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Abstract

Social recommendation, which aims at improving the per-
formance of traditional recommender systems by consider-
ing social information, has attracted broad range of interests.
As one of the most widely used methods, matrix factoriza-
tion typically uses continuous vectors to represent user/item
latent features. However, the large volume of user/item latent
features results in expensive storage and computation cost,
particularly on terminal user devices where the computation
resource to operate model is very limited. Thus when taking
extra social information into account, precisely extracting K
most relevant items for a given user from massive candidates
tends to consume even more time and memory, which im-
poses formidable challenges for efficient and accurate recom-
mendations. A promising way is to simply binarize the latent
features (obtained in the training phase) and then compute the
relevance score through Hamming distance. However, such a
two-stage hashing based learning procedure is not capable of
preserving the original data geometry in the real-value space
and may result in a severe quantization loss. To address these
issues, this work proposes a novel discrete social recommen-
dation (DSR) method which learns binary codes in a unified
framework for users and items, considering social informa-
tion. We further put the balanced and uncorrelated constraints
on the objective to ensure the learned binary codes can be
informative yet compact, and finally develop an efficient op-
timization algorithm to estimate the model parameters. Ex-
tensive experiments on three real-world datasets demonstrate
that DSR runs nearly 5 times faster and consumes only with
1/37 of its real-value competitor’s memory usage at the cost
of almost no loss in accuracy.

Introduction
Online social networks have become an important source to
provide a huge amount of timely and valuable information
for understanding social behaviors and inferring personal
preferences. Recommender systems, though are designed to
help users discover interesting products or services, always
suffer from the lack of useful information for understanding
user preferences. Therefore, when recommender systems
(which urge for data) meet online social networks (which
offer useful data), their combination naturally gives birth
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to social recommendation (Ma et al. 2011; Ma et al. 2008;
Tang, Hu, and Liu 2013; Wang et al. 2016) that aims at im-
proving the accuracy of traditional recommendation meth-
ods through mitigating the data sparsity issue.

However, the ever-growing scales of various web ser-
vices bring social recommendation a serious concern on the
computational efficiency in terms of time and space. More
concretely, matrix factorization based collaborative filtering
(CF), one of the most widely adopted techniques in real-
world applications, factorizes an n×m user-item rating ma-
trix and maps both users and items into a r-dimensional
(r ≪ min(n,m)) real-value latent space. A user’s prefer-
ence for an item can be approximated by the inner prod-
uct of their real-valued latent vectors. As a result, the num-
ber of parameters to be stored grows linearly with the num-
ber of users or items. This becomes very challenging when
the recommender systems have millions or even billions of
users/items, which prevents the model from being deployed
to mobile devices. Moreover, to further generate the top-K
preferred items for each user, it’s necessary to first compute
users’ preferences for all items, and then sort the preference
scores by a descending order, whose computation complex-
ity, i.e., O(mnr+mn logK), becomes a critical bottleneck
in terms of efficiency especially when m or n is quite large.
Both issues become even more severe on social recommen-
dation tasks which need extra storage and computation to
aggregate social information from social ties.

One simple solution is to distribute the calculations with
parallel computation techniques (Zhou et al. 2008), which is
not our focus in this work. Another promising option is to
encode real-valued latent vectors into compact binary codes
as they cost less memory than real-valued vectors and it is
much more efficient to compute the inner product by bit-
wise operations such as Hamming distance. Furthermore,
by exploiting special data structures for indexing all items,
the computational complexity of generating top-K preferred
items is sub-linear or even constant (Wang, Kumar, and
Chang 2010; Muja and Lowe 2009). This triggers us to pro-
pose a novel framework of Discrete Social Recommendation
(DSR) which learns binary codes by taking social informa-
tion into consideration. However, learning the binary codes
is generally NP-hard (Håstad 2001) due to its discrete con-
straints. Given this NP-hardness, a two-stage optimization
procedure, which first solves a relaxed optimization problem
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through ignoring the discrete constraints and then binarizes
the results by thresholding, becomes a compromising solu-
tion. Nevertheless, as pointed out by Zhang et al. (Zhang et
al. 2016), this solution suffers from a large quantization loss
for failing to preserve the original data geometry (user-item
relevance and user-user relationship) in the continuous real-
valued vector space. To this end, the proposed DSR adopts
a unified framework which optimizes the user/item binary
codes in a way that can preserve the intrinsic user-item rel-
evance and user-user relationship. Moreover, DSR is able
to obtain informative yet compact binary codes in a lim-
ited size through satisfying additional balanced and uncor-
related constraints. To solve the discrete optimization with
balanced and uncorrelated bits in a tractable way, we de-
velop an efficient alternative optimization algorithm which
solves several mixed-integer programming subproblems in
an iterative process. Extensive experiments are carried out
on real-world datasets to validate the recommendation accu-
racy and retrieval time of our proposed DSR method.

