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Abstract
Generative Adversarial Networks (GANs) are powerful tools
for reconstructing Compressed Sensing Magnetic Resonance
Imaging (CS-MRI). However most recent works lack explo-
ration of structure information of MRI images that is cru-
cial for clinical diagnosis. To tackle this problem, we propose
the Structure-Enhanced GAN (SEGAN) that aims at restoring
structure information at both local and global scale. SEGAN
defines a new structure regularization called Patch Correla-
tion Regularization (PCR) which allows for efficient extrac-
tion of structure information. In addition, to further enhance
the ability to uncover structure information, we propose a
novel generator SU-Net by incorporating multiple-scale con-
volution filters into each layer. Besides, we theoretically ana-
lyze the convergence of stochastic factors contained in train-
ing process. Experimental results show that SEGAN is able
to learn target structure information and achieves state-of-the-
art performance for CS-MRI reconstruction.

Introduction
Magnetic Resonance Imaging (MRI) is a promising tech-
nique for disease diagnosis. The biggest advantage of MRI
is no risk of radiation that is inevitable in other medical
imaging techniques, such as Computed Tomography (CT).
However, for patients, lengthy scan process still causes
discomfort unavoidably (Hollingsworth 2015). To shorten
MRI acquisition time, Compressed Sensing (CS) (Candès,
Romberg, and Tao 2006; Candès and Wakin 2008) has
been applied to MRI sampling and reconstruction (Lustig,
Donoho, and Pauly 2007). With the assumption of signals
sparsity, CS reconstructs MRI images from under-sampled
signals. The relationship between under-sampled MRI and
full-sampled MRI can be linearly formulated as follows,

y = Ax+ ξ (1)

where the vector y ∈ Cm is observed vector and x ∈ CN is
raw data. Matrix A is the under-sampled Fourier encoding
matrix and ξ is noise vector. The objective of compressed
sensing MRI (CS-MRI) is to recover x from y. The chal-
lenge arises from the under-sampled cases m≪ N . Clearly,
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Figure 1: Comparision of MRI images with different types
of structure similarity, all with Mean Squared Error (MSE)=
73. (a) Original image. (b) salt-pepper impulsive noise con-
taminated image. (c) Blurred image. Although two images
have the same MSE value, the structure similarity of third
image is lower than second image. Human vision system
might feel more comfortable with second image in medical
diagnosis.

reconstructing task is essentially under-determined and pri-
ori knowledge is absolutely necessary to obtain a unique so-
lution. Among those priori knowledges, sparsity is the most
effective and widely applied characteristic (Goldstein and
Osher 2009; Lai et al. 2016) and the performance of recon-
struction is guaranteed in theory (Candès and Wakin 2008).

Although sparsity assumption achieves many successes in
various applications, the hypothesis still has a great deal of
limitations (e.g., structure sparse, etc.) (Jia, Lu, and Yang
2012). To address the problems resulting from the spar-
sity assumption, deep learning based models are introduced
for CS-MRI reconstruction which only requires pairwise
under-sampled images and the corresponding full-sampled
ones (Shen, Wu, and Suk 2017; Schlemper et al. 2017;
Hammernik et al. 2017). Generally, the objective function of
traditional deep network based model is composed of Min-
imal Squared Error (MSE) and certain kinds of regulariza-
tions. For Generative Adversarial Networks (GANs) based
models, cost function is built on the divergence between the
distribution of generated images and that of real ones(Good-
fellow et al. 2014; Yang et al. 2017a; Quan, Nguyenduc, and
Jeong 2018).

Howerver, both kinds of loss functions can not explic-
itly quantify structure correlation. Note that, for MRI re-
construction task, structure information consists in corre-
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lations between any two patches of an image. Correlation
can be reflected in different aspects, such as the similarity
between two patches. It is obvious that structure informa-
tion plays a key role in clinical diagnosis, such as patho-
logic analysis, personalized treatment. Hence, it is of great
importance for doctors to access reconstructed images that
preserve structure information well. To gain a more intu-
itive understanding of structure information, we take images
with same MSE for example, as illustrated in Figure 1, the
amount of valuable structure information contained in the
three images could have a great difference.

