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Abstract

Machine learning applications, such as object detection and
content recommendation, often require training a single
model to predict multiple targets at the same time. Multi-task
learning through neural networks became popular recently,
because it not only helps improve the accuracy of many pre-
diction tasks when they are related, but also saves computa-
tion cost by sharing model architectures and low-level repre-
sentations. The latter is critical for real-time large-scale ma-
chine learning systems.
However, classic multi-task neural networks may degenerate
significantly in accuracy when tasks are less related. Previ-
ous works (Misra et al. 2016; Yang and Hospedales 2016;
Ma et al. 2018) showed that having more flexible architec-
tures in multi-task models, either manually-tuned or soft-
parameter-sharing structures like gating networks, helps im-
prove the prediction accuracy. However, manual tuning is not
scalable, and the previous soft-parameter sharing models are
either not flexible enough or computationally expensive.
In this work, we propose a novel framework called Sub-
Network Routing (SNR) to achieve more flexible parameter
sharing while maintaining the computational advantage of the
classic multi-task neural-network model. SNR modularizes
the shared low-level hidden layers into multiple layers of sub-
networks, and controls the connection of sub-networks with
learnable latent variables to achieve flexible parameter shar-
ing. We demonstrate the effectiveness of our approach on a
large-scale dataset YouTube8M. We show that the proposed
method improves the accuracy of multi-task models while
maintaining their computation efficiency.

Introduction
In recent years, neural network based multi-task learning
(Caruna 1993; Caruana 1998) has been successfully applied
to a variety of real-world applications such as real-time ob-
ject detection (Girshick 2015; Ren et al. 2015) and online
recommender systems (Bansal, Belanger, and McCallum
2016; Ma et al. 2018). Given a single input, these systems
usually predict multiple targets (or categories) at the same
time. They often have low-latency requirement at the serving
time. For example, a movie recommender system may need
to predict both the probability of a user clicking a movie
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and that of a user liking watching a movie, so as to decide
whether or not to recommend the movie in milliseconds. The
many concurrent tasks, the low latency requirement, and the
large exploration space of user and movie combination make
efficient multi-task learning highly desirable.

Figure 1(a) provides an illustration of a classic yet widely-
used multi-task learning model (Caruana 1998), which we
call Shared-Bottom (SB) model. This model consists of sev-
eral large low-level layers (Shared-Bottom) that are shared
by all tasks, and several small task-specific high-level lay-
ers built on top of the shared layers. Compared to having a
separate model for each task, the SB model learns a joint
representation of many related tasks which can not only im-
prove its model accuracy, but also save computation cost at
serving time by sharing low-level network layers.

Despite many successful use cases in multi-task learn-
ing, the classic SB model is known to suffer from signifi-
cant degeneration in accuracy when tasks are unrelated to
each other (Ma et al. 2018). Compared to single-task mod-
els, the SB model introduces inductive bias into the shared
low-level layers. When tasks are unrelated, the inductive
biases in different tasks will have conflicts and hurt the
model accuracy. A straightforward solution to this prob-
lem is to try multi-task models as well as single-task mod-
els, i.e., use multi-task models for related tasks and use
single-task models for unrelated tasks. Another solution is
to manually tune the network architecture to allow flexi-
ble parameter sharing, i.e., sharing more layers for highly
related tasks and less layers for less related ones. Indeed,
Misra et al. (2016) showed that different multi-task archi-
tectures are required to work well for two different related
pairs of tasks. Note that both solutions rely on the knowl-
edge of task relatedness. Despite the effort of several prior
works (Baxter 2000; Ben-David, Gehrke, and Schuller 2002;
Ben-David and Schuller 2003), efficiently measuring task
relatedness in real-world data still remains an open problem.
So, for both aforementioned solutions, we need to manually
tune model structures by training and optimizing directly on
the task accuracies. This usually does not scale for large-
scale multi-task problems.

