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Abstract
Identifying mix-and-match relationships between fashion
items is an urgent task in a fashion e-commerce recom-
mender system. It will significantly enhance user experience
and satisfaction. However, due to the challenges of infer-
ring the rich yet complicated set of compatibility patterns
in a large e-commerce corpus of fashion items, this task is
still underexplored. Inspired by the recent advances in multi-
relational knowledge representation learning and deep neural
networks, this paper proposes a novel Translation-based Neu-
ral Fashion Compatibility Modeling (TransNFCM) frame-
work, which jointly optimizes fashion item embeddings and
category-specific complementary relations in a unified space
via an end-to-end learning manner. TransNFCM places items
in a unified embedding space where a category-specific rela-
tion (category-comp-category) is modeled as a vector trans-
lation operating on the embeddings of compatible items from
the corresponding categories. By this way, we not only cap-
ture the specific notion of compatibility conditioned on a spe-
cific pair of complementary categories, but also preserve the
global notion of compatibility. We also design a deep fashion
item encoder which exploits the complementary characteris-
tic of visual and textual features to represent the fashion prod-
ucts. To the best of our knowledge, this is the first work that
uses category-specific complementary relations to model the
category-aware compatibility between items in a translation-
based embedding space. Extensive experiments demonstrate
the effectiveness of TransNFCM over the state-of-the-arts on
two real-world datasets.

Introduction
Recently, rising demands for fashion products have driven
researchers in e-commerce to develop various techniques to
effectively recommend fashion items. Existing techniques
can be mainly categorized into two types: (1) search-based:
when a user views a fashion item online, system suggests
similar items which the user may also like, and (2) mix-
and-match-based: when a user views a fashion item (e.g.,
blouse), the system suggests compatible items (e.g., pants)
from a complementary category. The first one has already
been used in most fashion e-commerce sites, by modeling
the visual similarities or interaction relationships such as
also-viewed. The second approach is more challenging and
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still underexplored, since it needs to infer the compatibil-
ity relationships among fashion items that go beyond merely
learning visual similarities. This paper mainly focuses on the
second type, termed as cross-category fashion recommenda-
tion (CCFR). It has received increasing attention from mul-
tiple research fields, due to its potential ability to enhance
user online shopping experience and satisfaction (Hsiao
and Grauman 2018; Han et al. 2017; Vasileva et al. 2018;
Veit et al. 2015).

The key to designing a CCFR model is 1) how to represent
various fashion items, and 2) how to model their compatibil-
ity relationships based on their representations. Mainstream
studies handle this task in an embedding learning strategy:
one optimizes a feature mapping from original item space
into a latent compatibility space, where compatible items are
close together by requiring the pairwise Euclidean distance
(inner-product) between embeddings of compatible fashion
items to be much smaller (larger) than that of incompati-
ble items (Veit et al. 2015; McAuley et al. 2015; Song et
al. 2017; 2018; He, Packer, and McAuley 2016). Here, fash-
ion items are represented as a latent vector (also termed as
embedding) in a latent space, where cross-category compat-
ibility is modeled with pairwise Euclidean distance or inner-
product between the embeddings of fashion items.

Despite their promising performance, such similarity/
metric learning-based compatibility modeling approaches
usually suffer from the following limitations. (1) They just
consider compatibility learning as a single-relational data
modeling problem and use a fixed and data-independent
function, i.e., Euclidean distance or inner-product, to model
the notion of compatibility, which ignores the rich yet com-
plicated patterns in fashion compatibility space. (2) They
only utilize pairwise labels (i.e., compatible/incompatible)
to optimize item embeddings, thus resulting in a context-
unaware compatibility space which ignores the inter-
category variation. In such a category-unaware space, in-
compatible items may be forced to close together in a one-
to-many case due to the improper similarity transitivity
(Vasileva et al. 2018). We argue that fashion compatibility
is a multi-dimensional concept that varies from case to case.
Fashion experts usually use different attributes of items to
make a decision for different categories. Data-independent
compatibility function usually results in sub-optimal perfor-
mance.
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Figure 1: Overview of the proposed Translation-Based Neural Fashion Compatibility Modeling (TransNFCM) approach. It
mainly consists of three parts: (1) Each item is first mapped into a latent space by a multimodal item encoder which consists
of a pretrained deep CNN for visual modality and a text CNN for textual modality, (2) Category complementary relations
(category-comp-category) are encoded into the latent space as vector translations operating on the embeddings of compatible
items, and (3) Both item embeddings and relation vectors are jointly optimized by minimizing a margin-based ranking criterion.

