,

LT = γLW2W + δLW2V ,

LW2W = −
∑

j∈[1,M ]

log p(wj |w<j ,w),

LW2V =
1

N

∑
i∈[1,N ]

∥f ′′
i − fi∥22,

(2)

where wj is the j-th word in the word sequence w, w<j rep-
resents the words in front of wj , p(wj |w<j ,v) is the proba-
bility of correctly reconstructing j-th word according to the

previous words w<j and the ground truth word sequence w,
and γ and δ are balance weights.
Hierarchical constraints. Y2Seq2Seq employs three con-
straints on Fs and Ft to further increase the discriminabil-
ity of the learned cross-modal representations by employ-
ing more detailed discriminative information. These con-
straints provide hierarchically discriminative information at
the class level, the instance pair level, and the instance level.

For the instance pair (s, t) from shape class c, the first
constraint makes each instance in the pair be correctly clas-
sified using a softmax classifier. Here, we use only one soft-
max classifier to simultaneously classify Fs and Ft in both
modalities. This helps push the two modalities together in
the cross-modal representation space. The estimated shape
class c′ should be the ground truth shape class c. Thus, the
classification loss is the negative log likelihood as below,

LC1 = − log p(c′ = c|Fs)− log p(c′ = c|Ft), (3)

where p(c′ = c|Fs) and p(c′ = c|Ft) are probabilities of
correctly classifying 3D shape s and text t, respectively.

We use a triplet constraint (Schroff, Kalenichenko, and
Philbin 2015) to leverage the relationships between instance
pairs, such as (s+, t+) and (s−, t−). The instance pair level
constraint ensures the feature of s+ is closer to the feature of
t+ than the feature of any other s− or t−. Thus, our triplet
loss is defined as below,

LC2 = [∥Fs+ − Ft+∥22 + ∥Fs+ − Ft−∥22 + µ]+

+ [∥Ft+ − Fs+∥22 + ∥Ft+ − Fs−∥22 + µ]+,
(4)

where [•]+ is a max(0, •) function, (s+, t+, t−) and
(t+, s+, s−) are two triplets in the training set, µ is a mar-
gin that is enforced between instances within pairs and in-
stances across pairs. The two triplets are formed by finding
a (s−, t−) in another shape class for each (s+, t+).

Finally, we include a joint embedding constraint for dis-
criminative information at the instance level. Although in-
stance level information has been involved in the triplet con-
straint, two instances s and t in the same pair (s, t) are
merely required to be as close as possible there. Our joint
embedding constraint further toughly pushes the two fea-
tures Fs and Ft of the instances s and t to the same point
in the cross-modal representation space. Thus, the joint em-
bedding loss is defined as below,

LC3 = ∥Fs − Ft∥22. (5)
Finally, the loss LC defined for our hierarchical con-

straints is shown below, where φ, ϕ and ψ are balance
weights for the hierarchical constraints at different levels.

LC = φLC1 + ϕLC2 + ψLC3, (6)
Objective function. Y2Seq2Seq is trained to minimize all
the above losses. Thus, the objective function is defined as,

minLS + LT + LC. (7)
We learn our learning targets, the cross-modal representa-

tions of 3D shape and text, Fs and Ft, by iteratively updating
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Table 1: The balance weights employed in all the three
datasets.

Set α β γ δ φ ϕ ψ
Prim 1 2 0.001 1 0.0001 0.1(µ = 1) 0.1
Shap 1 1 0.01 1 0.001 0.01(µ = 1.5) 0.1

Table 2: Effect of coupled “Y” like Seq2Seq under primitive
subset.

Metrics Rec Pre R+P C-S C-T C-Y

S
2
T

RR@1 1.47 1.33 1.33 69.87 73.73 80.13
RR@5 1.73 2.67 4.27 70.40 81.60 82.53

NDCG@5 1.44 1.37 1.05 69.87 67.92 80.16

T
2
S RR@1 2.27 2.06 1.85 46.92 72.57 92.45

RR@5 4.70 7.58 3.34 63.37 87.73 95.99
NDCG@5 1.76 3.01 0.97 41.79 70.21 88.52

them using back propagated gradients with a learning rate ε,
i.e., Fs ← Fs − ε× ∂L/∂Fs and Ft ← Ft − ε× ∂L/∂Ft.