A scalable way to address the conflict problem is to de-
sign a multi-task model with a flexible parameter sharing ar-
chitecture, e.g. gating structures, that can adapt to different
representation needs and level of task relatedness (Misra et
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Figure 1: Multi-task Models. (a) Shared-Bottom (SB) model: the conventional multi-task neural network model. (b) Sub-
Network Routing with Transformation (SNR-Trans) model: the shared layers are split into sub-networks and the connection
(dashed line) between the sub-networks is a transformation matrix multiplied by a scalar latent variable. (c) Sub-Network
Routing with Average (SNR-Aver) model: the shared layers are split into sub-networks and the connection (dashed line) between
the sub-networks is a weighted average with scalar latent variables as weights.

al. 2016; Yang and Hospedales 2016; Ma et al. 2018). How-
ever, prior approaches often are either of limited flexibility,
or flexible but computationally expensive due to incorporat-
ing too many substructures. For example, on the limited flex-
ibility side, Ma et al. (2018) split the shared layers into one
layer of sub-networks, and allowed only limited combina-
tions of sharing structures. On the other hand, on the flexi-
ble but expensive side, Misra et al. (2016) built a multi-task
model by connecting internal layers of single-task models,
making the model as costly as multiple single-task models;
Yang and Hospedales (2016) used a computationally expen-
sive tensor factorization technique.

We propose a novel framework called Sub-Network Rout-
ing (SNR) to achieve more flexible parameter sharing while
maintaining the computational advantage of the SB model.
SNR framework modularizes the shared low-level layers
into parallel sub-networks and learns their connections.
Modularization with sub-networks is known to improve the
trainability of multi-task models (Ma et al. 2018). The con-
nectivity between two sub-networks is controlled by a bi-
nary variable, which we call a coding variable. With sev-
eral layers of sub-networks and different coding variables,
we can model a large set of sharing architectures in multi-
task models. The computational advantage of the SB model
is also maintained because, the related tasks can utilize the
same sub-networks. Depending on how we connect sub-
networks, we designed two types of connections in the SNR
framework, namely SNR-Trans and SNR-Aver. SNR-Trans
(shown in Figure 1(b)) uses matrix transformations to trans-
form embeddings from lower-level sub-networks to higher-
level sub-network; SNR-Aver (shown in Figure 1(c)) takes
a weighted average of embeddings from lower-level sub-
networks to high-level sub-networks. Our framework is also
related to the area of Neural Architecture Search (NAS)
(Zoph and Le 2016) in the sense we are searching for a neu-
ral architecture that works best for our tasks at hand. Our

purpose of architecture search is for flexible parameter shar-
ing in multi-task learning. Therefore we can encode the ar-
chitecture space simply by the coding variables in the afore-
mentioned SNR frameworks. With modularization, we also
have a tradeoff between the flexibility of architecture space
and the difficulty of architecture search.

The next question is how to efficiently learn the connec-
tions between sub-networks. We model the coding variables
as latent random variables from parameterized distributions.
The distribution parameters can be trained by gradient-
based optimization together with the multi-task model pa-
rameters using the reparameterization trick (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014;
Louizos, Welling, and Kingma 2017). At serving time, we
use a deterministic estimator derived from the learned dis-
tribution to get the serving coding variables. This method
shares insights with recent works (Pham et al. 2018; Liu, Si-
monyan, and Yang 2018) of accelerating NAS, where they
showed that reusing model parameters across different net-
work architecture samples, and joint learning architectures
and model parameters can significantly speed up the process
of NAS. The latent variable method also provides additional
benefits with sparsity priors or penalties. We incorporate a
technique of L0 regularization for neural networks (Louizos,
Welling, and Kingma 2017) to further improve the accuracy
of SNR-Trans under limited serving model size.