To overcome these limitations, this paper proposes to de-
sign a data-dependent compatibility function which takes
category labels of items into modeling. Specifically, we
formulate compatibility learning as a multi-relational data
modeling problem in a unified compatibility space dom-
inated by a group of category complementary relations
(category-comp-category) as shown in Figure 1. Here, each
relation r corresponds to a complementary category pair
(cx, cy) (e.g., T-shirts and Pants), connecting a head item x
from cx to a tail item y from cy . Then, inspired by the highly-
celebrated Translation Embedding (TransE) method (Bordes
et al. 2013), we develop a Translation-Based Neural Fash-
ion Compatibility Modeling (TransNFCM) approach by in-
terpreting each relation as a semantic translation operating
on the low-dimensional embeddings of fashion items. Given
a pair of compatible items (x, y), our basic learning objec-
tive is that the embedding of tail item x should be close
to that of head item y plus the relation vector rcxcy , i.e.,
x + rcxcy ≈ y. Finally, we model the category-aware com-
patibility of (x, y) with a data-dependent distance function
P
(
(x, y)∈P

)
∝−d (x+ rcxcy ,y), which respects the cat-

egory labels of the head item and tail item and yields a spe-
cific compatibility conditioned on rcxcy . Besides, we design
a neural item encoder to encode the visual and textual fea-
tures of an item into a unified embedding vector that are
jointly optimized with relation vectors in a latent space. By
the proposed TransNFCM, we expect to learn a category-
aware notion of compatibility which can better capture com-
plicated compatibility patterns, e.g., one-to-many, in a single
space.

Our contributions are summarized as follows.

• We present a novel end-to-end neural network archi-
tecture TransNFCM for fashion compatibility modeling.

This is the first work that uses category complementary
relations to model category-respected compatibility be-
tween items in a translation-based embedding space.

• We exploit the multimodal complementary characteristic
of fashion items with a neural item feature encoder.

• We conduct extensive experiments on two public datasets,
which demonstrates the effectiveness of TransNFCM.

Related Work
Fashion Compatibility. In recent years, substantial prior
work has been devoted to model the human notion of
fashion compatibility for fashion recommendation. Hu et
al. (2015) proposed a personalized outfit recommendation
method which models the user-items interaction based on
tensor decomposition. A recurrent neural network method
in (Han et al. 2017) models outfit composition as sequen-
tial process, implicitly learning compatibility via a transi-
tion function. Hsiao et al. (2018) proposed to create capsule
wardrobes from fashion images. The above-mentioned ap-
proaches focus on outfit compatibility and do not explicitly
model item-to-item compatibility.

Mcauley et al. (2015) and Veit et al. (2015) proposed to
model the visual complementary relations between items by
posing it as a metric learning task (Yang, Wang, and Tao
2018) that combines Siamese CNNs with co-purchase data
in Amazon as supervision. Chen et al. (2018) proposed a
triplet loss-based metric learning method (Yang, Zhou, and
Wang 2018) for fashion collocation. Song et al. (2017; 2018)
proposed to model compatibility as inner-product between
items under Bayesian Personalized Ranking (BPR) frame-
work (He and McAuley 2016) using co-occurrence relation-
ships in Polyvore outfits data as supervision. Both visual and
textual modalities are used to represent items with an inter-
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modality consistency constraint in deep embedding learning
manner. In (Song et al. 2018), domain knowledge rules are
utilized for compatibility modeling in a teacher-to-student
learning scheme (Hu et al. 2016). The main limitation is
that they use a fixed and data-independent interaction func-
tion to model pairwise compatibility, which ignores the rich
yet complicated compatibility patterns and then results in
sub-optimal compatibility modeling performance. They will
be hard to handle the one-to-many case in fashion domain,
e.g., they may push incompatible items together improperly
when they are compatible with the same target. (He, Packer,
and McAuley 2016) proposed to alleviate this limitation by
modeling the notion of compatibility with a weighted sum
of pairwise distances in multiple latent metric spaces.