As a summary, we make the following contributions:

• We propose a novel discrete social recommendation
(DSR) for compact representations. DSR is able to learn
informative yet compact user/item binary codes for effi-
cient user-item relevance and user-user relationship cal-
culation and significantly reduce the storage cost in the
scenario of large-scale social recommendation.

• We develop an efficient learning algorithm to solve the
discrete optimization problem in a tractable way, with bal-
anced and uncorrelated constraints being considered si-
multaneously.

• We conduct extensive experiments on three real-world
datasets to demonstrate that DSR runs roughly 5 times
faster and consumes down to 1/37 of its real-value com-
petitor’s memory usage at the cost of almost no loss in
accuracy.

To the best of our knowledge, DSR is the first work that
learns binary representations in social recommendation. The
proposed method is potentially applicable to a wide range of
other social recommendation tasks.

Related Work
In this section, we briefly review related work on social rec-
ommendation and binary code collaborative filtering.
Social Recommendation. The data sparsity and cold start
problem are two important reasons deteriorating the perfor-
mance of traditional recommender systems (Liu et al. 2017).
With the booming of data in social media, a large amount
of valuable social information can be utilized for effectively
solving these problems through modeling the mutual influ-
ences between users (Wang et al. 2017b), which motivates
the advent of social recommendation that aims to improve
conventional recommender systems through utilizing social
information. Specifically, Ma et al. (2008) combines collab-
orative filtering with social information by proposing a prob-
abilistic matrix factorization model which factorizes user-
item rating matrix and user-user linkage matrix simultane-
ously. They later present another probabilistic matrix fac-

torization model which aggregates a user’s own rating and
her friends’ ratings to predict the target user’s final rating
on an item. Jamali and Ester in their work (Jamali and Es-
ter 2010) introduce a novel probabilistic matrix factoriza-
tion model based on the assumption that users’ latent fea-
ture vectors are dependent on their social ties’. Last but not
least, Wang et al. (2016; 2017a) propose to distinguish dif-
ferent tie types in social recommendation through present-
ing a method which can simultaneously classify strong and
weak ties in a social network with respect to optimal rec-
ommendation accuracy as well as learn the latent vectors
for users and items. We remark that all these models are
learned in a continuous space, which in practice imposes se-
vere challenges in the storage and computation cost when
the number of users or items becomes large enough. The
proposed discrete representation method could be easily ap-
plied for the above model.

Binary Code Collaborative Filtering . As the scale of so-
cial media data becomes larger and larger, the efficiency and
scalability of recommendation methods are gradually draw-
ing more attention. Collaborative filtering can essentially be
treated as a similarity search process, the methodology of
learning the binary codes (Salakhutdinov and Hinton 2009;
Grauman and Fergus 2013) can serve as a promising way
to enhance the efficiency and scalability of recommenda-
tion. Existing works on binary code collaborative filtering
can be categorized into two groups: two-stage method and
single-stage (i.e., unified framework) method. In general,
two-stage method first obtains the user/item real-valued rep-
resentations in a separate procedure, then performs the pro-
cess of binarization on the learned representation to get
the binary codes for users/items. This method may run the
risk of ignoring the original data geometry and produc-
ing large quantization loss. Typical models include utiliz-
ing Locality-Sensitive Hashing (Gionis, Indyk, and Mot-
wani 1999) to generate binary codes (Das et al. 2007), ran-
domly projecting (Karatzoglou, Smola, and Weimer 2011)
or rotating (Zhou and Zha 2012) features to obtain binary
codes and imposing uncorrelated bit constraints to get bi-
nary codes (Liu et al. 2014) etc. Single-stage method (Zhang
et al. 2016; Zhang, Lian, and Yang 2017; Lian et al. 2017;
Zhang et al. 2018; Liu et al. ), demonstrates its superiority
over two-stage method by learning the binary codes for users
and items in a unified framework so that the intrinsic geom-
etry in real-valued vector space can be maintained and the
quantization error can be dramatically reduced. However, all
existing single-stage models do not take the important social
information into account and thus fail to handle our problem
in this work.

