
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Entity Alignment between Knowledge Graphs Using Attribute Embeddings

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang∗

School of Computing and Information Systems, The University of Melbourne
{btrisedya@student., jianzhong.qi@, rui.zhang@}unimelb.edu.au

Abstract

The task of entity alignment between knowledge graphs aims
to find entities in two knowledge graphs that represent the
same real-world entity. Recently, embedding-based models
are proposed for this task. Such models are built on top of a
knowledge graph embedding model that learns entity embed-
dings to capture the semantic similarity between entities in
the same knowledge graph. We propose to learn embeddings
that can capture the similarity between entities in different
knowledge graphs. Our proposed model helps align entities
from different knowledge graphs, and hence enables the in-
tegration of multiple knowledge graphs. Our model exploits
large numbers of attribute triples existing in the knowledge
graphs and generates attribute character embeddings. The
attribute character embedding shifts the entity embeddings
from two knowledge graphs into the same space by comput-
ing the similarity between entities based on their attributes.
We use a transitivity rule to further enrich the number of at-
tributes of an entity to enhance the attribute character embed-
ding. Experiments using real-world knowledge bases show
that our proposed model achieves consistent improvements
over the baseline models by over 50% in terms of hits@1 on
the entity alignment task.

1 Introduction
Knowledge bases in the form of knowledge graphs (KGs)
have been used in many applications including question
answering systems (Yih et al. 2015), recommender sys-
tems (Zhang et al. 2016), and sentence generation for a
Geographic Knowledge Base (Trisedya et al. 2018; GKB
2017). Many KGs have been created separately for par-
ticular purposes. The same entity may exist in different
forms in different KGs. For example, lgd:240111203
in a KG named LinkedGeoData (Stadler et al. 2012)
and dbp:Kromsdorf in another KG named DBpedia
(Lehmann et al. 2015) both refer to a city named Kroms-
dorf in Germany. Typically, these KGs are complementary
to each other in terms of completeness. We may integrate
such KGs to form a larger KG for knowledge inferences.

To integrate KGs, a basic problem is to identify the en-
tities in different KGs that denote the same real-world en-

∗Corresponding author
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Knowledge Graph Alignment Example
G1

⟨lgd:240111203,geo:long,11.3700843⟩
⟨lgd:240111203,lgd:population,1595⟩
⟨lgd:240111203,rdfs:label,"Kromsdorf"⟩
⟨lgd:240111203,geo:lat,50.9988888889⟩
⟨lgd:240111203,lgd:alderman,"B. Grobe"⟩
⟨lgd:240111203,lgd:country,lgd:51477⟩
...

G2

⟨dbp:Kromsdorf,geo:long,11.3701⟩
⟨dbp:Kromsdorf,rdfs:label,"Kromsdorf"⟩
⟨dbp:Kromsdorf,geo:lat,50.9989⟩
⟨dbp:Kromsdorf,dbp:populationTotal,1595⟩
⟨dbp:Kromsdorf,dbp:country,dbp:Germany⟩
⟨dbp:Kromsdorf,dbp:district,dbp:Weimarer⟩
...

Merged G1 2

⟨lgd:240111203,geo:long,11.3700843⟩
⟨lgd:240111203,:population,1595⟩
⟨lgd:240111203,rdfs:label,"Kromsdorf"⟩
⟨lgd:240111203,geo:lat,50.9988888889⟩
⟨lgd:240111203,lgd:alderman,"B. Grobe"⟩
⟨lgd:240111203,:country,lgd:51477⟩
⟨lgd:240111203,dbp:district,dbp:Weimarer⟩
...

tity, which is commonly referred to as the entity align-
ment problem. In this paper, we study entity alignment
between two KGs. Specifically, we consider KGs where
real-world facts are stored in the form of RDF triples.
An RDF triple consists of three elements in the form of
⟨subject, relationship/predicate, object⟩, where subject de-
notes an entity, and object denotes either an entity or a literal.
Here, if object is an entity, we call the triple a relationship
triple; if object is a literal, we call the triple an attribute
triple. Table 1 gives an example of two subsets of RDF
triples from two KGs G1 and G2 (we use prefixes "lgd:"
and "dbp:" to simplify the original URI). The subjects in
these two subsets refer to the same entity Kromsdorf, even
though they are in different forms "lgd:240111203"
and "dbp:Kromsdorf". We aim to identify such enti-
ties and give them a unified ID such that both KGs can be
merged together through them. In Table 1, G1 2 denotes the

297

merged KG, where "lgd:240111203" is used as the uni-
fied ID for the entity Kromsdorf which has a set of attributes
that is the union of the sets of attributes from both KGs.

Early studies on entity alignment are based on the simi-
larity between attributes of entities (Ngomo and Auer 2011;
Pershina, Yakout, and Chakrabarti 2015; Volz et al. 2009).
These methods rely on user-defined rules to determine the
attributes to be compared between the entities. For exam-
ple, the attributes to be compared between entities of the
two KGs in Table 1 are rdfs:label, geo:lat, and
geo:long. Such approaches are error-prone because dif-
ferent pairs of entities may need different attributes to be
compared, e.g., for two celebrity entities, they may not have
attributes such as geo:lat and geo:long.