Different with the aforementioned methods, our work pro-
poses to model category-aware compatibility by jointly op-
timizing category complementary (co-occurrence) relations
and item embeddings in a unified latent space and interpret-
ing the relations as vector translations among compatible
items from the corresponding categories. The closet work
to ours is (Vasileva et al. 2018) that jointly learns type-
respected visual item embedding with type-specific sparse
masks for modeling both pairwise similarity and category-
specific compatibility, in which its category-specific mask
projects item pairs into a type-specific subspace for comput-
ing compatibility. Our TransNFCM follows a similar moti-
vation with (Vasileva et al. 2018), but designed in a differ-
ent way. As analyzed in latter section, TransNFCM not only
captures category-specific notion of compatibility but also
preserves the global notion of compatibility, thus showing
better performance than (Vasileva et al. 2018).
Personalized Recommendation. Our work is also related
to personalized (user-item) recommendation methods (He
et al. 2017; 2018b; 2018a; Tay, Anh Tuan, and Hui 2018)
which focus on learning data-dependent interaction func-
tions instead of using a fixed function and show state-of-
the-art performance. Our work can also be considered as a
content-based recommendation method (Chen et al. 2017;
Yu et al. 2018) where the item features have richer seman-
tics than just a user/item ID. In this paper, we mainly focus
on cross-category recommendation in fashion domain. In the
future, we will consider to utilize the user information (age,
shape, weight, religion, etc) for personalized fashion recom-
mendation.
Knowledge Embedding. Our method is inspired by re-
cent advances in knowledge representation learning (Bor-
des et al. 2013; Xie et al. 2016; Xie, Liu, and Sun 2016;
Lin et al. 2015; Nie et al. 2015), where the objective is to
model multiple complex relations between pairs of various
entities. One highly-celebrated technique TransE (Bordes et
al. 2013) embeds relations of multi-relational data as transla-
tions operating on the low-dimensional embeddings of enti-
ties. TransE has been employed for visual relation modeling
(Zhang et al. 2017) and recommendation (Tay et al. 2018),
(He, Kang, and McAuley 2017). Our work is motivated by
those findings. We treat each fashion item as an entity in
knowledge graphs. Our key idea is to represent the category-
aware compatibility relations between items as translations
in a unified embedding space, as shown in Figure 1.

Proposed Approach: TransNFCM
This paper aims to tackle the task of fashion compatibility
learning, which needs to address two sub-problems:

• How to effectively represent fashion items that are usually
described by multimodal data (e.g., video, image, title, de-
scription, etc)?

• How to effectively model the notion of category-aware
compatibility between fashion items?

We address these two problems by developing an end-to-
end deep joint embedding learning framework, termed as
Translation-based Neural Fashion Compatibility Modeling.
The overall framework is illustrated in Figure 1. Fashion
items with multimodal descriptions are encoded as low-
dimensional embeddings in a latent compatibility space via
a multimodal item encoder. Then, the complicated compat-
ibility relations are captured by a category-specific vector
translation operation in a latent space.

Multimodal Item Encoder
In the mainstream recommender systems (He et al. 2017),
only the item ID is used to represent the item, resulting in
a high-dimensional and very sparse feature input. While,
content-based item representation (Chen et al. 2017) is more
popular in the fashion domain (He and McAuley 2016;
He, Packer, and McAuley 2016; Liao et al. 2018), since it
can capture rich semantical features of fashion items. Gen-
erally, fashion items in e-commerce sites are described by
multimodal data. This work aims to exploit the comple-
mentary characteristic of multimodal descriptions for ro-
bust item representation by designing a two-channel item
encoder consisting of a visual encoder (V-Encoder), and
a textual encoder (T-Encoder). We propose to simultane-
ously learn two nonlinear feature transformations: one is V-
Encoder fV (vx) that maps an image vx of item x into a
visual feature space Rd and the other is T-Encoder fT (tx)
that transforms an textual description tx of item x into a tex-
tual feature spaceRd. We implement both V-Encoder and T-
Encoder using the popular deep convolutional network mod-
els. Both the outputs of V-Encoder and T-Encoder are `2-
normalized and concatenated as the final representationR2d

of item x in a feature-level fusion manner.