Experiments and analysis
Dataset. We evaluate Y2Seq2Seq under the 3D-Text cross-
modal dataset by (Chen et al. 2018), which consists of a
primitive subset and a ShapeNet subset. Specifically, the
primitive subset contains 7,560 shapes and 191,850 de-
scriptions. The ShapeNet subset contains 15,038 shapes and
75,344 descriptions. We employ the same training/test split-
ting under both subsets as (Chen et al. 2018).
Experimental setup. We first explore how each element
of Y2Seq2Seq affects its performance under the primitive
subset and the ShapeNet subset in 3D-Text cross-modal re-
trieval. Then, we evaluate the performance of Y2Seq2Seq
by comparing it with the state-of-the-art methods in cross-
modal retrieval and 3D shape captioning under the two
subsets, respectively. In all the experiments, the dimension
of the cross-modal representations Fs and Ft is 128, the
dimension of the word embedding ej is set to 512, and
both branches in Y2Seq2Seq are implemented using GRU
cells (Cho et al. 2014). All the experiments are conducted
with a learning rate ε of 0.00001.

According to the descriptions involved in each subset,
we employ dataset-dependent vocabulary. Under the prim-
itive subset, we extract 77 unique words to form the vo-
cabulary. Under the ShapeNet subset, the employed vocab-
ulary is formed by 3587 unique words. All the RNNs for
descriptions are dynamic, with varying length according to
the length of the descriptions.

Table 3: Effect of coupled “Y” like Seq2Seq under ShapeNet
subset.

Metrics Rec Pre R+P C-S C-T C-Y

S
2
T

RR@1 0.07 0.07 0.13 1.61 1.74 1.88
RR@5 0.34 0.34 0.34 6.03 6.17 7.51

NDCG@5 0.07 0.07 0.08 1.44 1.42 1.65

T
2
S RR@1 0.13 0.11 0.07 0.42 0.77 1.04

RR@5 0.34 0.32 0.35 1.20 3.26 4.25
NDCG@5 0.24 0.21 0.20 0.82 1.98 2.62

Table 4: Effect of hierarchical constraints under primitive
subset.

Metrics No +LC1 +LC1 + LC2 +LC

S
2
T

RR@1 80.13 83.07 88.53 94.13
RR@5 82.53 85.73 88.80 94.13

NDCG@5 80.16 82.43 88.33 94.10

T
2
S RR@1 92.45 93.20 95.99 96.66

RR@5 95.99 97.50 97.53 97.57
NDCG@5 88.52 89.36 95.52 95.87

Under each subset, according to the order of magnitude of
each loss in L, we set both α in LS and δ in LT to 1, since
the losses of reconstructing the view sequence in S and pre-
dicting the view sequence in T are similar. Subsequently, all
the other balance weights are set based on them. The balance
weights used in both subsets are shown in Table 1, where the
margin µ involved in the triplet loss is also presented.

In each cross-modal retrieval experiment below, we show
the results in two directions to comprehensively evaluate the
performance of Y2Seq2Seq. One direction uses 3D shapes
as queries and aims to retrieve instances from the set of de-
scriptions. We call this direction shape-to-text, which is ab-
breviated as “S2T”. In contrast, the other direction uses de-
scriptions as queries and aims to retrieve instances from the
set of 3D shapes. Accordingly, we call this direction text-
to-shape and abbreviate it as “T2S”. In addition, the recall
rate (RR@k) (Chen et al. 2018) and NDCG (Jrvelin and
Kekäläinen 2002) are used as the metrics. In addition, all
the results shown in both the “T2S” and “S2T” directions in
the same column in the following tables are obtained with
the same trained Y2Seq2Seq.

In each 3D shape captioning experiment below, ME-
TEOR (Denkowski and Lavie 2014), ROUGE (Lin
2004), CIDEr (Vedantam, Zitnick, and Parikh 2015), and
BLUE (Papineni et al. 2002) are used as the metrics to eval-
uate the quality of generated descriptions according to the
ground truth descriptions, where these metrics are abbrevi-
ated as “M”, “R”, “C”, and “B-1”, “B-2”, “B-3”, “B-4”, re-
spectively in the following tables.
Effect of the coupled “Y” like Seq2Seq. First, we con-
duct experiments to show how the coupled “Y” like
Seq2Seq structures contribute to the cross-modal representa-
tion learning by joint reconstruction and prediction of view
and word sequences.