Recently, embedding-based models are proposed for the
entity alignment task. Such models are built on top of a KG
embedding model, such as TransE (Bordes et al. 2013), that
learns entity embeddings that capture the semantic similarity
between entities in a knowledge graph based on the relation-
ship triples in a KG. To adapt the KG embedding for entity
alignment between two KGs, the embedding-based mod-
els require the embeddings of two KGs to fall in the same
vector space. To address this problem, Chen et al. (2017a;
2017b) and Zhu et al. (2017) learn an embedding space for
each KG separately and propose to use a transition matrix to
map the embedding space from one KG to the other. Their
models rely on large numbers of seed alignments (i.e., a seed
set of aligned triples from two KGs) to compute the transi-
tion matrix. However, the seed alignments between two KGs
are rarely available, and hence are difficult to obtain due to
expensive human efforts required.

In this paper, we address the above limitations by propos-
ing a novel embedding model that first generates attribute
embeddings from the attribute triples and then use this at-
tribute embeddings to shift the entity embeddings of two
KGs to the same vector space. We observe that many KGs
contain large numbers of attribute triples, which have not
been explored for entity alignment so far. For example,
DBpedia, YAGO, LinkedGeoData, and Geonames contain
47.62%, 62.78%, 94.66%, and 76.78% of attribute triples,
respectively. The attribute similarity between two KGs helps
the attribute embedding to yield a unified embedding space
for two KGs. This enables us to use the attribute embed-
dings to shift the entity embeddings of two KGs into the
same vector space and hence enables the entity embeddings
to capture the similarity between entities from two KGs. Our
model includes predicate alignment by renaming the predi-
cates of two KGs into a unified naming scheme to ensure
that the relationship embeddings of two KGs are also in the
same vector space. We further use the transitive rule (e.g.,
by knowing that Emporium Tower is located in London
and London is located in England, we also know that
Emporium Tower is located in England.) to enrich at-
tribute triples for attribute embedding computation.

Our contributions are summarized as follows:
• We propose a framework for entity alignment between

two KGs that consists of a predicate alignment module,
an embedding learning module, and an entity alignment
module.

• We propose a novel embedding model that integrates en-
tity embeddings with attribute embeddings to learn a uni-
fied embedding space for two KGs.

• We evaluate the proposed model over three real KG pairs.
The results show that our model outperforms the state-of-
the-art models consistently on the entity alignment task
by over 50% in terms of hits@1.
The rest of this paper is organized as follows. Section 2

summarizes previous studies on entity alignment. Section 3
defines the studied problem. Section 4 details the proposed
model. Section 5 presents the experimental results. Section
6 concludes the paper.

2 Related Work
We discuss two groups of commonly used entity align-
ment approaches: string-similarity-based approaches (Sec-
tion 2.1) and embedding-based approaches (Section 2.2).

2.1 String-Similarity-based Entity Alignment
Earlier entity alignment approaches use string similarity as
the main alignment tool. For example, LIMES (Ngomo and
Auer 2011) uses the triangle inequality to compute an ap-
proximation of entity similarity. Then, the actual similar-
ity of the entity pairs that have a high approximated simi-
larity is computed, and the entity pair with the highest ac-
tual string similarity is returned. RDF-AI (Scharffe, Yanbin,
and Zhou 2009) implements an alignment framework that
consists of preprocessing, matching, fusion, interlink, and
post-processing modules, among which the matching mod-
ule uses fuzzy string matching based on sequence alignment
(Rivas and Eddy 1999), word relation (Fellbaum 1998), and
taxonomical similarity algorithms. SILK (Volz et al., 2009)
allows users to specify the mapping rules using the Silk
- Link Specification Language (Silk-LSL). SILK provides
similarity metrics including string equality and similarity,
numeric similarity, date similarity, and URI equality.

There are also studies using graph similarity to improve
the entity alignment performance. LD-Mapper (Raimond,
Sutton, and Sandler 2008) combines string similarity with
entity nearest neighbor similarity. RuleMiner (Niu et al.
2012) uses an Expectation-Maximization (EM) algorithm to
refine a set of manually defined entity matching-rules. Holis-
ticEM (Pershina, Yakout, and Chakrabarti 2015) constructs
a graph of potential entity pairs based on the overlapping at-
tributes and the neighboring entities of the entities. Then, the
local and global properties from the graph are propagated us-
ing Personalized Page Rank to compute the actual similarity
of entity pairs.

2.2 Embedding-based Entity Alignment
KG embedding models have been used to address KG com-
pletion tasks that aim to predict missing entities or relations
based on existing triples in a KG. Among the existing ap-
proaches, the translation based models, e.g., TransE (Bor-
des et al. 2013), achieve the state-of-the-art performance.
TransE represents a relationship between a pair of entities
as a translation between the embeddings of the entities.
In recent years, several studies propose improvements over

298

TransE: TransH (Wang et al. 2014), TransR (Lin et al. 2015),
and TransD (Ji et al. 2015) use a distributed representation
to separate the relationship vector space from the entity vec-
tor space; DKRL (Xie et al. 2016) and TEKE (Wang and Li
2016) use additional information (e.g., entity description and
word co-occurrence) along with the relationship triples to
compute entity embeddings. There are also non-translation-
based approaches to learn entity embeddings. The Unstruc-
tured model (Bordes et al. 2011) does not explicitly repre-
sent the relationship embeddings. RESCAL (Nickel, Tresp,
and Kriegel 2012) and HolE (Nickel, Rosasco, and Poggio
2016) use tensor-based factorization and represent relation-
ships with matrices. NTN (Socher et al. 2013) uses a bilin-
ear tensor operator to represent each relationship and jointly
models head and tail entity embeddings.