Fashion Compatibility Modeling
How to model the item-to-item compatibility is the key of
this task. Let’s first briefly recall the strategies in prior work.
Given a pair of compatible items (x, y) from complementary
categories and their feature vectors x ∈ RD, y ∈ RD, the
notion of compatibility is modeled as four ways:

• Inner-product has been used in previous works (Song et
al. 2017; 2018; He and McAuley 2016) which model the
compatibility as

P
(
(x, y) ∈ P

)
∝ xTy, (1)

where P
(
(x, y) ∈ P

)
denotes the probability of x and y

being compatible with each other.
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• Euclidean distance is adopted in (McAuley et al. 2015;
Veit et al. 2015; Chen and He 2018), which models the
compatibility as P

(
(x, y) ∈ P

)
∝ −d(x, y), where

d(x, y) = ‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2xTy. (2)

• Probabilistic mixtures of multiple distances is proposed
in (He, Packer, and McAuley 2016) which models the
compatibility with a weighted sum of distances dk(x, y)
in M metric subspaces, parameterized by M matrices
{Ek}Mk

d(x, y) =
∑

k
P (k|x, y) dk(x, y)

=
∑

k
P (k|x, y)

∥∥ET
0 x−ET

k y
∥∥2
2

, (3)

where P (k|x, y) denotes the probability of Ek being used
for pair (x, y).

• Conditional similarity (Veit et al. 2017) is used in
(Vasileva et al. 2018) to model the type-aware compatibil-
ity with the pairwise distance in a conditioned similarity
subspace

d(x, y) =
∥∥x�wcxcy − y �wcxcy

∥∥2
2
, (4)

where � denotes element-wise multiplication, ci, cj de-
note the types (categories) of item x and y, and wcicj is
a sparse vector, acting as a gating function that selects
the relevant dimensions of the embedding for determin-
ing compatibility in the similarity subspace depending on
the item type pair (ci, cj).

Remarks: Both the first and second types of methods use
a fixed and data-independent compatibility function (Eq.
(1) or (2)). When embeddings of item are normalized to
unity norm, the compatibility only depends on xTy. It can
only capture the global notion of compatibility in a shared
embedding space, which ignores the rich yet complicated
matching patterns in original item space. The third measure-
ment (Eq. (3)) adopts a data-dependent function to model
the global notion of compatibility as a probabilistic mixture
of multiple local compatibility scores. However, it needs to
optimize M+2 projection matrices with limited constraints,
which can easily get stuck in bad local optima. Eq. (4) mod-
els the conditioned compatibility by employing a mask op-
eration to embed item pairs into type-specific subspaces for
computing conditional similarity, which only captures the
specific notion of compatibility.

Translation-based Compatibility Modeling. Most prior
work just treats compatibility learning as a problem of
single-relational data modeling towards learning a global
notion of compatibility. However, fashion compatibility is a
multi-dimensional concept that varies from case to case. For
example, fashion items belong to various categories (e.g.,
dresses, coats, skirts, sandals, etc). Given a pair of item from
categoryA andB, the visual/semantic attributes which fash-
ion experts use for making a decision may be color, pattern,
sleeve-length, material, etc. While, given an item pair from
category C and D, the attributes they use would change ac-
cordingly. In this case, the category labels of items would
influence the decision making of experts significantly.

To overcome the limitations of existing work, we propose
to incorporate category complementary (i.e., co-occurrence)
relationships into compatibility modeling, which formu-
lates this task as a problem of multi-relational data mod-
eling, towards learning a category-aware compatibility no-
tion. For simplicity, we term category complementary re-
lations as category-comp-category, such as dresses-comp-
boots, which are illustrated in Figure 2. The next question
then is how to explicitly represent such relations. Inspired by
the highly-celebrated TransE method (Bordes et al. 2013),
we interpret the category-comp-category relations as a sim-
ple vector translation operating on the embeddings of com-
patible items from the corresponding categories. Given a
pair of compatible items (x, y) ∈ P with embedding vec-
tors (x,y), and the corresponding category-comp-category
relation vector rcxcy , we assume that the embedding of tail
item y should be close to that of head item x plus the relation
rcxcy , i.e., x+ rcxcy ≈ y. Then, our notion of compatibility
is modeled with a data-dependent distance function condi-
tioned on rcxcy , i.e., P