As shown in Table 2 and Table 3, we conduct six exper-
iments under the two subsets, respectively, where RR@1,
RR@5 and NDCG@5 are used as metrics in all the exper-
iments. Under each subset, all the six experiments are con-
ducted without hierarchical constraints. The first two exper-
iments are conducted with only reconstruction within the
same modality and only with prediction across the modal-
ities, which are indicated as “Rec” and “Pre” in the tables.
In these two experiments, the two “Y” like branches are de-
generated into line like branches. The third experiment is
conducted with both reconstruction and prediction, but the
two branches are not coupled, where the decoders of the two
branches are not sharing parameters, as indicated as “R+P”
in the tables. The fourth and fifth experiments are conducted
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Table 5: Effect of hierarchical constraints under ShapeNet
subset.

Metrics No +LC1 +LC1 + LC2 +LC

S
2
T

RR@1 1.88 2.82 3.42 6.77
RR@5 7.51 10.19 10.59 19.30

NDCG@5 1.65 2.40 2.59 5.30

T
2
S RR@1 1.04 1.83 1.92 2.93

RR@5 4.25 6.36 6.89 9.23
NDCG@5 2.62 4.07 4.40 6.05

Table 6: Effect of voxel resolution under ShapeNet subset.
Metrics 323 643 1283

S
2T

RR@1 6.77 7.31 7.64
RR@5 19.30 19.97 20.64

NDCG@5 5.30 5.43 5.48

T
2
S RR@1 2.93 2.37 2.70

RR@5 9.23 8.81 9.82
NDCG@5 6.05 5.61 6.27

with coupled branches but without joint reconstruction and
prediction, i.e., the decoders of both branches regard either
the view sequence or the word sequence as the target, as de-
noted as “C-S” or “C-T”, respectively. The last experiment
is conducted with coupled “R+P”, as indicated as “C-Y” in
the tables. Note that we use the same balance weights in Ta-
ble 1 in all the four experiments.

Both the results of “Rec” and “Pre” in Table 2 and Table 3
show that merely reconstruction within the same modality or
prediction across the modalities in the two branches can not
learn satisfactory cross-modal representations. This is be-
cause the two branches can not bridge the semantic mean-
ing embedded in different modalities. The “R+P” results in
the two tables still suffer from the same issue. Even with in-
creasing the interactions across modalities, joint reconstruc-
tion and prediction in each branch can only slightly increase
the discriminability of the learned cross-modal representa-
tions in some metrics. With the two branches coupled, only
using the features from one modality as the mapping target
of the decoders achieves much better results than the results
without coupling, as shown by “C-S” or “C-T”. This means
the coupled branches are able to help bridge the semantic
meaning embedded in different modalities by pushing the
modalities together better. To explore how to learn more sat-
isfactory cross-modal representations, we propose to jointly
perform reconstruction and prediction by the coupled two
branches through sharing the parameters in the decoders of
both branches. As shown by the “C-Y” results, the outper-
forming of other results demonstrates that the reconstruc-
tion, the prediction and the coupling can all contribute to the
performance, and both the reconstruction and prediction can
only contribute based on the coupling.
Effect of the hierarchical constraints. Next, we explore
how each hierarchical constraint contributes to the cross-
modal representation learning under the two subsets.

As shown in Table 4 and Table 5, we conduct three ex-
periments under the primitive subset and ShapeNet subset,

Table 7: The comparison in cross-modal retrieval under
primitive subset.

Methods RR@1 RR@5 NDCG@5

S2T

ML 24.67 29.87 24.38
DS 80.50 85.87 80.36

MiViSE 17.87 24.13 16.44
SLR 1.20 2.80 1.15

LBAT 5.20 6.13 5.25
LBAM 89.20 90.53 89.48
FTST 92.00 92.40 91.98
FMM 93.47 93.47 93.47
Our 94.13 94.13 94.10

T2S

ML 25.93 57.24 25.00
DS 81.77 90.70 81.29

MiViSE 8.21 15.42 6.84
SLR 4.08 9.49 2.31

LBAT 5.06 15.29 5.92
LBAM 91.13 98.27 91.90
FTST 94.24 97.55 95.20
FMM 95.07 99.08 95.51
Our 96.66 97.57 95.87

respectively, where RR@1, RR@5 and NDCG@5 are used
as metrics in all the experiments. Under each subset, each
hierarchical constraint is incrementally added starting from
“Coupled “Y”” in Table 2 or Table 3, which are indicated as
“No” in the three experiments. These experiments are con-
ducted with only the classification constraint, indicated as
“+LC1”, with the classification and triplet constraints, indi-
cated as “+LC1+LC2”, and with all hierarchical constraints,
indicated as “+LC”, respectively. Note that we use the bal-
ance weights in Table 1 in all the three experiments.