We evaluate our method on a large public video dataset,
YouTube8M (Abu-El-Haija et al. 2016). This dataset con-
sists of 6.1 million of YouTube video IDs, each with (mul-
tiple) labels from a vocabulary of more than 3, 000 entities.
The input features of each video ID are pre-computed vi-
sual and audio features from the corresponding video. The
3, 000+ label classes are organized into 24 top categories.
We construct a multi-task learning dataset by treating the top
categories as tasks so each task is a multi-label classification
problem. Our experiment indicates that both SNR-Trans and
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SNR-Aver significantly outperform several baseline multi-
task models. With L0-regularization, we further reduce the
serving model size of SNR-Trans by up to 11%.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 introduces the proposed ap-
proach in details. Section 4 evaluates the proposed models
on YouTube8M dataset. Finally, Section 5 concludes the pa-
per.

Related Work
Flexible Parameter Sharing in Multi-task Learning
Several related works have been proposed to improve multi-
task learning when tasks are less related. Duong et al. (2015)
split the multi-task model into two single-task models and
added an L2 constraint between the difference of their
model parameters. The Cross-Stitch model (Misra et al.
2016) also split the multi-task model into single-task mod-
els and concatenated the low-level layers of different single-
task models weighted by learnable parameters. Yang and
Hospedales (2016) used a tensor factorization model to gen-
erate hidden-layer parameters for each task. All of the above
methods are not designed to maintain the computational ad-
vantage in the classic SB model. The model in Duong et
al. (2015) is specifically designed for two-task scenario and
cannot directly generalize to many-task scenario.

The closest work along this line is the MMoE model Ma
et al. (2018), which split the shared low-level layers into
sub-networks (called experts) and used different gating net-
works for different tasks to utilize different sub-networks.
Our approach generalizes this idea into a more flexible form.
Our approach also allows sparse connections among sub-
networks, which further improves the serving computational
efficiency.

Neural Architecture Search
Neural Architecture Search (NAS) (Zoph and Le 2016;
Zoph et al. 2017; Real et al. 2018; Pham et al. 2018;
Liu, Simonyan, and Yang 2018) is an emerging area of meth-
ods that automatically design neural architectures for a given
task by reinforcement learning or evolution strategy. Our ap-
proach searches for a multi-task model architecture that can
both alleviate the task conflicts and maintain the computa-
tion efficiency at serving time, which can be viewed as a
special case of NAS. We specifically care about the param-
eter sharing problem and have a simpler architecture space
within the proposed SNR framework.

The very first NAS method (Zoph and Le 2016) used a
double-loop approach to search model architectures: in the
outer-loop, an RNN-based controller generates model ar-
chitectures and is trained with reinforcement learning re-
warded by the accuracy of the generated architectures; in
the inner-loop, the generated architecture is trained on the
target task. As can be imagined, this process is very compu-
tational expensive. Several recent works (Pham et al. 2018;
Liu, Simonyan, and Yang 2018) have been proposed for ef-
ficient NAS by merging the double-loop process and learn-
ing the architecture and model parameters simultaneously.
Our approach shares similar insights with these efficient

NAS methods in the sense that we learn the architecture and
model parameters together. However, as we have a relatively
simpler architecture space, we can treat the coding variables
as latent random variables and use a simple parametrized
distribution (a continuous relaxation of Bernoulli distribu-
tion) as the policy to generate the architectures, which is
more efficient to train.

Approach
In this section, we introduce the proposed approach in de-
tails.

Sub-Network Modularization and Routing
We aim to improve multi-task learning models by flexi-
ble parameter sharing, where we want to make more re-
lated tasks share more model parameters and less related
tasks share fewer model parameters. Several previous works
(Misra et al. 2016; Ma et al. 2018) approached this goal by
splitting the whole neural network model into some forms
of sub-networks, allowing different tasks to utilize different
sub-networks. Ma et al. (2018) showed that such modular-
ization benefits the trainability of multi-task models. In this
work, we further extend this idea by modularizing each of
the shared low-level layers in the classic SB model into par-
allel sub-networks (see Figure 1 (b) and (c)).

Based on such modularization, we can have different ex-
tents of parameter sharing in the multi-task model by con-
trolling the connection routing among the sub-networks of
different layers. We call this framework Sub-Network Rout-
ing (SNR). By exploring a large set of connection patterns,
we hope to find a good architecture that shares the sub-
networks as much as possible so that it can both alleviate
the task conflicts and maintain the computation efficiency at
serving time.