In conclusion, explicitly exploring the restoration of struc-
ture information is indispensable in CS-MRI, which inspires
us to propose a new deep generative model SEGAN to re-
store structure information contained in original MRI im-
ages. Three main contributions of our work are summarized
as follows:

1) We propose Patch Correlation Regularization (PCR) to
capture the local structure information of MRI images.
Further, we introduce the Stochasic PCR in order to ac-
celerate the model training without performance degrada-
tion. Besides, the measure of global structure similarity
incorporated into loss function as well for preserving the
whole structure to some extent.

2) We propose a novel generator called SU-Net that com-
prises different sizes of convolution filters at each layer
for facilitating the capture of multiscale structure infor-
mation.

3) We present a theoretical analysis of the convergence of
our approach using the online programming framework,
which is optimized by gradient descent.

Related work
In this paper, compressed sensing and deep generative model
are combined for MRI images reconstruction. Hence, we
discuss the related work in two portions. The first portion
briefly introduces conventional works on CS-MRI and the
second portion reviews recent researches of MRI reconstruc-
tion based on the deep generative model.

Conventional CS-MRI reconstruction methods assume
that sparsity of signal is a natural characteristic, which has
been fully utilized for recovering full-sampled signal. How-
ever, computation cost of Sparsity-based methods of recon-
struction is huge (Goldstein and Osher 2009) where complex
nonlinear minimization problem needs to be optimized. In
recent years, low rank (Yao et al. 2015; Otazo, Candès, and
Sodickson 2015) is another assumption for reconstruction
which views CS-MRI as low-rank completion and requires
to solve computationally expensive nuclear norm as well.
To break the limitations of transform-based method, dic-
tionary learning(Aharon et al. 2006; Caballero et al. 2014;
Zhan et al. 2016) attempts to learn data-dependent dictio-
nary rather than bounded by existing signal transformation
methods, but redundant atoms make time complexity unac-
ceptable in real-world applications.

The deep generative model is one of the most active re-
search topics in CS-MRI reconstruction. One line of work

attempts to reconstruct CS-MRI by virtue of deep learn-
ing. Directly mapping zero-filling reconstruction on full-
reconstruction with convolutional autoencoder network has
been explored in the early works (Lee, Yoo, and Ye 2017).
Deep ADMM-Net (Yang et al. 2017b) is anther approach to
solve CS-MRI of which deep architecture is derived from the
ADMM optimization algorithm. Recently, GANs, a great
promising model in image generation, are introduced to re-
construct MRI images as well. Cyclic data consistency loss
has been employed for improving the performance of CS-
MRI reconstruction with GANs (Quan, Nguyenduc, and
Jeong 2018). DAGAN (Yang et al. 2017a) incorporates con-
tent loss composed of pixel-wise Mean Square Error (MSE)
and Frequency Error (FE) into objective function to enhance
the performance of generator. In conclusion, the above dis-
cussed works have not tackle the restoration of structure in-
formation without exception.

The Proposed Method
Problem Statements
The main reconstruction task of compressed sensing MRI
(CS-MRI) is to recover raw data space X from under-
sampled data space Y and the biggest challenge is that the
under-sampled rate is much less than Shannon sampling
rate. Let training set be S = {(x1, y1), (x2, y2), ..., (xl, yl)}
, we denote X = [x1, ..., xl]T ∈ Rl×N and Y =
[y1, ..., yl]T ∈ Rl×m , where xi is ith original image and
yi is the ith under-sampled image.

The Formulation
In this paper, we propose Structure-Enhanced Generative
Adversarial Network (SEGAN) for generating structurally
informative CS-MRI images. The objective function of
SEGAN is composed of four parts, including pixel loss,
Patch Correlation Regularization (PCR), Measure Structure
Similarity Regularization (SSIMR) and Generative Adver-
sarial Loss. The loss function can be written as follows:

min
G

max
D

Lse(D,G) = Ex∼Pdata(x)[logD(x)]

+ Ey∼P ′
data(y)

[1− logD(G(y))]

+

n∑
i=1

(λ1PwG
(xi, G(yi))

+ λ2SwG
(xi, G(yi))

+ λ3

xi, G(yi)

F
)

(2)
G(yi) denotes the ith generated image. SwG

(xi, G(yi))
is SSIMR for restoring global structure information,
PwG

(xi, G(yi)) is PCR for extracting local structure infor-
mation. Pdata(x) denotes the distribution of full-sampled
image and P ′

data(y) denotes the distribution of under-
sampled MRI image.