The embedding models above aim to preserve the struc-
tural information of the entities, i.e., entities that share sim-
ilar neighbor structures in the KG should have a close
representation in the embedding space. The advancement
of such embedding models motivates researchers to study
embedding-based entity alignment. Chen et al. (2017a;
2017b) propose an embedding-based model for multilin-
gual entity alignment based on TransE. First, the embed-
dings are computed for each KG. Then, a transition matrix
is computed using a set of manually collected seed pairs of
aligned entities to provide transitions for each embedding to
its cross-lingual counterparts. Zhu et al. (2017) propose an
iterative method for entity alignment via joint embeddings.
Similar to the previous model, initially, the joint embeddings
between KGs is computed using the seed pairs of aligned
entities. Then, the joint embeddings are updated iteratively
using the newly aligned entities. Sun, Hu, and Li (2017) pro-
pose a joint attribute-preserving embedding model for cross-
lingual entity alignment. The seed alignments are used to
jointly embed the entity embeddings of two KGs into a uni-
fied vector space. Then, the embeddings are updated using
the attribute correlations that are computed based on the at-
tribute type similarity. Although this work also considers the
entity attribute information, it differs from ours in that we
use the actual attribute value instead of the attribute type.

3 Preliminary
We start with the problem definition. A KG G consists of
a combination of relationship triples in the form of ⟨h, r, t⟩,
where r is a relationship (predicate) between two entities
h (subject) and t (object), and attribute triples in the form
of ⟨h, r, a⟩ where a is an attribute value of entity h with re-
spect to the predicate (relationship) r. Given two KGs G1

and G2, the task of entity alignment aims to find every pair
⟨h1, h2⟩ where h1 ∈ G1, h2 ∈ G2, and h1 and h2 repre-
sent the same real-world entity. We use an embedding-based
model that assigns a continuous representation for each ele-
ment of a triple in the forms of ⟨h, r, t⟩ and ⟨h, r,a⟩, where
the bold-face letters denote the vector representations of the
corresponding element.

Most embedding-based models are built on top of TransE
(Chen et al. 2017a; Chen et al. 2017b; Sun, Hu, and Li 2017;
Zhu et al. 2017). We first discuss TransE (Bordes et al. 2013)

and its limitations when being used for entity alignment be-
fore presenting our proposed model.

3.1 TransE
Given a relationship triple ⟨h, r, t⟩, TransE suggests that the
embedding of the tail entity t should be close to the embed-
ding of the head entity h plus the embedding of the relation-
ship r, i.e., h+ r ≈ t. Such an embedding model aims to
preserve the structural information of the entities, i.e., enti-
ties that share similar neighbor structures in the KG should
have a close representation in the embedding space. We call
it a structure embedding. To learn the structure embedding,
TransE minimizes a margin-based objective function JSE :

JSE =
∑
tr∈Tr

∑
t′r∈T ′

r

max (0, [γ + f(tr)− f(t′r)]) (1)

Tr = {⟨h, r, t⟩|⟨h, r, t⟩ ∈ G}; f(tr) = ∥h+ r− t∥ (2)
Here, ∥x∥ is the L1-Norm of vector x, γ is a margin hyper-
parameter, and Tr is the set of valid relationship triples from
the training dataset, and T ′

r is the set of corrupted relation-
ship triples (E is the set of entities in G):

Tr
′ = {⟨h′, r, t⟩ |h′ ∈ E} ∪ {⟨h, r, t′⟩ | t′ ∈ E} (3)

The corrupted triples are used as negative samples, which
are created by replacing the head or tail entity of a valid
triple in Tr with a random entity.

TransE has been used to address KG completion tasks that
aim to predict missing entities or relations based on existing
triples in a KG. TransE constructs a low-dimensional and
continuous vector (embedding) to describe the latent seman-
tic information (as reflected by the neighboring entities) of a
KG. The resulting embeddings capture the semantic similar-
ity between entities in the embedding space. For example,
the embedding of dbp:Germany should be close to the
embedding of dbp:France as both entities represent two
countries in Europe; they share similar types of neighboring
entities (e.g., president, continent, etc.).

The advantages of structure embedding drive further
studies of embedding-based entity alignment. However, a
straightforward implementation of structure embedding for
entity alignment has limitations. In particular, the entity em-
beddings computed on different KGs may fall in different
spaces, where similarity cannot be computed directly. Exist-
ing techniques (Chen et al. 2017a; Sun, Hu, and Li 2017;
Zhu et al. 2017) address this limitation by computing a tran-
sition matrix to map the embedding spaces of different KGs
into the same space, as discussed earlier. However, such
techniques require manually collecting a seed set of aligned
entities from the different KGs to create the transition ma-
trix, which do not scale and are vulnerable to the quality of
the selected seed aligned entities.

Next, we detail our proposed model to address these lim-
itations.