(
(x, y) ∈ P

)
∝ −d (x+ rcxcy ,y),

where

d (x+ rcxcy ,y) =
∥∥x+ rcxcy − y

∥∥2
2

=‖x‖22 + ‖y‖22 +
∥∥rcxcy∥∥2

2

− 2xTy︸︷︷︸
global

−2 (y − x)T rcxcy︸ ︷︷ ︸
category-specific

, (5)

During the training stage, the embeddings of items and rela-
tions are jointly optimized in an end-to-end manner. During
the recommendation stage, candidates that have smaller dis-
tance (computed using Eq. (5)) with the query item would
be top-ranked and suggested to user.
Remarks: Note that, as shown in Eq. (5), our compatibil-
ity modeling function not only preserves the global notion
of compatibility by xTy, but also captures the category-
specific compatibility (y− x)T rcxcy , which is significantly
different with (Vasileva et al. 2018). Here, the relation rcxcy

functions as a mask implicitly that can select category-aware
features of items for computing compatibility in a subspace
conditioned on the pairwise categories (cx, cy).
Margin-based Ranking Criterion. Given a positive triplet
(x, y, rcxcy ) consists of two items (x, y) ∈ P from cate-
gory cx and cy , we generate a set of negative (incompatible)
triplets with either the head or tail item replaced by a ran-
dom item (but not both at the same time). In this way, we
can generate a large set T of 5-tuples for training:

T =
{
(x, y, rcxcy , y′, rcxc

′
y )|(x, y′) /∈ P

}
∪{

(x, y, rcxcy , x′, rcx′cy )|(x′, y) /∈ P
} (6)

where x′(x) and y(y′) are not compatible with each other
but from complementary categories. To jointly optimize
item embeddings and category-specific relation vectors, we
minimize a margin-based ranking criterion over the training
set

L =
∑
T

[
d(x+ rcxcy ,y)− d(x′ + rcx′cy′ ,y′) + γ

]
+

(7)
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where (x′, y′) ∈
{
(x, y′)∪ (x′, y)

}
, and [ · ]+ denotes hinge

loss, and γ > 0 is a margin parameter, and |T | denotes
the total number of 5-tuples in training set. The optimiza-
tion goal is that distance between a pair of compatible items
should be smaller than that between incompatible (less com-
patible) items by a margin.
Implementation Details. The V-Encoder is implemented by
the pretrained AlexNet (Krizhevsky et al. 2012) which con-
sists of 5 convolutional layers and 3 fully-connected (FC)
layers. We drop the last FC layer and add a new FC layer
as our visual embedding layer that transforms the 4096-D
output of the 2nd FC layer into a d-dimensional embedding.
The T-Encoder is implemented with the text CNN architec-
ture (Kim 2014) consisting of a convolutional layer, a max-
pooling layer, and a FC layer. We use four filter windows
with sizes of {2,3,4,5} with 50 feature maps each. The tex-
tual data are first preprocessed by filtering words appearing
in very less items and with very less characters, and then
we represent each word with the publicly-available 300-D
word2vec vector. We use a new FC layer to replace the last
layer to transform the output of max-pooling layer into a
d-dimensional textual embedding (d = 128). In the mul-
timodal fusion setting, the outputs of the V-Encoder and T-
Encoder are `2 normalized and then concatenated as the final
item embeddingR2d. Note that other multimodal feature fu-
sion strategies, such as score-level fusion, can also be used
in TransNFCM.

We optimize our proposed TransNFCM with the objective
Eq. (7) by stochastic gradient decent (SGD) in minibatch
training mode. All the visual/textual item embeddings are
normalized to unit norm. For each pair of complementary
categories (i.e., t-shirts and pants), we generate a category-
aware relation vector, having the same dimension with item
embeddings. The relation vectors are randomly initialized
and only normalized to unit norm at the beginning of op-
timization. No other regularization or norm constraints are
enforced on relation vectors. TransNFCM is implemented
with Pytorch. In each epoch, we first shuffle all the 5-tuples
in T and get a mini-batch in a sequential way.