There are many choices of the routing between sub-
networks. We implement two natural types: the first type,
which we call SNR-Trans (shown in Figure 1(b)), is to use
a transformation matrix multiplied by a scalar coding vari-
able; the second type, which we call SNR-Aver (shown in
Figure 1(c)), is to have a weighted average with scalar cod-
ing variables as weights.

Suppose there are two subsequent layers of sub-networks,
and the lower-level layer has 3 sub-networks and the higher-
level layer has 2 sub-networks. Let u1u1u1,u2u2u2,u3u3u3 be the outputs
of the lower-level sub-networks and let v1v1v1, v2v2v2 be the inputs
of the higher-level sub-networks. Then SNR-Trans can be
formulated as[

v1v1v1
v2v2v2

]
=

[
z11W11W11W11 z12W12W12W12 z13W13W13W13

z21W21W21W21 z22W22W22W22 z23W23W23W23

][u1u1u1

u2u2u2

u3u3u3

]
where WijWijWij is a transformation matrix from the jth lower-
level sub-network to the ith higher-level sub-network and zzz
represents the coding variables (a group of binary variables
controlling the connection).

Similarly, SNR-Aver can be formulated as[
v1v1v1
v2v2v2

]
=

[
z11I11I11I11 z12I12I12I12 z13I13I13I13
z21I21I21I21 z22I22I22I22 z23I23I23I23

] [u1u1u1

u2u2u2

u3u3u3

]

218



where IijIijIij is an identity matrix for all i, j.
If we hold the two models having the same number of

model parameters (and thus similar model size), SNR-Trans
has more model parameters in the connection while SNR-
Aver has more budget of model parameters in the sub-
networks. Although it is hard to tell the pros and cons in
terms of model representation for the two routing schemes,
we argue that when applying sparse connections among the
sub-networks, it is easier to reduce the model parameters in
SNR-Trans than in SNR-Aver, which could benefit model
serving.

Connecting to Manual Tuning and NAS
Manually tuning the network architecture is equivalent to
manually setting the coding variables zzz, where zij ∈ {0, 1}.
For example, let’s suppose v1v1v1, v2v2v2 represent the outputs of
sub-networks to two tasks and there is only one layer of hid-
den sub-networks u1u1u1,u2u2u2,u3u3u3. If we set all elements of zzz as
1, then the corresponding model degenerates to the classic
shared-bottom model. If we set z11 = z22 = 1 and all other
elements of zzz as 0, then the model degenerates to two small
single-task models.

If we have infinite computation resource, manual tun-
ing perhaps allows us to find the best architectures that are
pareto optimal in terms of prediction accuracy and com-
putation efficiency. However, when there are many tasks
and many hidden-layers in a multi-task model, the search
space for coding variable zzz becomes exponentially large:
2|zzz|, where |zzz| denotes the number of elements in zzz. As a
result, manual tuning could be very inefficient when we lack
the knowledge of task relatedness.

Inspired by the efficient NAS methods mentioned in the
related work, we turn to automatically learn the connection
routing within the fairly flexible SNR framework. In our sce-
nario, our goal is to efficiently explore different multi-task
architectures to achieve flexible parameter sharing across
tasks rather than general neural architecture search. And we
have a relative constrained architecture space encoded by zzz.
We propose to model the coding variables zzz as latent ran-
dom variables from parameterized distributions, and learn
the distribution parameters and model parameters simulta-
neously.

Learning the Architecture with Latent Variables
In this section, we formulate the problem of learning the
connection routing in the SNR framework with latent vari-
ables.