4 Proposed Model
We present an overview of our proposed model in Section
4.1. We detail the components of the proposed model after-

299

G1hlgd:240111203, lgd:population, 1595i
hlgd:240111203, rdfs:label, ‘Kromsdorf’i
hlgd:240111203, lgd:country, lgd:51477i
...

G2hdbp:Kromsdorf, rdfs:label, ‘Kromsdorf’i
hdbp:Kromsdorf, dbp:populationTotal, 1595i
hdbp:Kromsdorf, dbp:country, dbp:Germanyi
...

G1_2hlgd:240111203, :population, 1595i
hlgd:240111203, :label, ‘Kromsdorf’i
hlgd:240111203, :country, lgd:51477i
hdbp:Kromsdorf, :label, ‘Kromsdorf’i
hdbp:Kromsdorf, :population, 1595i
hdbp:Kromsdorf, :country, dbp:Germanyi
...

Attribute Triple
hlgd:240111203, :population, 1595i
hlgd:240111203, rdfs:label, ‘Kromsdorf’i
hdbp:Kromsdorf, rdfs:label, ‘Kromsdorf’i
hdbp:Kromsdorf, :population, 1595i
...

Relationship Triple
hlgd:240111203, :country, lgd:51477i
hdbp:Kromsdorf, :country, dbp:Germanyi
...

Transitivity Rule

Transitivity Rule

1. Predicate Alignment

f
Character Attribute Embedding

hcelgd:24111203 rlabel cK cr cr cf

g+ fa= ...

Structure Embedding

hselgd:24111203 rcountry tlgd:51477

+ =

2. Embedding Learning

hselgd:24111203
=

hcelgd:24111203

update

3. Entity Alignment

EG1 EG2

hmap= argmaxh22G2 cos(h1,h2)
Figure 1: Overview of our proposed solution

wards, including predicate alignment in Section 4.2, embed-
ding learning in Section 4.3, entity alignment in Section 4.4,
and triple enrichment in Section 4.5.

4.1 Solution Overview
Our solution framework 1 uses an embedding-based model
as illustrated in Fig 1. The framework consists of three com-
ponents including predicate alignment, embedding learning,
and entity alignment.

Embedding-based entity alignment requires the embed-
dings (both relationship and entity embeddings) of two KGs
to fall in the same vector space. To have a unified vector
space for the relationship embeddings, we merge two KGs
based on the predicate similarity (i.e., predicate alignment).
The predicate alignment module (detailed in Section 4.2)
finds partially similar predicates, e.g., dbp:bornIn vs.
yago:wasBornIn and renames them with a unified nam-
ing scheme (e.g., :bornIn). Based on this unified naming
scheme, we merge G1 and G2 into G1 2. Then, the merged
graph G1 2 is split into a set of relationship triples Tr and a
set of attribute triples Ta for embedding learning.

The embedding learning module (detailed in Section
4.3) jointly learns the entity embeddings of two KGs
using structure embedding and attribute embedding. The
structure embedding is learned using the set of relation-
ship triples Tr, while the attribute embedding is learned
using the set of attribute triples Ta. Initially, the structure
embeddings of the entities that come from G1 and G2

fall into different vector spaces because the entities from
both KGs are represented using different naming schemes.
In contrary, the attribute embeddings learned from the
attribute triples Ta can fall into the same vector space.
This is achieved by learning character embeddings from

1The code and the dataset are made available at
http://www.ruizhang.info/GKB/gkb.htm

the attribute strings, which can be similar even if the
attributes are from different KGs (we call it as attribute
character embedding). Then, we use the resulting attribute
character embedding to shift the structure embeddings of
the entities into the same vector space which enables the
entity embeddings to capture the similarity between entities
from two KGs. As an example, suppose that we have triples
⟨lgd:240111203, :country, lgd:51477⟩ and
⟨lgd: 51477, :label, "Germany"⟩ from G1, and
⟨dbp:Kromsdorf, :country, dbp:Germany⟩
and ⟨dbp:Germany, :label, "Germany"⟩ from
G2. The attribute character embedding allows both entities
lgd:5147 and dbp:Germany to have similar vector
representations since both entities have a similar attribute
value "Germany". Then, the structure embeddings of enti-
ties lgd:240111203 and dbp:Kromsdorf will also be
similar since the two entities share the same predicate and
have two tail entities lgd:51477 and dbp:Germany
which have similar vector representations.

Once we have the embeddings for all entities in G1 and
G2, the entity alignment module (detailed in Section 4.4)
finds every pair ⟨h1, h2⟩ where h1 ∈ G1 and h2 ∈ G2 with
a similarity score above a threshold β.

To further improve the performance of the model, we use
the relationship transitivity rule to enrich the attributes of an
entity that helps build a more robust attribute embedding for
computing the similarity between entities. This is detailed in
Section 4.5.

4.2 Predicate Alignment
The predicate alignment module merges two KGs by re-
naming the predicates of both KGs with a unified nam-
ing scheme to have a unified vector space for the relation-
ship embeddings. In fact, there are naming conventions of
predicates, e.g., rdfs:label, geo:wgs84 pos#lat,
and geo:wgs84 pos#long. Besides the naming con-

300

ventions, there are partially matched predicates, e.g.,
dbp:diedIn vs. yago:diedIn, and dbp:bornIn vs.
yago:wasBornIn. Our predicate alignment module finds
these predicates and renames them with a unified nam-
ing scheme (e.g., :diedIn and :bornIn). To find the
partially matched predicates, we compute the edit distance
of the last part of the predicate URI (e.g., bornIn vs.
wasBornIn) and set 0.95 as the similarity threshold.