Discrete Social Recommendation
In this section, we introduce some preliminaries, present our
proposed discrete social recommendation (DSR) which rep-
resents users and items by r-bit binary codes in a social rec-
ommendation setting, and then elaborate on the optimization
procedure of DSR. Finally, we elucidate the model initial-
ization method which has a large impact on a discrete model
and the way to deal with cold-start issue.

209



Preliminaries
Given a user-item rating matrix R of size n×m, matrix fac-
torization based collaborative filtering aims to decompose
R into two matrices, i.e., Pr×n and Qr×m which represent
the user preferences and the item preferences respectively,
such that R ≈ PᵀQ. The ith column of P, denoted as Pi,
represents the latent feature vector of user i. Similarly, the
jth column of Q, denoted as Qj , represents the latent fea-
ture vector of item j. As such, the rating of user i for item
j is approximated by the dot product of Pi and Qj , i.e.,
Rij ≈ Pᵀ

i Qj .
When considering social relationships among users (Ma

et al. 2008), there comes an additional social relation ma-
trix S of size n × n whose entry for row i and column k,
i.e., Sik, measures the relationships (e.g., degree of trust) be-
tween user i and user k. The approximation of S is similar
to that of R through introducing a third latent feature matrix
Tr×n, i.e., social factor matrix, satisfying Sik ≈ Pᵀ

i Tk:

min

n∑
i=1

∑
Tk∈Ni

(Sik −Pᵀ
i Tk)

2,

where Ni is the set of neighbors (direct connections) latent
vectors of user i. Thus the overall objective is to minimize
the squared loss for observed ratings Ω and social relation-
ships Ψ:

argmin
P,Q,T

∑
(i,j)∈Ω

(Rij −Pᵀ
i Qj)

2 + α0

∑
(i,k)∈Ψ

(Sik −Pᵀ
i Tk)

2

+ α1∥P∥2F + α2∥Q∥2F + α3∥T∥2F , (1)
where ∥ · ∥F denotes the Frobenius norm of a matrix,
α0 is the hyperparameter that controls the relative impor-
tance of the rating matrix and the social relation matrix and
α1, α2, α3 > 0 are hyperparameters which control the trade-
off between low loss and low model complexity. In this
work, we follow Ma et al. (2008) and factorize user-item rat-
ing matrix and user-user relationship matrix simultaneously,
assuming that user rating information and user social infor-
mation should share the same user latent feature vectors.

Discrete Social Recommendation (DSR)
When the dot product of those learned real-valued latent
vectors is used for the purpose of similarity search, the to-
tal computation complexity is O(mnr + mn log k), which
may result in a crucial efficiency issue when the number of
users n or the number of items m becomes quite large. Thus
we propose discrete social recommendation (DSR) model to
replace real-valued latent feature vectors with binary codes
such that the computation efficiency of dot product between
user and item binary codes can be improved through the
Hamming distance. Formally, the dot product between the
user and item binary codes, bi ∈ {±1}r and dj ∈ {±1}r,
can be formulated as

bidj = 2H(bi,dj)− r,

where H(·, ·) =
∑r

k=1 I(bik = djk) is the Hamming dis-
tance between two binary codes and I(·) denotes the indica-
tor function that returns 1 if the element is true and 0 other-
wise. Specifically, H(bi,dj) = 0 if all the bits between bi

and dj are different and H(bi,dj) = r if all the bits are the
same. Thanks to the high efficiency of bit operations, sim-
ilarity search through computing Hamming similarity can
be accelerated up to logarithmic or even constant time com-
plexity (Muja and Lowe 2009; Wang, Kumar, and Chang
2012).