Under both subsets, all the metrics are increasing along
with adding an additional hierarchical constraint. The in-
creasing results in terms of all metrics show that each hierar-
chical constraint is able to contribute to the performance of
Y2Seq2Seq. However, the degree of contribution provided
by each constraint is slightly different, depending on the
dataset. For example, according to the degree of increase, the
three constraints contribute almost equally under the primi-
tive subset, while the joint embedding constraint contributes
more than the others under the ShapeNet subset.
Effect of voxel resolution. In the experiments above, the
involved 3D shapes are represented by view sequences ren-
dered from voxel representations of the 3D shapes with
a resolution of 323. However, Y2Seq2Seq can learn from
higher-resolution voxel representations without increasing
the memory requirements of the neural networks because it
performs view-based deep learning. This resolves the mem-
ory issue of methods that perform learning directly from the
voxel representations. We explore the effect of voxel reso-
lution on the performance of Y2Seq2Seq in cross-modal re-
trieval under ShapeNet subset. We use views captured from
3D shapes represented by voxel grids with a resolution of
323, 643 and 1283.

The grids with higher resolution can provide more geom-
etry detail on the shape surface, which results in more dis-
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Table 8: The comparison in cross-modal retrieval under
ShapeNet subset.

Methods RR@1 RR@5 NDCG@5

S2T

ML 0.13 0.47 0.11
DS 0.13 0.60 0.13

MiViSE 0.20 0.40 0.10
SLR 0.27 0.40 0.11

LBAT 0.20 0.80 0.12
LBAM 0.07 0.34 0.07
FTST 0.94 3.69 0.85
FMM 0.83 3.37 0.73
Our 6.77 19.30 5.30

T2S

ML 0.13 0.61 0.36
DS 0.12 0.65 0.38

MiViSE 0.11 0.31 0.20
SLR 0.11 0.38 0.24

LBAT 0.04 0.20 0.12
LBAM 0.08 0.34 0.21
FTST 0.22 1.63 0.87
FMM 0.40 2.37 1.35
Our 2.93 9.23 6.05

Table 9: The comparison in 3D shape captioning under prim-
itive subset.

Model M R C B-1 B-2 B-3 B-4
SLR-N 0.18 0.44 0.13 0.42 0.31 0.21 0.15
MiV-N 0.35 0.67 0.53 0.66 0.53 0.45 0.39
S2VT 0.47 0.87 0.96 0.88 0.82 0.75 0.70
Our-N 0.70 0.98 1.37 0.98 0.97 0.96 0.96

Our 0.54 0.92 1.21 0.92 0.88 0.84 0.80

criminative 3D shape features. This is verified by the con-
tinuously increasing results of “S2T” in Table 6. However,
because of the limited information embedded in the descrip-
tion, voxels with higher resolution could not keep contribut-
ing to more discriminative text features, as shown by the re-
sults of “T2S”, although we have got the best “T2S” results
with the highest resolution of 1283.
Cross-modal retrieval. To evaluate the performance of
Y2Seq2Seq, we compare our method with the state-of-the-
art methods under the primitive subset and the ShapeNet
subset in cross-modal retrieval. To conduct a fair compari-
son, our results are obtained from voxel grids of 323 reso-
lution under the primitive subset and the ShapeNet subset,
which is the same as in the other methods.

Under the two subsets, we compare our method with
metric learning (ML) (Song et al. 2016), deep symmet-
ric structured joint embedding (DS) (Reed et al. 2016),
MiViSE (Song and Soleymani 2018), SLR (Shen et al.
2018), association learning with only TST round trips
(LBAT) (Häusser, Mordvintsev, and Cremers 2017), and
several methods from (Chen et al. 2018), such as LBA-MM
(LBAM), Full-TST (FTST), and Full-MM (FMM). Among
all these methods, MiViSE, SLR and our method are view-
based, and the rest are voxel-based.

As shown in Table 7 and Table 8, Y2Seq2Seq outper-
forms all the other methods in terms of all metrics. Particu-

Table 10: The comparison in 3D shape captioning under
ShapeNet subset.