Let f(·;WWW,zzz) be a neural network model parameter-
ized by weights WWW and coding variables zzz where the cod-
ing variables is supposed to be drawn from a latent pol-
icy distribution p(zzz;πππ) parametrized by πππ. Given a dataset
D = {(xxxi, yyyi)}Ni=1, where xxxi is a feature vector of the sam-
ple i and yyyi is the corresponding label vector containing the
labels of multiple tasks, the problem of learning coding vari-
ables and model parameters can be formulated as an opti-
mization problem as follows:

min
WWW,πππ

EEEzzz∼p(zzz;πππ)
1

N

N∑
i=1

L(f(xxxi;WWW,zzz), yyyi), (1)

where L is a loss function.
We simply use Bernoulli distributions as our policy for

the coding variables zzz. That is zi ∼ Bern(πi) for all ele-
ments zi in zzz. The coding variables can also be viewed as
latent variables in a graphical model perspective. This la-
tent variable method can be applied to both SNR-Trans and
SNR-Aver.

The objective function in Eq. 1 is non-differentiable w.r.t.
the distribution parameters πππ, but the gradients can be esti-
mated by gradient estimator REINFORCE (Williams 1992).
Louizos, Welling, and Kingma (2017) further proposed a re-
laxation to smooth such objective functions so that we can
directly calculate the gradients of the distribution parame-
ters. We adopt this relaxation method in our model.

The main idea of the method in (Louizos, Welling, and
Kingma 2017) is to first find a continuous random variable
s ∼ q(s;φ) and compute the coding variable z as a hard-
sigmoid of s, i.e.,

z = g(s) = min(1,max(0, s)).

Then, Eq. 1 becomes

min
WWW,πππ

EEEsss∼q(sss;φφφ)
1

N

N∑
i=1

L(f(xxxi;WWW, g(sss)), yyyi). (2)

The objective function 2 is reformulated using the reparam-
eterization trick (Kingma and Welling 2013; Rezende, Mo-
hamed, and Wierstra 2014; Louizos, Welling, and Kingma
2017) as

min
WWW,πππ

EEEϵϵϵ∼r(ϵϵϵ)
1

N

N∑
i=1

L(f(xxxi;WWW, g(h(φφφ,ϵϵϵ))), yyyi), (3)

where ϵϵϵ is a noise random variable, r(ϵϵϵ) is a parameter-free
noise distribution, and h(·, ·) is a deterministic and differen-
tiable transformation of φφφ and ϵϵϵ.

In practice, the hard concrete distribution (Louizos,
Welling, and Kingma 2017) is used, which is defined
(element-wise) as follows,
u ∼ U(0, 1), s = sigmoid((log(u)− log(1− u) + log(α)/β)

s̄ = s(ζ − γ) + γ, z = min(1,max(s̄, 0)),

where u is a uniform random variable, log(α) is a learnable
distribution parameter, and β, γ, ζ are all hyper-parameters.

More details about the hard concrete distribution can be
found at (Louizos, Welling, and Kingma 2017).

Applying L0 Regularization on Latent Variables
Another benefit of this latent variable model is that we can
add priors and regularizations on the latent variables. For
example, Louizos, Welling, and Kingma (2017) provided a
way to learn sparse latent variables through L0 regulariza-
tion. The sparsity structure is also desirable in our scenario
because this allows the multi-task model to be computation-
ally efficient.

The L0 regularization on the latent variables zzz can be for-
mulated as

EEEzzz∼p(zzz;πππ)||zzz||0 =

|zzz|∑
i=1

p(zi = 1;πi).
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With the relaxation from zzz to continuous random variables
sss, we have

p(zi = 1;πi) = 1−Q(si < 0;φi),

where Q(·;φi) is the cumulative distribution function of si.
So the L0 regularization becomes

EEEzzz∼p(zzz;πππ)||zzz||0 =

|zzz|∑
i=1

1−Q(si < 0;φi).

The full objective function with L0 regularization is

EEEϵϵϵ∼r(ϵϵϵ)
1

N

N∑
i=1

L(f(xxxi;WWW, g(h(φφφ,ϵϵϵ))), yyyi)

+λ

|zzz|∑
j=1

1−Q(sj < 0;φj),

where λ is a hyper-parameter (see the Experiment Setup sec-
tion for more details).