Similar to the problem of conventional social recommen-
dation in Equation (1), we can use the above similarity score
to reconstruct the observed user-item ratings and user-user
links. In order to maximize the information each bit car-
ries and to assure the compactness of the learned binary
codes, we impose the de-correlated constraint on the binary
codes to guarantee the independence among different bits
and place balance constraint on the learning process to en-
sure that the each bit carries as much information as possi-
ble. Given the observed user-item ratings index Ω and user-
user links index Φ, the objective function of DSR model
could be formulated as:

argmin
B,D,F

∑
(i,j)∈Ω

(Rij − bᵀi dj)
2 + α0

∑
(i,k)∈Ψ

(Sik − bᵀi fk)
2

(2)

s.t. B ∈ {±1}r×n,D ∈ {±1}r×m,F ∈ {±1}r×n

B1n = 0,D1m = 0,F1n = 0 (3)
BBᵀ = nIr,DDᵀ = mIr,FF

ᵀ = nIr, (4)

where bi ∈ {±1}r, dj ∈ {±1}r and fk ∈ {±1}r repre-
sent user binary codes, item binary codes and social binary
codes respectively. We further stack the binary codes by col-
umn to form matrices, i.e., B ∈ {±1}r×n, D ∈ {±1}r×m,
F ∈ {±1}r×n. Due to the binary constraint, the regulariza-
tion ∥B∥2F + ∥D∥2F + ∥F∥2F in Equation (1) becomes an
constant and hence is canceled. Equation (3) and (4) guar-
antees the informativeness and compactness of the learned
binary codes. It is obvious that the proposed DSR model
follows the same assumption that rating matrix R and social
relation matrix S share the same user binary codes.

Optimizing DSR is essentially a challenging discrete op-
timization problem, since it is generally NP-hard. Specif-
ically, finding the global optimum solution needs to in-
volve O(2(2rn+rm)) combinatorial search for the binary
codes (Håstad 2001). Accordingly, we minimize this objec-
tive function in a computationally tractable way by soft-
ening the balance and de-correlated constraints (without
discarding the discrete constraints B ∈ {±1}r×n,D ∈
{±1}r×m,F ∈ {±1}r×n). To achieve this, we first define
the delegate continuous variables X,Y,Z, where X ∈ B =
{X ∈ Rr×n|X1 = 0,XXᵀ = nI}, Y ∈ D = {Y ∈
Rr×m|Y1 = 0,YYᵀ = mI}, Z ∈ F = {Z ∈ Rr×n|Z1 =
0,ZZᵀ = nI}. Then the balanced and de-correlated con-
straints on users and items could be softened by d(B,B) =
minX∈B||B−X||F , d(D,D) = minY∈D||D−Y||F , and
d(F,F) = minZ∈F ||F − Z||F respectively. Thus, we for-
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mulate the tractable objective function of DSR as follows:

argmin
B,D,F

∑
(i,j)∈Ω

(Rij − bᵀ
i dj)

2 + α0

∑
(i,k)∈Σ

(Sik − bᵀ
i fk)

2

+ β1d
2(B,B) + β2d

2(D,D) + β3d
2(F,F) (5)

s.t. B ∈ {±1}r×n,D ∈ {±1}r×m,F ∈ {±1}r×n,

where β1, β2, β3 are tuning parameters. We can find that
large values of β1, β2 and β3 will force d2(B,B) =
d2(D,D) = d2(F,F) = 0 when DSR can be opti-
mized under some feasible constraints. On the other side,
the comparative small values of β1, β2 and β3 provide
a certain discrepancy between B and X, D and Y, F
and Z, making Equation (5) more flexible. Note that
the norm of binary codes are constants and do not take
any effect on regularization terms, we can replace the
original regularization d2(B,B), d2(D,D), d2(F,F) with
tr(B⊤X), tr(D⊤Y), tr(F⊤Z) for the ease of optimization,
where tr(·) denotes the trace of a matrix. Besides, the above
Equation (5) dose not discard the discrete constraint and still
perform a discrete optimization over B,D,F.