Experiments
To comprehensively evaluate the effectiveness of our pro-
posed TransNFCM method, we conduct experiments to an-
swer the following research questions:
RQ1: Can our proposed TransNFCM outperform the state-
of-the-art fashion compatibility learning methods?
RQ2: Is the multimodal embedding fusion strategy helpful
for improving the learning performance?
RQ3: Why does TransNFCM work?

Experimental Settings
Datasets. We conduct experiments on two public fashion
compatibility datasets, both crawled from the fashion so-
cial commerce site Polyvore (www.polyvore.com), which
enables fashion bloggers to share their fashion tips by creat-
ing and uploading outfit compositions. In the following two
datasets, we both use the item pairs that are co-occurring in
an outfit as supervision for training and also evaluation.
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Figure 2: Illustration of category-comp-category relations in
both datasets: (a) FashionVC, (b) PolyvoreMaryland. Each
edge denotes a category-comp-category relation. The num-
bers of items in each category are also illustrated. For sim-
plicity, Dresses is classified into the Bottoms. 30 category-
comp-category relations are used in FashionVC and 101 re-
lations are used in PolyvoreMaryland.

FashionVC (Song et al. 2017). It was collected for top-
bottom recommendation, consisting of 14,871 tops and
13,663 bottoms, split into 80% for training, 10% for vali-
dation, and 10% for testing. Each item contains a product
image and textual description (category and title).
PolyvoreMaryland (Han et al. 2017). It was released by
(Han et al. 2017) for outfit compatibility modeling. Since in
this paper we mainly study the modeling of item-item com-
patibility, not the whole outfit, we only keep four groups
of items among the first 5 item in outfits: tops, bottoms,
shoes, and bags. Other fashion accessories and jeweleries
have been removed. Each item contains a product image and
textual description (product title only). We extract and re-
split the co-occurring item pairs randomly in the same set-
ting with FashionVC: 80% for training, 10% for testing, and
10% for validation.
Evaluation Protocols. For each testing positive pair
(hi, tig) ∈ Pt, we replace the tail item with N = 100 neg-
ative items1 {tin}Nn=1 which do not co-occur with hi in the
same outfit but are from complementary categories with hi.
We adopt two popular metrics, Area Under the ROC curve
(AUC) and Hit Ratio (HR), to evaluate the item-item recom-
mendation based on the compatibility score. Both AUC and
HR@K are widely-used in recommendation systems. AUC
is defined as

AUC =
1

N |Pt|
∑
i

∑
n

δ
(
s(hi, tig) > s(hi, tin)

)
(8)

where δ(a) is an indicator function that returns 1 if the argu-
ment a is true, otherwise 0. s(hi, tig) = P

(
(hi, tig) ∈ Pt

)
denotes the compatibility score. |Pt| denotes the total num-
ber of testing positive pairs. HR@K is a recall-based metric,

1Note that our setting is much more challenging that that of
(Song et al. 2017; 2018) where only 3 negative candidates are sam-
pled for each query during testing.
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Table 1: Comparison on the FashionVC and PolyvoreMaryland datasets based on two metrics: AUC (%) and Hit@K (%, K∈{5,
10, 20, 40}). A larger number indicates a better result. V and T denote Visual modality and Textual modality, respectively. V+T
denotes the fusion of visual and textual modalities. 100 negative candidates are sampled for each query during testing. The best
results are shown in boldface.

Features Methods FashionVC PolyvoreMaryland
AUC Hit@5 Hit@10 Hit@20 Hit@40 AUC Hit@5 Hit@10 Hit@20 Hit@40

V

SiaNet 60.4 9.7 18.1 31.2 52.8 59.1 8.3 15.5 29.0 51.8
Monomer 70.2 16.9 28.6 45.8 69.1 70.5 17.6 28.9 45.7 69.0

CSN 71.6 16.7 28.4 46.7 70.8 70.2 17.3 28.4 45.1 68.4
BPR 70.9 16.7 27.3 46.7 70.4 69.5 17.3 28.2 43.9 67.5

TriNet 70.6 16.3 28.0 45.7 69.6 70.1 18.1 28.7 44.9 68.3
TransNFCM 73.6 19.0 32.3 51.6 74.0 71.8 18.9 30.6 48.1 70.5