4.3 Embedding Learning
Aligning predicates of two KGs allows our model to have a
unified relationship vector space and hence enables the joint
learning of structure embedding and attribute character em-
bedding that aims to yield a unified entity vector space. We
detail the joint learning in the following section.

Structure Embedding We adapt TransE to learn the
structure embedding for entity alignment between KGs by
focusing the embedding learning more on the aligned triples
(i.e., triples with aligned predicates). This is done by adding
a weight α to control the embedding learning over the
triples. To learn the structure embedding, in our model, we
minimize the following objective function JSE :

JSE =
∑

tr∈ Tr

∑
t′r∈ T ′

r

max (0, γ + α (f(tr)− f(t′r))) (4)

α =
count(r)

|T |
(5)

where Tr is the set of valid relationship triples, T ′
r is the

set of corrupted relationship triples, count(r) is the number
of occurrences of relationship r, and |T | is the total num-
ber of triples in the merge KG G1 2. Typically, the num-
ber of occurrences of the aligned predicates is higher than
the non-aligned predicates since the aligned predicates ap-
pear in both KGs, and hence allows the model to learn more
from the aligned triples. For example, for the data in Table
1, weight α helps the embedding model to focus more on
relationships rdfs:label, geo:lat, and geo:long
(α = 2/12 for each of these predicates) than on relation-
ships lgd:alderman or dbp:district (α = 1/12 for
each of these predicates).

Attribute Character Embedding Following TransE, for
the attribute character embedding, we interpret predicate r
as a translation from the head entity h to the attribute a.
However, the same attribute a may appear in different forms
in two KGs, e.g., 50.9989 vs. 50.9988888889 as the
latitude of an entity; "Barack Obama" vs. "Barack
Hussein Obama" as a person name, etc. Hence, we use
a compositional function to encode the attribute value and
define the relationship of each element in an attribute triple
as h + r ≈ fa(a). Here, fa(a) is a compositional function
and a is a sequence of the characters of the attribute value
a = {c1, c2, c3, ..., ct}. The compositional function en-
codes the attribute value into a single vector and maps sim-
ilar attribute values to a similar vector representation. We
define three compositional functions as follows.

Sum compositional function (SUM). The first composi-
tional function is defined as a summation of all character
embeddings of the attribute value.

fa(a) = c1 + c2 + c3 + ...+ ct (6)

where c1, c2, ..., ct are the character embeddings of the at-
tribute value. This compositional function is simple but it
suffers in that two strings that contain the same set of char-
acters with a different order will have the same vector rep-
resentation. For example, two coordinates "50.15" and
"15.05" will have the same vector representation.

LSTM-based compositional function (LSTM). To address
the problem of SUM, we propose an LSTM-based compo-
sitional function. This function uses LSTM networks to en-
code a sequence of characters into a single vector. We use
the final hidden state of the LSTM networks as a vector rep-
resentation of the attribute value.

fa(a) = flstm(c1, c2, c3, ..., ct) (7)

where flstm is the LSTM networks as defined by Kim et
al. (2016).

N-gram-based compositional function (N-gram). We fur-
ther propose an N-gram-based compositional function as an
alternative to address the problem of SUM. Here, we use the
summation of n-gram combination of the attribute value.

fa(a) =

N∑
n=1

(∑t
i=1

∑n
j=i cj

t− i− 1

)
(8)

where N indicates the maximum value of n used in the n-
gram combinations (N = 10 in our experiments) and t is the
length of the attribute value.

To learn the attribute character embedding, we minimize
the following objective function JCE :

JCE =
∑

ta∈Ta

∑
t′a∈T ′

a

max (0, [γ + α (f(ta)− f(t′a))]) (9)

Ta = {⟨h, r, a⟩ ∈ G}; f(ta) = ∥h+ r− fa(a)∥ (10)

Ta
′ = {⟨h′, r, a⟩|h′ ∈ E} ∪ {⟨h, r, a′⟩ |a′ ∈ A} (11)

Here, Ta is the set of valid attribute triples from the training
dataset, while T ′

a is the set of corrupted attribute triples (A is
the set of attributes in G). The corrupted triples are used as
negative samples by replacing the head entity with a random
entity or the attribute with a random attribute value. Here,
f(ta) is the plausibility score that based on the embedding
of the head entity h, the embedding of the relationship r, and
the vector representation of the attribute value that computed
using the compositional function fa(a).