Model M R C B-1 B-2 B-3 B-4
SLR-N 0.11 0.24 0.05 0.40 0.17 0.08 0.04
MiV-N 0.16 0.36 0.14 0.61 0.35 0.21 0.12
S2VT 0.21 0.45 0.27 0.67 0.43 0.26 0.15

Our1-N 0.22 0.41 0.29 0.57 0.34 0.22 0.17
Our1 0.29 0.56 0.71 0.80 0.65 0.53 0.46

Our2-N 0.22 0.41 0.30 0.57 0.34 0.23 0.18
Our2 0.30 0.56 0.72 0.80 0.65 0.54 0.46

Our3-N 0.22 0.41 0.31 0.58 0.35 0.24 0.19
Our3 0.29 0.55 0.70 0.80 0.64 0.52 0.44

larly, our results significantly outperform other methods un-
der the ShapeNet subset. For example, our result is about 6
times better in “S2T” retrieval and about 4 times better in
“T2S” retrieval than the state-of-the-art FMM. We believe
these experimental improvements come from our novel way
of bridging the semantic meaning embedded in the cross-
modal sequences in the process of joint reconstruction and
prediction by the two coupled branches.

Furthermore, we visualize the “S2T” and the “T2S” re-
trieval results under the primitive subset and the ShapeNet
subset in Fig. 2 (a) and Fig. 2 (b) respectively, where
the Top-5 retrieved items with their distances to the query
are shown. The retrieved 3D shapes or descriptions highly
match their description queries or 3D shape queries. The re-
trieved results show that our learned discriminative repre-
sentations can jointly represent 3D shapes and descriptions
in the same cross-modal space. In addition, they are able
to distinguish the subtle difference between shapes and de-
scriptions. For example, the retrieved shapes in “T2S” re-
trieval under ShapeNet subset are all matching the descrip-
tion query, but there are still some style and appearance dif-
ferences among them. Similarly, the retrieved descriptions
in “S2T” retrieval under the primitive subset are all match-
ing the 3D shape query, but the emphasized characteristics
of the query 3D shape are still different.
3D shape captioning. To further evaluate the performance
of Y2Seq2Seq, we compare our method with the state-of-
the-art methods under the primitive subset and the ShapeNet
subset in 3D shape captioning. For the methods which can
directly generate descriptions for 3D shapes, we will directly
evaluate the generated descriptions according to the ground
truth descriptions. Otherwise, we will use the feature of a
3D shape to retrieve the nearest description of the 3D shape
as the generated description, where we use the suffix “-N”
to denote these results. Note that the captioning results of
different methods with either retrieval or generation are pro-
duced by the same trained parameter in cross-modal retrieval
experiments.

Under the primitive subset and the ShapeNet subset,
we compare our method with SLR (Shen et al. 2018),
MiV (Song and Soleymani 2018), and S2VT (Venugopalan
et al. 2015). We show our results obtained by voxel grids
with different resolutions, such as 323, 643 and 1283 under
the ShapeNet subset, where these three sets of results are
denoted as “Our1”, “Our2” and “Our3” respectively in Ta-
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(3.29)  @1-It is a large blue ping pong table. It has a net that can be placed in the center.
(3.37)  @2-A blue colored table tennis table which has a metal frame.
(3.48)  @3-A blue frame table with peach top and a glass partition in the center of the 
                    table along its length with blue frame work around it.
(3.53)  @4-A blue flat surfaced unit standing on four short legs, of blue translucent plastic 
                    material, molded in one solid piece, having no separate parts.
(3.55)  @5-This is a blue ping ball table with a blue glass top and brown legs.

...

A wooden and 
metal chair 

that is brown 
and grey in 

color.

(1.97)
 @1-

(2.04)
 @2-

... ... ... ... ...

(2.23)
 @3-

(2.24)
 @4-

(2.25)
 @5-

Query Retrieved

S2
T

T2
S

(b)

(1.823660)
 @5-

RetrievedQuery
S2

T
T2

S

...

(3.331241)  @1-The large pyramid is tall narrow yellow.
(3.334018)  @2-The large pyramid is high narrow yellow.
(3.334379)  @3-The large pyramid is tall thin yellow.
(3.336639)  @4-The pyramidal shape is large tall narrow yellow.
(3.337065)  @5-The large pyramid is high thin yellow.