Optimizing DSR model

We employ alternating optimization strategy to solve the
problem. Specifically, we take turns to update B,D,F and
X,Y,Z, given others fixed. Next we elaborate on how to
solve each of the subproblems. Algorithm 1 depicts the de-
tails of the proposed DSR model.

Algorithm 1 Discrete Social Recommendation
Input:

{Rij |i, j ∈ V}, {Sij |i, j ∈ N}: observed user-item rat-
ings and user-user similarity in trust relationship.

1: Initialize B, D, F and X, Y, Z by Equation (4)
2: repeat
3: for i = 1 to n do
4: repeat
5: for k = 1 to r do
6: Update bik via the Equation (7).
7: end for
8: until converge
9: end for

Update D and F according to Equation (10) and Equa-
tion (12) respectively.

10: Update X according to Equation (14).
11: Update of Y and Z in a similar way with X.
12: until converge
13: return B,D,F.

Optimizing B. We update B via fixing D, F, X, Y, Z.
As the objective function sums over users independently, the
updating procedure can be conducted through updating each
bi in parallel. Ignoring the unrelated terms such as

∑
i,j R

2
ij

in Equation (2), we need to solve the following optimization

problem:

argmin
bi∈{±1}r

bᵀ
i (

∑
j∈Vi

djd
ᵀ
j )bi − 2(

∑
j∈Vi

Rijd
ᵀ
j )bi − 2β1x

ᵀ
ibi,

+ α0b
ᵀ
i (

∑
j∈Ni

fjf
ᵀ
j )bi − 2α0(

∑
j∈Ni

Sijf
ᵀ
j )bi (6)

where Vi denotes the set of items rated by user i and Ni

is the set of users having social relationships with user i.
Due to the discrete constraints, we adopt a bitwise learning
method, i.e., Discrete Coordinate Descent (Shen et al. 2015).
In particular, denoting bik as the k-th bit of bi and bik̄ as the
other codes excluding bik, we update bik bit by bit with bik̄
fixed. Then, we update bik based on the following rule:

bik = sgn
(
K(b̂ik, bik)

)
, (7)

where b̂ik =
∑

j∈Vi
(Rij −dᵀ

jk̄
bik̄)djk +α0

∑
j∈Ni

(Sij −
fᵀ
jk̄
bik̄)fjk+β1xik. and K(i, j) = i if i ̸= 0, and K(i, j) =

j otherwise and sgn(·) is a sign function mapping its input
value to 1 or -1. Note that bik should only be updated when
b̂ik is not zero. To efficiently compute b̂ik, we rewrite its
updating rule as:

b̂ik =
∑
j∈Vi

Rijdjk −
∑
j∈Vi

dᵀ
jbidjk +

∑
j∈Vi

bik + β1xik (8)

+α0

∑
j∈Ni

Sijfjk − α0

∑
j∈Ni

fᵀj bifjk + α0

∑
j∈Ni

bik,

Optimizing D. Similar to the procedure of optimizing B,
we optimize D by fixing B, F, X, Y and Z. Discarding
terms irrelevant to di, we can rewrite the objective function
as follows:

argmin
di

dᵀ
i (

∑
j∈Vi

bjb
ᵀ
j )di − 2(

∑
j∈Vi

Rjib
ᵀ
j )di − 2β2y

ᵀ
i di.