Structure-Enhanced Loss
Overall, the loss of generator, named as SEL, consists of
three parts: PCR, SSIMR and Mean Squared Error (MSE),
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Figure 2: Illustration of the proposed SU-Net using multi-scale convolutional filters. Each unit is composed of three main
components: 1) feature forward way, 2) three sizes of convolutional filters, 3) leaky ReLU. In our designed SU-Net, there are
10 such units that fully exploit structure information contained in multiple patches.

SEL can be written as,

LwG
=

n∑
i=1

(λ1PwG
(xi, G(yi)) + λ2SwG

(xi, G(yi))

+ λ3

xi, G(yi)

F
)

(3)

where λ1, λ2, λ3 are trade-off parameters that control the
importance of the three regularization respectively. ∥ · ∥F
denotes Frobenius norm.

Patch Correlation Regularization According to prior
knowledge, MRI image belongs to structure data in which
there is strong correlation among the pixels in the neighbor-
hood (Trémoulhéac et al. 2014). Among the existing meth-
ods, graphs based models are the most common methods
for processing structure data, which inspires us to design a
graph based structure regularization called Patch Correlation
Regularization (PCR) that is dedicated to preserve intrinsic
local correlation, where weights of the graph are in propor-
tion to correlation of two image patches.

We split single MRI image into N equal size patches and
calculate the correlation between patches. The same opera-
tion also acts upon outputs of generator. G(y′)i is ith patch
of the output of generator and x′

i is ith patch of MRI image.
PCR can be described as follows:

PwG
(x′, G(y)′) =

N∑
i=1

N∑
j=i+1

[f(x′
i, x

′
j)

−f(G(y′)i, G(y′)j)]
2

(4)

Where f(x′
i, x

′
j) is function of computing matrix correla-

tion.

Correlation Function Selection For structure data, the
type of measured structure information is determined by
the selection of correlation function. Generally, correlation
functions can be divided into three categories: kernel func-
tion, distance metric and correlation coefficients. Here, we

take Pearson correlation coefficient and Gauss kernel for ex-
ample, the former is widely used to obtain linear measure
of correlation in MRI image, the latter is more common in
obtaining nonlinear measure.

Given a differentiable correlation function set
M = {f1(x, y), f2(x, y), . . . , fm(x, y)} with corre-
sponding weights vector u = [u1, u2, . . . , um]T ∈ Rm , so
we have various linear combinations of correlation functions
F = {f(x, y) | f(x, y) =

m∑
i=1

uifi(x, y);x, y ∈ Rn×n} . u

is selected by domain knowledge.

Stochastic Patch Correlation Regularization In prac-
tice, PCR comes at the cost of large accessing memory bur-
den, so we propose a method called Stochastic PCR for ac-
celerating training, it can be formulated as follows:

PwG
(x′, G(y′)) =

N∑
i=1

N∑
j=i+1

αi,j [f(x
′
i, x

′
j)

−f(G(y′)i, G(y′)j)]
2

(5)

αi,j is a random variable obeying the 0 − 1 distribution.
Note that, larger memory of GPU allows for more patches
selected for training, so mean of αi,j is determined by hard-
ware capacity. Hence, we have a randomized version of
Structure-Enhanced Loss called SSEL.

Complementary Global Structure Regularization The
global structure information of the whole image is indis-
pensable for reconstructing CS-MRI to some extent. A new
regularization adapted from SSIM is introduced for acquir-
ing the global structure information (Wang et al. 2004).

SSIM is capable of measuring the global structure similar-
ity, so it is applied for pushing neural network to generating
images containing similar structure as full-sampled images.
Suppose x′ and y′ are two nonnegative images, x′ is full-
sampled image that have perfect quality and y′ is generated
image with low quality. According to the definition of SSIM,
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Algorithm 1 Structure-Enhanced GAN
Input:
η Learning rate, n number of iterations for training the
discriminator, N patch size, M batch size
Output:
Structure-Enhanced GAN generator parameters wG

Initialize wG, wD

repeat
for i = 1 to n do

Sample a minibatch xi, xi ∼ Pdata(x).
Sample a minibatch yi, yi ∼ P ′

data(y).
Calculate G(yi)

gwD
← ∇wD

( 1
M

M∑
i=1

logD(xi)