Additional Details of Model Training and Serving
The whole model, including both model parameters WWW and
latent variable distribution parameters log(ααα), is trained by
stochastic gradient based optimization. For each mini-batch
in the forward pass, we first sample a group of uniform ran-
dom variables uuu, then calculate zzz to obtain the network ar-
chitecture, and finally feed the input data into the model to
compute the loss. The gradients w.r.t. WWW and log(ααα) are cal-
culated by back-propagation. Multiple samples of uuu can be
drawn to reduce the variance of the gradient estimates but
one sample of uuu per mini-batch works well in practice.

At serving time, the following estimator (Louizos,
Welling, and Kingma 2017) is used for zzz,

ẑzz = min(1,max(0, sigmoid(log(ααα))(ζ − γ) + γ)).

When sigmoid(log(αij))(ζ − γ) + γ < 0, we will have
ẑij = 0 and the resulted model will be sparsely connected.

To reduce serving model parameter size in SNR-Aver
model, we need to remove at least a whole sub-network from
the model, which means we need to have ẑij = 0 for all i
to eliminate the jth sub-network. For SNR-Trans, however,
any ẑij = 0 will eliminate the corresponding Wij from the
model. So it’s easier to reduce model parameters in SNR-
Trans than in SNR-Aver.

Experiment
In this section, we conduct experiments on a public large-
scale dataset, YouTube8M, to evaluate the effectiveness of
the proposed models.

Experimental Setup

YouTube8M Dataset
We use YouTube8M (Abu-El-Haija et al. 2016) as our

benchmark dataset to evaluate the effectiveness of the pro-
posed methods. This dataset consists of 6.1 million of
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Figure 2: Accuracy of Best-Tuned Models. The bar chart
shows the average test performance of the top 10 models
selected by validation performance. The error bar indicates
the standard error of the average test performance.

YouTube videos, each with (multiple) labels from a vocabu-
lary of more than 3, 000 topical entities. The topical entities
can be further grouped into 24 top-level topic categories.

To create a multi-task learning problem from the dataset,
we treat each top-level topic category as a separate predic-
tion task, so that each task is a multi-label classification
problem. To ensure data quantity per task, we used the top
16 categories in data volume.

We use the training set provided in the original dataset as
our training set, and split the original validation set into our
own validation set and test set, because this dataset comes
from a Kaggle competition and the original test set labels
are hidden to the public.

Methods
We compare five multi-task learning models in the ex-

periments. As the main difference among the models lies
in their shared low-level part, we fix the task-specific high-
level part of all models as a one-layer fully-connected hid-
den layer with hidden size 16 for each task. ReLU activa-
tion is used whenever applicable. The implementation of the
shared low-level part for each model is described as follows
respectively,

SB : This model is the classic Shared-Bottom model where
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several low-level network layers are shared by all the tasks
and each task has its own task-specific high-level layers built
on top of the shared layers.

Shared part: Two fully-connected hidden layers with the
hidden layer sizes as hyper-parameters to be tuned.

MMoE (Ma et al. 2018): This model splits the shared low-
level layers into sub-networks and uses different gating net-
works for different tasks to utilize different sub-networks.

Shared part: One fully-connected hidden layer followed
by a MMoE layer with 8 experts, each expert being a one-
layer fully-connected sub-network. Both the hidden size of
the first hidden layer and that of the sub-network are hyper-
parameters to be tuned. The gating networks are linear trans-
formations without hyper-parameters.

ML-MMoE : This model extends MMoE by adding multi-
ple layers of sub-networks. The connections from the lower-
level sub-networks to the higher-level sub-networks are also
controlled by some gating networks. Each higher-level sub-
network can be viewed as an internal task. All the gating net-
works share the same input, which is the input of the whole
model.

Shared part: Two subsequent MMoE layers with each
layer having 8 experts. Each expert is a one-layer fully-
connected sub-network. The hidden size of the expert net-
work is a tunable hyper-parameter.

SNR-Trans : This is the proposed Sub-Network Routing
with Transformation model.