(9)

We can derive the updating rule of dik as follows:

d̂ik =
∑
j∈Vi

Rijbjk −
∑
j∈Vi

bᵀ
jdibjk +

∑
j∈Vi

dik + β2yik,

dik = sgn
(
K(d̂ik, dik)

)
. (10)

Optimizing F. Similarly, we can learn binary code for F by
solving:

argmin
fi

fᵀi (
∑
j∈Ni

bjb
ᵀ
j )fi − 2(

∑
j∈Ni

Sjib
ᵀ
j )fi − 2β3z

ᵀ
i fi,

(11)

Based on the coordinate-descent approach, we update fik
according to:

f̂ik =
∑
j∈Vi

Sijbjk −
∑
j∈Vi

bᵀ
j fibjk +

∑
j∈Vi

fik + β3zik

fik = sgn
(
K(f̂ik, fik)

)
. (12)
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Optimizing X. When fixing B, learning X could be solved
via optimizing the following problem:
argmax

x
tr(BᵀX), s.t., X1 = 0,XXᵀ = nI. (13)

An analytic solution could be obtained via the aid of Singu-
lar Value Decomposition (SVD). Denote B̄ as a row-wise
zero-mean matrix, where B̄ij = Bij − 1

n

∑n
j=1 Bij . As

we can decompose B̄ through B̄ = Pb

∑
b Q

ᵀ
b , where Pb

and Qb are the left and right singular vectors of B̄, then the
closed-form updating rule of X can be written as follows:

X =
√
n[PbP̂b][QbQ̂b]

ᵀ, (14)

where P̂b are eigenvectors corresponding to zero eigenval-
ues and Q̂b can be obtained by Gram-Schmidt orthogonal-
ization based on [Qb1]. We could update Y and Z in a sim-
ilar way with X.
Computational Complexity. The proposed method con-
verges quickly in practice, which took about 2 ∼ 4 itera-
tions. For each iteration, the overall computational complex-
ity of B, D and F subproblem is O

(
#iter(m + n)r2

)
. In

practice, #iter is usually 2 ∼ 5. The overall complexity of
X, Y and Z is O

(
r2m

)
and O

(
r2n), respectively.

Initialization. Since DSR solves a mixed-integer non-
convex optimization problem, initialization plays an impor-
tant role in achieving a good convergence and ideal local op-
timum. Here we introduce an efficient initialization strategy
inspired by (Zhang et al. 2016). We relax the binary con-
straints in Equation (5) as follows:

argmin
U,V,T

∑
i,j

(Rij − uT
i vj)

2 + α
∑
i,j

(Sij − uT
i tj)

2

+ β1||U||2F + β2||V||2F + αβ3||T||2F
+ β1d

2(U,U) + β2d
2(V,V) + β3d

2(T, T ),
(15)

This initialization is quite similar to the traditional social
recommendation in equation (1) except the balanced and de-
correlated constraints imposed on real-valued U, V and T.
To solve it, we first randomly initialize real-valued U, V, T
and find feasible initializations for X, Y and Z by optimiz-
ing them respectively. Assuming the solution is (U∗, V∗,
T∗, X∗, Y∗, Z∗), then we can initialize the parameters in
Equation (5) as:

B = sgn(U∗),D = sgn(V∗),F = sgn(T∗),

X = X∗,Y = Y∗,Z = Z∗. (16)
The effectiveness of the proposed initialization algorithm is
illustrated in Figure 16(left).
Learning Binary Codes in Cold-start Problem. By tak-
ing social influence into consideration, our proposed DSR
model can handle cold-start problem when users have no rat-
ing history in the training set but are associated with social
link information. For a new user i, we could learn the binary
codes according to its social tie j’s (j ∈ Ni) binary codes
fj . The objective could be formulated as:

argmin
bi

∑
i

∑
j∈Ni

(Sij − bᵀ
i fj)

2, s.t. B1n = 0,BBᵀ = nIr.

.

Experiments
In this section, we carry out extensive experiments on sev-
eral real-world datasets and compare our proposed model
with several state-of-the-art algorithms to demonstrate the
advantages of the proposed DSR approach.

Dataset Rating# User# Item# Ties(edges)#
FilmTrust 35497 1508 2071 1853
CiaoDVD 72700 17615 16121 40000
Epinions 664824 49290 139738 487181

Table 1: Detailed statistics of the datasets.