T

SiaNet 66.1 10.8 21.0 37.9 61.1 62.3 8.3 16.2 32.0 56.3
Monomer 68.8 16.5 26.9 42.1 64.8 63.3 10.1 18.8 33.9 58.1

CSN 67.5 11.2 22.4 41.2 64.1 63.2 8.8 17.0 32.5 57.4
BPR 70.9 15.4 26.8 45.6 67.6 67.8 13.0 23.6 40.3 65.3

TriNet 71.3 16.5 28.9 46.4 69.2 68.4 13.7 24.4 41.5 65.8
TransNFCM 72.6 18.9 30.0 47.9 70.8 68.8 14.7 25.8 42.2 66.0

V+T TransNFCM 76.9 23.3 38.1 57.1 77.9 74.7 21.7 34.4 52.7 75.3

denoting the proportion of the correct tail item tig ranked in
the topK.N+1 candidates are provided for each head item
hi.
Parameter Settings. We employ the stochastic gradient de-
scent for optimization with momentum factor as 0.9. We set
the overall learning rate η = 0.001, and drop it to η = η/10
every 10 epochs. The learning rate of the pretrained AlexNet
in V-Encoder is set to η′ = η/10 for fine-tuning. The mar-
gin γ is set to 1 following the setting of (Bordes et al. 2013).
We use 128 5-tuples in a minibatch. Both the dimensions of
visual embedding vectors and textual embedding vectors are
set to d = 128. Dropout is used in both visual and textual
encoders.
Comparison Methods. We compare TransNFCM with the
following methods that are all implemented in the same
framework. The main difference lies in the compatibility
modeling functions and loss functions.
- Siamese Network (SiaNet) (Veit et al. 2015): models

compatibility with the squared Euclidean distance (Eq.
(2)) and uses contrastive loss as its optimization criterion.

- Triplet Network (TriNet) (Wang et al. 2014; Chen and
He 2018): models compatibility with Eq. (2) and use the
margin-based ranking criterion with `2-normalized item
embeddings as input, in which the margin is set to 1.
TriNet is our baseline which is category-unaware and uses
data-independent function.

- BPR (He and McAuley 2016; Song et al. 2017): mod-
els compatibility as inner-product (Eq. (1)) and uses the
soft-margin based objective loss. In this paper, we imple-
mented it with `2-normalized embeddings.

- Monomer (He, Packer, and McAuley 2016): models
compatibility with a mixture of multiple local distances
(Eq. (3)) and is also implemented using the same objec-
tive function with us.

- CSN (Vasileva et al. 2018): models pairwise compatibil-
ity as a conditional similarity (Eq. (3)) that respects item

types. We implement it following the setting of (Veit, Be-
longie, and Karaletsos 2017).

Experimental Evaluation
Performance Comparison and Analysis. Table 1 shows
the performance comparison on two datasets based on AUC
and Hit@K (K∈{5,10,20,40}). From Table 1, we have the
following observations.

• TransNFCM achieves the best performance in most
cases and obtains high improvements over the compari-
son methods, especially in the visual (V) modality set-
ting. This justifies the effectiveness of TransNFCM that
builds a data-dependent (i.e., category-aware) compatibil-
ity function (Eq. (5)) using a translation-based joint em-
bedding learning paradigm. (RQ1)

• TransNFCM consistently outperforms the baseline TriNet
on two datasets, especially using visual features. It
demonstrates the necessity of encoding the pairwise
category-labels into the embedding space for capturing
a category-aware compatibility notion. Note that the im-
provement becomes less significant in the T setting on
the PolyvoreMaryland dataset. It is mainly because that
the textual descriptions of items in the PolyvoreMaryland
dataset are very noisy and sparse, thus resulting in sub-
optimal relation embeddings. (RQ1)

• Although both employing the pairwise category labels,
TransNFCM significantly outperforms CSN in all. It is
mainly because CSN only captures the conditioned com-
patibility in a subspace dominated by a pair of comple-
mentary categories and does not preserve the global no-
tion of compatibility in original feature space, thus re-
sulting in a limitation that its conditioned compatibility
in one subspace cannot be compared with that in another
subspace. While, benefiting from the TransE framework,
our compatibility function (Eq. (5)) not only captures the
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Figure 3: Effects of using different parts in Eq. (5) for com-
patibility computing on FashionVC. Global notion refers
to using xTy, Category-specific notion refers to using
(y − x)T rcxcy , and All refers to using Eq. (5).