Shared part: Two subsequent transformation layers. The
output size of each transformation matrix is tunable.

SNR-Aver : This is the proposed Sub-Network Routing with
Averaging model.

Shared part: Two subsequent sub-network layers with
each sub-network being a one-layer fully-connected net-
work. The hidden size of each sub-network is tunable.

Evaluation Metrics
As each task in the YouTube8M dataset is a multi-label

classification problem, we use Mean Average Precision
(MAP) as the measurement of prediction accuracy for each
task. Specifically, we use MAP@10 as our metric because
most of the examples have fewer than 10 positive labels
in each task. To evaluate the overall accuracy of the multi-
task models, we compute an average of the MAP@10 of all
tasks, which we will call it Average-MAP@10. As differ-
ent tasks have different sample sizes, we calculate two types
of Average-MAP@10 metrics: the first type directly calcu-
lates the mean of the MAP@10 scores of all the tasks, which
we call Macro Average-MAP@10; the second type takes a
weighted average of the MAP@10 scores weighted by the
number of data examples in each task, which we call Micro
Average-MAP@10.

Model Training and Hyper-parameter Tuning
All the models are trained using Adam (Kingma and

Welling 2013) with learning rate as a tunable hyper-
parameter. The batch size is fixed as 128. Early stopping
is used on the validation set. Model size related hyper-
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Figure 3: Macro Average-MAP@10 vs Model Size. The y-
axis is the test performance on Macro Average-MAP@10.
The x-axis is the number of total model parameters at train-
ing time. The total hidden size of first shared layer in each
model is fixed as 2048 and the total hidden size of the second
shared layer is varied to get different model sizes.

parameters are tuned with grid search for the purpose of
comparing model accuracy at different model size, and all
other hyper-parameters are tuned with random search. The
hidden sizes of the two shared hidden layers in SB are
grid-searched from {256, 512, 1024, 2048} and the hidden
size hyper-parameters in other models are grid-searched
in a way to approximately match the model size of SB.
The L0 regularization parameter λ will have an impact
on the serving model size so we grid-search it from
{0.001, 0.0001, 0.00001}. The learning rates of all mod-
els are random-searched within [0.00001, 0.1] in log-scale.
The hyper-parameters for the hard concrete distribution used
in L-Act and L-Param models are random-searched from
the following range: β ∼ [0.5, 0.9], γ ∼ [−1,−0.1], ζ ∼
[1.1, 2].

For each model size setting, we run 500 independent trials
of random search on hyper-parameters unrelated to model
size and select the top 10 models with best validation accu-
racy. Then we report the average and the standard error of
testing MAPs from these top 10 models.

Results

Accuracy of Best-Tuned Models
We first show the accuracy of the best-tuned models using

each method in Figure 2. We report the test accuracy on both
Macro Average-MAP@10 and Micro Average-MAP@10.
The differences between each pair of models on both met-
rics, except for MMoE vs SB on Micro Average-MAP@10,
are significant with 0.05 significance level of two-sample t-
test. The relative trends on both metrics are the same. So we
will show the results of Macro Average-MAP@10 only in
the remaining result analysis due to page limit.

As seen in Figure 2, SNR-Trans and SNR-Aver outper-
form all the baseline models. The ML-MMoE model per-
forms surprisingly worse than all other models. One possi-
ble reason for this is that the stacked multi-gate structure
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11% 
Less

Figure 4: Macro Average-MAP@10 of SNR-Trans models
with different model sizes and L0 regularization parameters.
“SNR-Trans-Dense” indicates models that use a small L0
regularization parameter and the resulted models are dense;
“SNR-Trans-Sparse” indicates models that use a large L0
regularization parameter and the resulted models are sparse.
The sparse models can reduce the serving model size by up
to 11% under certain serving constraint.
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Sub-Network Utilization by Tasks

Figure 5: Average sub-network utilization by tasks in top
performing SNR-Trans models. The tasks on x-axis are
sorted by sample size in descending order from left to right.
The y-axis is the average relative proportion of sub-networks
utilized by the corresponding task.

may cause difficulty in optimization. There is also a design
difficulty of selecting the input layer of gating networks that
lie between two layers of experts. As there are many inter-
nal outputs from the previous layer of experts, it is hard to
decide which internal outputs should be used by the higher-
level gating networks. In our implementation, we use the ini-
tial input features of the first layer as the input of all gating
networks. However, the initial input features may not pro-

vide enough information about how to route in higher-level
layers.