Joint Learning of Structure Embedding and Attribute
Character Embedding We use the attribute character em-
bedding hce to shift the structure embedding hse into the
same vector space by minimizing the following objective
function JSIM :

JSIM =
∑

h∈G1∪G2

[1− cos(hse,hce)] (12)

301

Here, cos(hse,hce) is the cosine similarity of vector hse and
hce. As a result, the structure embedding captures the simi-
larity of entities between two KGs based on entity relation-
ship while the attribute character embedding captures the
similarity of entities based on attribute values. The overall
objective function of the joint learning of structure embed-
ding and attribute character embedding is:

J = JSE + JCE + JSIM (13)

4.4 Entity Alignment
The joint learning of structure embedding and attribute char-
acter embedding lets the similar entities from G1 and G2 to
have a similar embeddings. Hence, the resulting embeddings
can be used for entity alignment. We compute the following
equation for entity alignment.

hmap = argmax
h2∈G2

cos(h1,h2) (14)

Given an entity h1 ∈ G1, we compute the similarity between
h1 and all entities h2 ∈ G2. ⟨h1, hmap⟩ is the expected pair
of aligned entities. We use a similarity threshold β to filter
the pair entities that are too dissimilar to be aligned.

4.5 Triple Enrichment via Transitivity Rule
Even though the structure embedding implicitly learns
the relationship transitive information, the explicit in-
clusion of this information increases the number of
attributes and related entities for each entity which
helps identify the similarity between entities. For
example, given triples ⟨dbp:Emporium Tower,
:locatedIn, dbp:London⟩ and ⟨dbp:London,
:country, dbp:England⟩, we can infer that
dbp:Emporium Tower has a relationship (i.e.,
":locatedInCountry") with dbp:England. In
fact, this information can be used to enrich the related entity
dbp:Emporium Tower. We treat the one-hop transitive
relation as follows. Given transitive triples ⟨h1, r1, t⟩ and
⟨t, r2, t2⟩, we interpret r1.r2 as a relation from head entity
h1 to tail entity t2. Therefore, the relationship between
these transitive triples is defined as h1 + (r1.r2) ≈ t2. The
objective functions of the transitivity-enhanced embedding
models are adapted from the Eq. 4 and Eq. 9 by replacing
the relationship vector r with r1.r2.

5 Experiments
We evaluate our model on four real KGs including DBpe-
dia (DBP) (Lehmann et al. 2015), LinkedGeoData (LGD)
(Stadler et al. 2012), Geonames (GEO)2, and YAGO (Hof-
fart et al. 2013). We run our proposed model to align enti-
ties of DBP with those of LGD, GEO, and YAGO, respec-
tively. We compare the aligned entities found by our model
with those in three ground truth datasets, DBP-LGD, DBP-
GEO, and DBP-YAGO, which contain aligned entities3 be-
tween DBP and LGD, GEO, and YAGO, respectively. We
focus on the LOCATION entities in the LGD and GEO KGs

2http://www.geonames.org/ontology/
3http://downloads.dbpedia.org/2016-10/links/

Table 2: Dataset Statistics
Dataset Entities Attribute

Triples
Relationship
Triples

LGD 24,309 90,054 10,084
DBP-LGD DBP 22,748 166,008 19,594

GEO 21,794 98,790 17,410
DBP-GEO DBP 22,748 166,008 19,594

YAGO 30,628 173,309 38,451
DBP-YAGO DBP 33,627 184,672 36,906

since both KGs contain mainly geographical data. We con-
sider LOCATION, PERSON, and ORGANIZATION entities
in the YAGO KG. DBP-YAGO contains 15,000 aligned enti-
ties and 72 aligned predicates from a total of 279 predicates;
DBP-LGD contains 10,000 aligned entities and ten aligned
predicates from a total of 510 predicates; and DBP-GEO
contains 10,000 aligned entities and ten aligned predicates
from a total of 716 predicates. The statistics of the datasets
are listed in Table 2.

We use grid search to find the best hyperparameters for
the models. We choose the embeddings dimensionality d
among {50, 75, 100, 200}, the learning rate of the Adam op-
timizer among {0.001, 0.01, 0.1}, and the margin γ among
{1, 5, 10}. We train the models with a batch size of 100 and a
maximum of 400 epochs. We compare our proposed model
with TransE (Bordes et al. 2013), MTransE (Chen et al.
2017a), and JAPE (Sun, Hu, and Li 2017).

5.1 Entity Alignment Results
We evaluate the performance of the models using
hits@k(k = 1, 10) (i.e., the proportion of correctly aligned
entities ranked in the top k predictions), and the mean of
the rank (MR) of the correct (i.e., matching) entity. Higher
hits@k and lower MR indicate better performance. For each
entity from DBP, we use Eq. 14 to compute the similarity
scores with entities from the other KG (LGD/GEO/YAGO).

Table 3 shows that our proposed model consistently out-
performs the baseline models, with p < 0.01 based on the
t-test on the MR. As expected, TransE has poor performance
on the entity alignment task because its embeddings of dif-
ferent KGs fall into different vector spaces, and hence it fails
to capture the entity similarity between KGs. Meanwhile,
MTransE and JAPE rely on the number of the seed align-
ments (we use 30% of the gold standard as the seed align-
ments as suggested in the original papers).

Among our attribute character embedding models, using
the N-gram compositional function achieves better perfor-
mance than using either the LSTM or the SUM composi-
tional functions because the N-gram compositional function
preserves string similarity better when mapping attribute
strings to their vector representations than the other func-
tions. The transitivity rule further improves the performance
of the model since it enriches the attributes of the entities
which allows more attributes to be used in the alignment.