Datasets The evaluations are conducted on three public
datasets from different real-world websites.
Epinions: This dataset is collected in a 5-week crawl
(November/December 2003) from a product review website
1. Users in Epinions are allowed to specify scores from 1
to 5 to rate items, and they can also establish relations with
others.
FilmTrust: This dataset is extracted from the entire
FilmTrust website 2 in June, 2011. The dataset contains user-
user friendships and user-movie ratings.
CiaoDVD: This dataset is crawled from the entire category
of DVDs on a UK DVD community website 3 in December,
2013. The dataset contains trust relationships among users
as well as their ratings on DVDs.

The detailed statistics of the datasets is summarized in Ta-
ble 1. When a user rates an item multiple times, we merge
them into one rating by averaging the duplicate rating scores.
For the in-matrix recommendation task, we randomly sam-
ple 80% ratings as training and the rest 20% as testing for
each user. For the out-matrix recommendation task, we ran-
domly sample 80% users and put all ratings made by them
into the training set, and then put the ratings made by the
rest users into the test set. We repeat for 5 random splits and
report the average results of each algorithms.

Evaluation Metrics To validate the performance of top-
K recommendation, we truncate the ranking list at position
K and then evaluate the ranking list using Normalized Dis-
counted Cumulative Gain (NDCG) and Recall. NDCG is
a weighted sum of the degree of relevance for the ranked
items. This metric takes into account both ranking preci-
sion and the positions of items in a ranking list. NDCG is
position-sensitive, and it assigns higher score to “hits” at
higher positions. The larger value of NDCG indicates higher
accuracy of recommendation performance. We adopt the av-
erage NDCG with different cut off over all users as the final
metric (denoted as NDCG@K). Recall, on the other hand,
quantifies the fraction of consumed items that are in the top-
K ranking list sorted in a descending order by their esti-
mated relevance scores. We also test the proposed model
and other comparative methods in term of the Recall with
different cut off over all users (denoted as recall@K).

1http://www.epinions.com/
2http://trust.mindswap.org/FilmTrust/
3http:// dvd.ciao.co.uk
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Figure 1: Performance of NDCG@K w.r.t., code length ranging from 8 to 32 in the in-matrix recommendation task.
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Figure 2: Performance of Recall@K w.r.t., code length ranging from 8 to 32 in the out-matrix recommendation task.

Comparative Methods We compare our method with
several state-of-the-art approaches including binary code
based collaborative filtering without considering any social
information (DCF) and real-valued based social collabora-
tive filtering method (CFSR) as well as its variant.
DCF: The discrete collaborative filtering (DCF) is the first
one-stage method directly optimizing the binary codes in
collaborative filtering (Zhang et al. 2016). This method
outperforms almost all two-stage binary code learning
methods for collaborative filtering. We note that DCF
directly tackles a discrete optimization problem for seeking
informative and compact binary codes without taking social
information into account so it is not designed for social
recommendation.
CFSR: The collaborative filtering for social recommenda-
tion model proposed by (Ma et al. 2008) which factorizes
user-item rating matrix and user-user linkage matrix si-
multaneously. This is a classic social recommendation
model widely adopted in many different applications. We
use CFSR as a baseline to demonstrate the performance
gap between real value representations and binary code
representations.

CFSRB: Here binary codes are derived from CFSR through
round-off binary quantization, which is a two-stage discrete
learning method. We take this method as a baseline to show
how quantization loss degrades the model’s performance
for two-stage binary code representations.
DSR: The proposed discrete social recommendation method
which directly learns informative yet compact binary codes
for users and items at the presence of social information.

We use grid search and 5-fold cross validation to find the
best parameters. The hyper-parameters α0 is tuned within
the range of [10−3, . . . , 102], β1, β2 are tuned within the
range of [10−5, . . . , 1], and β3 is tuned within the range
of [10−4, . . . , 101]. For baselines, we either adopt the op-
timal parameters reported in the original paper or choose
the best we can obtain in our experiments. All the exper-
iments are conducted on a computer equipped with an In-
tel(R) Core(TM) i5-7200U CPU @2.50GHZ, 16GB RAM
and 64-bit Windows 10 operating system.
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Figure 3: Efficiency comparison between DSR and CFSR w.r.t., TTC (minutes) where the code length ranges from 8 to 32 on
three datasets.
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Figure 4: Convergence curve of the overall objec-
tive function with/without initialization on the CiaoDVD
dataset(left). Sensitivity analysis of social parameter
α0(right).