Accuracy vs Model Size
One thing which we notice during the hyper-parameter

tuning is that, while the accuracy of baseline models has sat-
urated as we increase the model size, the accuracy of SNR-
Trans and SNR-Aver still slowly increases at the boundary
of our hyper-parameter range.

Figure 3 shows the test accuracy of a sampled set of mod-
els with different model sizes. In this figure, we fix the total
hidden size of the first shared layer in each model as 2048,
and we vary the total hidden size of the second shared layer
to get models with different model sizes. Note that the x-
axis is the number of total model parameters at training time,
which means the model parameters eliminated by L0 regu-
larization in SNR models are also counted.

This result shows that the SNR method can train larger
models better than baseline methods. This phenomenon
aligns well with our hypothesis that modularization in multi-
task learning could improve model trainability.

Accuracy of Sparse Models
While being able to train large models well is critical, in

many large-scale online systems we have strict low-latency
requirements on the serving model. So we also care about
models with limited serving model sizes. Here we show that
with a proper L0 regularization parameter λ, we can effec-
tively reduce the serving model size of the SNR-Trans model
under certain serving constraints.

We first observe that the value of the L0 regularization
parameter λ has a direct impact on the learned architec-
ture of SNR-Trans models. When λ is set to 0.00001, the
learned coding variables z are almost all 1s, which means
the learned architecture is densely connected. When λ is set
to 0.0001, the learned architecture is sparse and the sparse
model has significantly smaller serving model size than the
dense model. Given the same training model size, the sparse
model usually performs worse than the dense model. This
result is not unexpected as λ controls a tradeoff between
higher model capacity and smaller serving model size, with
large λ shrinking the effective capacity for the model. How-
ever, when the serving model size is limited, the sparse
model outperforms the dense model that has similar serving
model size.

As shown in Figure 4, “SNR-Trans-Dense” indicates
SNR-Trans models with L0 regularization parameter
0.00001 while “SNR-Trans-Sparse” indicates SNR-Trans
models with L0 regularization parameter 0.0001. We fix the
total hidden size in the first layer as 1024 and vary the hid-
den size of the second layer to get different model sizes.
The trend in several other settings where we set hidden size
of the first layer as other values is similar and we omit the
figures due to page limit. The accuracy of the dense model
drops very fast as the serving model size decreases. And the
accuracy of the sparse model outperforms the dense model
by a large margin given limited serving model size. In other
words, we can reduce the serving model size by up to 11%
while maintaining the same accuracy.
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Analysis of Sub-Network Utilization
To better understand how the sub-networks are utilized

by different tasks in the sparse models, we further summa-
rize the average relative proportion of sub-networks used by
each task in 10 top performing sparse models, shown in Fig-
ure 5. The figure shows that the utilization of sub-networks
is positively related to the sample size of the tasks1. This im-
plies that, when we add a stronger L0 regularization on the
model, the model will learn to allocate more capacity to the
tasks with more data.

Conclusion
In this work, we introduce a flexible parameter sharing
framework in multi-task learning, Sub-Network Routing
(SNR). SNR is able to encode various types of multi-task
model architectures and allows us to add a wide range of
priors on the model structure. We propose a scalable multi-
task architecture search solution by using latent variables to
model the architecture coding variables, and learning the la-
tent variables and model parameters simultaneously. We em-
pirically show that the proposed methods outperform base-
line multi-task models on a large-scale dataset YouTube8M.
We further reduce the serving model size by applying L0
regularization on the latent variables.
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