To evaluate the power of our attribute character embed-
ding in capturing the similarity between entities, we fur-
ther create rule-based models for entity alignment, where
we simply use the edit distance between entity label strings

302

Table 3: Entity Alignment Results
DBP-LGD DBP-GEO DBP-YAGO

Model Hits@1 Hits@10 MR Hits@1 Hits@10 MR Hits@1 Hits@10 MR
TransE 2.61 7.01 18445 1.34 6.71 17145 1.22 3.54 24809

Baselines MTransE 33.29 34.32 10194 33.34 33.98 10240 33.46 34.32 7105
JAPE 33.33 33.35 5104 33.35 33.75 5088 33.35 33.37 5296
SUM 51.15 65.21 461 51.33 62.81 851 80.61 83.32 237
LSTM 60.72 71.47 320 61.11 73.08 194 85.51 92.07 126
N-gram 84.27 91.85 53 87.61 92.15 80 89.69 95.83 23

Proposed Transitivity-enhanced models
SUM 52.01 65.61 352 54.05 65.29 712 81.12 84.22 171
LSTM 61.75 73.86 148 62.29 74.23 232 86.65 92.91 82
N-gram 85.32 93.21 24 88.61 92.71 61 91.02 95.59 26

Table 4: Rule-based Entity Alignment Results
DBP-LGD DBP-GEO DBP-YAGO

Model Hits@1 Hits@10 MR Hits@1 Hits@10 MR Hits@1 Hits@10 MR
Label String 80.52 80.57 2603 79.32 79.41 2048 76.41 76.88 484
Label String + Coordinate 86.27 88.85 380 87.61 89.15 441 n/a n/a n/a
Label String + Embeddings 88.91 89.12 28 91.51 91.56 23 86.42 86.63 66

Table 5: KG Completion Results
Link Prediction Triple Classification

Model Hits@10 Precision
LGD GEO YAGO LGD GEO YAGO

TransE 78.80 78.77 65.81 80.46 76.94 66.45
MTransE 65.55 63.89 60.40 77.41 73.81 63.21
JAPE 72.89 71.97 61.31 75.19 72.94 62.32
SUM 76.80 75.76 64.89 79.06 75.91 62.64
LSTM 76.69 76.89 63.75 79.44 76.41 64.98
N-gram 76.12 76.37 64.06 78.39 75.11 64.93

Transitivity-enhanced model
SUM 74.87 74.31 62.51 78.21 74.43 62.75
LSTM 75.82 75.43 62.81 79.21 73.71 64.13
N-gram 75.69 76.55 63.40 78.14 74.21 64.73

to align the entities. For the DBP-LGD and DBP-GEO
datasets, we add coordinate similarity as an additional metric
since both datasets only contain LOCATION entities. From
Table 4, we can see that the resulting embeddings of our
model can be added as an additional feature to enhance the
performance of rule-based models.

5.2 Discussion
We further evaluate our proposed model on KG completion
tasks. We follow two standard tasks including link predic-
tion (Bordes et al. 2013) and triple classification (Socher et
al. 2013). Link prediction aims to predict the missing entity
(either the head entity h or the tail entity t) given a relation-
ship r and an entity (i.e., predicting h given r and t; or pre-
dicting t given h and r). The evaluation protocol for link pre-
diction is defined as follows. First, each relationship triple is
corrupted by replacing its head or tail with all possible en-
tities in the dataset. Then, these corrupted triples are ranked
ascendingly based on the plausibility score (h+ r− t) (i.e.,
valid triples should have smaller plausibility scores than cor-
rupted triples). We report hits@10 for the link prediction

task. Triple classification aims to determine whether a triple
⟨h, r, t⟩ is a valid relationship triple or not. A binary clas-
sifier is trained based on the plausibility score (h+ r− t).
We report the percentage of correctly classified triples.

Table 5 show the results of KG completion tasks. De-
spite not specifically designed for KG completion tasks, our
proposed models achieve competitive performance on these
tasks compared to TransE which was proposed for these
tasks. This degradation in performance is due to that param-
eter α in our model guides the model to learn more on the
aligned triples. However, the degradation is not significant
with p > 0.05 based on the t-test on the MR of the link pre-
diction results. Moreover, our method achieves better perfor-
mance than the existing embedding-based entity alignment
models MTransE and JAPE on these tasks.

6 Conclusion
We proposed an embedding model that integrates entity
structure embedding with attribute character embedding for
entity alignment between knowledge graphs. Our proposed
model uses the attribute character embedding to shift the
entity embeddings from different KGs to the same vector
space. Moreover, we adopt the transitivity rule to enrich the
number of attributes of an entity that helps identify the sim-
ilarity between entities based on the attribute embeddings.
Our proposed model outperforms the baselines consistently
by over 50% in terms of hits@1 on alignment of entities
between three pairs of real-world knowledge graphs.

Acknowledgments
Bayu Distiawan Trisedya is supported by the Indonesian En-
dowment Fund for Education (LPDP). This work is sup-
ported by Australian Research Council (ARC) Discovery
Project DP180102050, Google Faculty Research Award,
and the National Science Foundation of China (Project No.
61872070 and No. 61402155).