Dataset CFSR DSR
Memory Reduction Memory

CiaoDVD 1.32MB ×36 38KB
FilmTrust 671KB ×34 20KB
Epinions 14.57MB ×37 407KB

Table 2: Memory usage of DSR and CFSR with the same
code length (32) on three datasets.

Experimental Results

Comparison with State-of-the-arts. In Figure 1, we com-
pare DSR with the baseline methods whose code lengths
vary from 8 to 32 in terms of NDCG@K on three datasets.
From this figure, we can find that DSR considerably outper-
forms CFSRB on all datasets. Compared with CFSRB, DCF
can even achieve comparable performance on CiaoDVD and
Filmtrust datasets. This is consistent with the findings in
(Zhang et al. 2016) that the direct discrete optimization is
stronger than two-stage approaches, and the balanced uncor-
related constraints on the binary codes are necessary for the
optimization. Besdies, DSR shows very competitive perfor-
mance compared with CFSR. As the bit size increases, the
performance gap between DSR and CFSR shrinks quickly.
DSR is able to achieve the same performances with CFSR
when the bit size is set to 32. One possible reason is that
CFSR suffers from overfitting with the increasing latent fea-
ture vector dimensions, whereas binarizing the real-value
latent feature vectors can alleviate the model’s overfitting
problem. This observation again verifies the effectiveness
of the proposed DSR. Finally, DSR and CFSR demonstrate

consistent improvement over DCF which does not take so-
cial information into consideration. This performance boost
should be attributed to the benefit of utilizing social infor-
mation for recommendation.

Performance on Cold-Start Users. We further drill down
to the cold-start users. The comparison results with varying
lengths of binary codes in the out-matrix task (in which DCF
fails to make any recommendations and is therefore ignored)
are shown in Figure 2. Similar to the results in in-matrix
task, we observe that when code length is 32, DSR is able to
achieve the same performance as CFSR.

Sensitivity Analysis of Hyperparameter α0. Figure
4(right) shows the recommendation performance of DSR on
NDCG@10 regarding the relative importance of the rating
matrix and the social relation matrix. We can see that the per-
formance continuously improves as we increase α0 which
validates the advantage of utilizing social relationship for
recommendation. But the performance significantly drops as
we keep increasing the impact of the social relationship ma-
trix. The optimal setting of α0 varies from different datasets.

Time and Memory Usage. Figure 3 displays the experi-
ments on efficiency comparisons regarding test time cost
(TTC) on three datasets. First, we find that DSR achieves
significant speedups on all datasets w.r.t. TTC and is particu-
larly much faster than CFSR, indicating the great advantage
of binarizing the real-valued parameters adopted in CFSR.
Second, the acceleration ratio of DSR against CFSR is stable
on all the datasets with code lengths varying from 8 to 32.
This experiment indicates that DSR is a suitable model for
large-scale social recommender systems where the retrieval
time for items is restricted within a limited time quota.

Last but not least, Table 2 shows the memory usage (stor-
ing the whole model) of DSR and CFSR with the same code
length. It is obvious that DSR significantly reduces the mem-
ory storage of model for 37 times within the same dimen-
sion. The memory cost of DSR is less than 1M for storing
binary codes from all three datasets. These results imply that
DSR can adapt to some resource-limited scenarios, e.g., mo-
bile devices.

Conclusion
In this paper, we propose a discrete social recommenda-
tion (DSR) model to learn informative yet compact binary
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codes for users and items in the context of social recom-
mendation. Given the untractability (NP-hardness) of opti-
mizing DSR, we make some relaxations to the constraints
and develop an efficient alternating optimization method to
solve DSR through iteratively solving several mixed-integer
programming subproblems. Extensive experiments on three
real-world datasets demonstrate the advantages of our pro-
posed method against several competitive baselines in terms
of recommendation accuracy, retrieval cost and storage cost.
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