category-specific notion but also preserves the global no-
tion, thus showing better performance. (RQ1)

• Table 1 also shows that TransNFCM can effectively mine
the complementary characteristic of images and texts with
the multimodal item encoder. The textual descriptions of
items in the two datasets are very noisy and also sparse.
But it indeed contributes some visually-invisible at-
tributes such as style or season that can well complement
visual features, thus bringing significant performance im-
provement. Note that BPR has been used for fashion
compatibility modeling in a multimodal fusion manner
in (Song et al. 2017). We have conducted a performance
comparison with BPR in our multimodal fusion set-
ting with 100 negative candidates: BPR achieves 75.4%
AUC and 33.4% Hit@10 on the FashionVC dataset, and
73.8% AUC and 32.7% Hit@10 on the Polyvore dataset.
TransNFCM yields remarkable improvements on BPR.
Besides, we do not include a cross-modality consistency
loss (Song et al. 2017) or visual-semantic loss (Vasileva et
al. 2018) in TransNFCM, since we empirically found that
those strategies would reduce the diversity of multimodal
item representation and degrade the performance. (RQ2)

Empirical analysis. To better evaluate the effects of the
global part and category-specific part in Eq. (5), we con-
duct an experiment (as shown in Figure 3) to investi-
gate how these jointly-learned two parts performs sepa-
rately in the testing stage. From Figure 3, we have the
following observations. xTy usually performs better than
(y − x)

T
rcxcy in all except one, which demonstrates the

importance of preserving such global notion of compatibil-
ity. The category-specific part complements the global part
well, since it alleviates the improper similarity transitiv-
ity by pushing hard negative candidates farther away from
the query. Only using (y − x)

T
rcxcy results in a bad per-

formance, which is also validated by the performance of
CSN in Table 1. In TransNFCM, rcxcy dominates a latent
compatibility subspace where compatible items (x, y) from
categories (cx, cy) are close to each other. So, we empiri-
cally conclude that it is the combination of both global no-
tion and category-specific notion of compatibility that makes
TransNFCM work. (RQ3)
New setting: Target category is known. We also compare
TransNFCM with TriNet in a new evaluation setting: the tar-
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Figure 4: (a) (b) denote the comparison with TriNet when
target category is known, (c) (d) denote the comparison with
TriNet when target category is unknown. Experiments are
conducted on FashionVC. Only visual modality is used.

get category is known, e.g., a user buys/clicks a blouse and
wants system only recommend skirts that match the given
blouse well. This new setting facilitates our baseline TriNet
more, since all the negative candidates are sampled from the
known target category. The improper similarity transitivity
in TriNet can be alleviated. We observe from Figure 4 (a)
and (b) that our TransNFCM can still outperform TriNet by
nearly 2% AUC and Hit@10. When using the original set-
ting (negative candidates are randomly sampled from com-
plementary categories), shown in Figure 4 (c) and (d), the
improvement becomes more obvious. Nearly 4% improve-
ment is observed at both AUC and Hit@10.

Conclusion
In this work, we developed a new neural network framework
for fashion compatibility modeling, named TransNFCM.
The main contribution is that TransNFCM casts fashion
compatibility as a multi-relational data modeling problem
and encodes the category-comp-category relations as vector
translations operating on embeddings of compatible items in
a latent space. TransNFCM not only captures the category-
specific notion of compatibility but also preserves the global
notion, which can effectively alleviate the improper simi-
larity transitivity in metric learning based approaches. To
the best of our knowledge, this is the first work that poses
compatibility modeling into such a translation-based joint
embedding learning framework. Although TransNFCM only
utilizes category-level co-occurrence relations in this work,
it can be directly extended to model fine-grained matching
rules, composed of color, category, pattern, style, etc. We
will explore more fine-grained relations in the fashion do-
main to further discover the potentials of TransNFCM in
the future. Besides, we also introduce a multimodal item
encoder which effectively exploits the complementary char-
acteristic of different modalities. Extensive experiments on
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two datasets have demonstrated the effectiveness of our
method.
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