(a)

A large short 
wide green 

sphere

(1.733757)
 @1-

(1.811521)
 @2-

(1.817731)
 @3-

(1.820622)
 @4-

... ... ... ... ...

Figure 2: The demonstration of “S2T” and “T2S” retrieval results under (a) primitive subset and (b) ShapeNet subset. The top
5 retrieved results with their distances to the query are shown.

...

The cylindrical shape is 
large teal.
The cylindrical shape is 
large teal.

... The green rectangular 
shape is squat.
The green rectangular 
shape is squat wide.

...

A rectangular table with a green top and 
brown leg table.

(a)

... A brown, wooden chair with a back rest 
and a black cushion.
Brown colored, wooden, rest chair. Four 
legs and L shaped seat.

(b)

A table made of brown wood that has a 
colorful top made of green patterns.

...

A gray chair with a white cushion and a 
gray seat,two seater space with back rest
and arm rest.
Rectangular shaped wooden chair with 
sponge grey,black and brown in color,two
seater space with back rest and arms rest.

...

The conical shape is 
nude colored.
The large conical shape
is nude-colored.

Figure 3: The demonstration of generated descriptions un-
der (a) primitive subset, (b) ShapeNet subset, where the
ground truth descriptions are shown in green (second one
of each pair of descriptions).

ble 10. We use the description predictor PW in the 3D shape
branch S to generate a description of a 3D shape. In addi-
tion, we also show our results obtained by nearest neighbor
retrieval.

From the results shown, we can see that all our results ob-
tained by either retrieval or generation under the primitive
subset are the best. In addition, our results with different
voxel resolutions obtained by either retrieval or generation
under the ShapeNet subset are also the best among all com-
petitors.

In addition, although all our results obtained by genera-
tion are good, they are always no better than the ones by
retrieval under the primitive subset, while this phenomenon
is reversed under the ShapeNet subset, as shown by the re-
sults with different voxel resolutions. This is because the
primitive subset only contains simple primitive shapes that
are described by simple sentences with similar patterns.
Y2Seq2Seq obtains good cross-modal retrieval results, as
shown in Table 7, which makes the retrieved descriptions al-
most the same as the ground truth. In contrast, the ShapeNet
subset contains complex shapes with complex descriptions.
It is not easy to retrieve the right description. However,
Y2Seq2Seq can still generate some words for the key char-
acteristics of the shape, such as color and material, which
leads to better results with generation.

Moreover, we find the voxel resolution only slightly in-
creases the results with both retrieval and generation. This

phenomenon is similar to the one in the “T2S” retrieval
in Table 6, where higher resolution mainly contributes to
“S2T” retrieval but only provides a small contribution to
“T2S” retrieval.

Finally, we also visualize the description generated by
Y2Seq2Seq under the primitive subset and the ShapeNet
subset in Fig. 3. Compared to the ground truth, the 3D shape
branch S of Y2Seq2Seq can generate high quality descrip-
tion for the characteristics embedded in the view sequence
according to the knowledge learned from joint reconstruc-
tion and prediction in the two branches. Y2Seq2Seq gen-
erates almost the same descriptions as the ground truth un-
der the primitive subset, while it generates descriptions with
similar semantic meanings to the ground truth under the
ShapeNet subset. The generated descriptions successfully
represent the class, shape, color, and materials of the 3D
shapes, which indicates that Y2Seq2Seq can jointly under-
stand 3D shapes and text quite well.

Conclusions
To resolve the issue of cubic complexity of 3D voxel grids
for 3D-Text cross-modal representation learning, we pro-
pose Y2Seq2Seq as a view-based model to learn cross-
modal representations by joint reconstruction and prediction
of view and word sequences. The novel coupled “Y”-like
Seq2Seq structures effectively bridge the semantic mean-
ing embedded in the 3D shape and text modalities by si-
multaneously reconstructing within the same modality and
predicting across modalities. In addition, more detailed dis-
criminative information can be successfully employed to
further increase the discriminability of learned cross-modal
representations by our novel hierarchical constraints. Our
experimental results show that Y2Seq2Seq is able to learn
more discriminative cross-modal representations from high-
resolution voxels for 3D-Text cross-modal retrieval and 3D
shape captioning compared to the competing state-of-the-art
techniques.
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Häusser, P.; Mordvintsev, A.; and Cremers, D. 2017. Learn-
ing by association - A versatile semi-supervised training
method for neural networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 626–635.
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