303

References
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Proceedings of AAAI Conference on Artificial Intelligence,
301–306.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Proceedings of International Con-
ference on Neural Information Processing Systems, 2787–
2795.
Chen, M.; Tian, Y.; Yang, M.; and Zaniolo, C. 2017a.
Multilingual knowledge graph embeddings for cross-lingual
knowledge alignment. In Proceedings of International Joint
Conference on Artificial Intelligence, 1511–1517.
Chen, M.; Zhou, T.; Zhou, P.; and Zaniolo, C. 2017b.
Multi-graph affinity embeddings for multilingual knowledge
graphs. In Proceedings of NIPS Workshop on Automated
Knowledge Base Construction.
Fellbaum, C. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
2017. Geographic knowledge base. http://www.ruizhang.
info/GKB/gkb.htm.
Hoffart, J.; Suchanek, F. M.; Berberich, K.; and Weikum, G.
2013. Yago2: A spatially and temporally enhanced knowl-
edge base from wikipedia. Artificial Intelligence 194:28–61.
Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Proceed-
ings of International Joint Conference on Natural Language
Processing, 687–696.
Kim, Y.; Jernite, Y.; Sontag, D.; and Rush, A. M. 2016.
Character-aware neural language models. In Proceedings of
AAAI Conference on Artificial Intelligence, 2741–2749.
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas,
D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.;
Auer, S.; and Bizer, C. 2015. Dbpedia - a large-scale, multi-
lingual knowledge base extracted from wikipedia. Semantic
Web 6(2):167–195.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of AAAI Conference on Arti-
ficial Intelligence, 2181–2187.
Ngomo, A.-C. N., and Auer, S. 2011. Limes: a time-efficient
approach for large-scale link discovery on the web of data.
In Proceedings of International Joint Conference on Artifi-
cial Intelligence, 2312–2317.
Nickel, M.; Rosasco, L.; and Poggio, T. A. 2016. Holo-
graphic embeddings of knowledge graphs. In Proceedings
of AAAI Conference on Artificial Intelligence, 1955–1961.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2012. Factorizing
yago: scalable machine learning for linked data. In Pro-
ceedings of International Conference on World Wide Web,
271–280.
Niu, X.; Rong, S.; Wang, H.; and Yu, Y. 2012. An ef-
fective rule miner for instance matching in a web of data.
In Proceedings of International Conference on Information
and Knowledge Management, 1085–1094.

Pershina, M.; Yakout, M.; and Chakrabarti, K. 2015. Holis-
tic entity matching across knowledge graphs. In Proceedings
of International Conference on Big Data, 1585–1590.
Raimond, Y.; Sutton, C.; and Sandler, M. B. 2008. Auto-
matic interlinking of music datasets on the semantic web. In
Linking Data on the Web Workshop. CEUR Workshop Pro-
ceedings, ISSN 1613-0073.
Rivas, E., and Eddy, S. R. 1999. A dynamic program-
ming algorithm for rna structure prediction including pseu-
doknots. Journal of Molecular Biology 285(5):2053–2068.
Scharffe, F.; Yanbin, F. L.; and Zhou, C. 2009. Rdf-ai: an ar-
chitecture for rdf datasets matching, fusion and interlink. In
Proceedings of IJCAI Workshop on Identity and Reference
in Knowledge Representation.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. Y. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In Proceedings of International Conference on
Neural Information Processing Systems, 926–934.
Stadler, C.; Lehmann, J.; Hoffner, K.; and Auer, S. 2012.
Linkedgeodata: A core for a web of spatial open data. Se-
mantic Web 3(4):333–354.
Sun, Z.; Hu, W.; and Li, C. 2017. Cross-lingual entity align-
ment via joint attribute-preserving embedding. In Proceed-
ings of International Semantic Web Conference, 628–644.
Trisedya, B. D.; Qi, J.; Zhang, R.; and Wang, W. 2018. Gtr-
lstm: A triple encoder for sentence generation from rdf data.
In Proceedings of Association for Computational Linguis-
tics, 1627–1637.
Volz, J.; Bizer, C.; Gaedke, M.; and Kobilarov, G. 2009. Dis-
covering and maintaining links on the web of data. In Pro-
ceedings of International Semantic Web Conference, 650–
665.
Wang, Z., and Li, J. 2016. Text-enhanced representation
learning for knowledge graph. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence, 1293–
1299.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of AAAI Conference on Artificial Intelligence,
1112–1119.
Xie, R.; Liu, Z.; Jia, J.; Luan, H.; and Sun, M. 2016. Repre-
sentation learning of knowledge graphs with entity descrip-
tions. In Proceedings of AAAI Conference on Artificial In-
telligence, 2659–2665.
Yih, W.-t.; Chang, M.-W.; He, X.; and Gao, J. 2015. Se-
mantic parsing via staged query graph generation: Question
answering with knowledge base. In Proceedings of Associ-
ation for Computational Linguistics, 1321–1331.
Zhang, F.; Yuan, N. J.; Lian, D.; Xie, X.; and Ma, W.-Y.
2016. Collaborative knowledge base embedding for recom-
mender systems. In Proceedings of International Confer-
ence on Knowledge Discovery and Data Mining, 353–362.
Zhu, H.; Xie, R.; Liu, Z.; and Sun, M. 2017. Iterative entity
alignment via joint knowledge embeddings. In Proceedings
of International Joint Conference on Artificial Intelligence,
4258–4264.

304

http://www.ruizhang.info/GKB/gkb.htm
http://www.ruizhang.info/GKB/gkb.htm