+ log(1−D(G′(yi))))
wD ← wD + η ADAM(wD, gwD

)
end for
Sample a minibatch xi, xi ∼ Pdata(x).
Sample patch indexs αkl, αkl ∼ P0−1(α).
Select patches of xi according to αkl.

gwG
← ∇wG

(LwG
− 1

M

M∑
i=1

log(1−D′(G(yi)))

wG ← wD − η ADAM(wG, gwG
)

until wG converges

measure satisfy SSIM(x′, y′) ≤ 1, if and only if x′ = y′

the equality holds. It is obvious that the value of SSIM in-
creases as the quality of images becomes higher. SSIMR can
be defined as follows:

SwG
(x′, y′) = (1− SSIM(x′, y′))2 (6)

Remark 1 SSIMR and PCR only constrain solution space
of generator not that of the discriminator. And two regular-
izations capture structure information of CS-MRI images at
both local and global scale.

SEGAN algorithm
Given generator G, we sample N real images and N gener-
ated images respectively, and solve the maximization prob-
lem maxDLse(D,G′) using ADAM (Kingma and Ba 2014).
Then given discriminator D, we sample a minibatch of real
images and randomly select patch index αij , and solve the
minimization problem minG Lse(D

′, G). The implementa-
tion detail is described in Algorithm 1.

SU-Net
For better reconstructed MRI image, generator must have a
remarkable capacity for feature extraction. The most effec-
tive strategy for feature extraction is the shortcut connection
which transfers feature representations from low layers to
the high layers(He et al. 2016; Huang et al. 2017). Here,
what we want to emphasize is one type of generator called
U-Net (Navab et al. 2015) , that utilizes shortcut connection
to fully exploit patch information. Hence, we take U-Net as
prototype generator and adapt the model for improving the
performance of CS-MRI.

we attempt to strengthen the ability of restoring structure
information by means of increasing the number of convolu-
tional filters with different sizes. Multi-scale generator was
proposed in Figure 2 which has various sizes of convolu-
tional filters in each layer that lays the foundation for opti-
mizing Structure-Enhanced Loss.

Remark 2 Another advantage of multi-scale generator is
that various filters have multiple scale receptive fields, which
benefits the fusion of multi-scale contextual information.

Theoretical Result
In this section, we give some theoretical analysis about
the Stochastic Structure Enhancing Loss (SSEL) for Com-
pressed Sensing MRI Reconstruction.

We analysis the convergence of SSEL with Gradient De-
scent (GD) using the online programming framework pro-
posed in (Zinkevich 2003; Kingma and Ba 2014) . Research
of Hinton (Tieleman and Hinton 2012; Goodfellow et al.
2016) shows that when optimization algorithm is applied to
non-convex function to train a neural network, a locally con-
vex bowl is reached eventually after the learning trajectory
pass through many different structures. Under this theory,
we analysis the convergence of GD-SSEL in locally con-
vex bowl. An optimization problem of Stochastic Structure-
Enhanced Loss consists of a feasible set w ∈ Rn and an in-
finite sequence{L1

wG
, L2

wG
, ...} where each Lt

wG
: W → R

is a convex function in a locally convex bowl. At each time
t, our goal is to estimation wG on a previously unknown
function T t

wG
. Since it is impossible to get T t

wG
before t, we

want to evaluate our algorithm using the regret which cal-
culates sum of difference between Lt

wG
and the best fixed

point Lt
w∗

G
.

Definition 1 Given a convex optimization problem
(w, {L1

wG
, L2

wG
, ...}), if {w1

wG
, w2

wG
, ...} are the vectors se-

lected by Gradient Descent, then the cost of GD-SSEL until
time T is

C(T ) =

T∑
i=1

Lt
wG

(7)

The best fixed stastic cost until T is

C(T )∗ = min
wG∈W

C(T ) =

T∑
i=1

Lt
w∗

G
(8)

The regret of GD-SSEL until T is

RGD−SSEL(T ) = C(T )− C∗(T ) (9)

The goal is to prove that the average regret approaches
zero. We show GD-SSEL has O(

√
T ) regret and proof is

given in the supplementary material. We also use some def-
initions simplify our notation, where Gij as the output of
generator of ith rows and jth columns and xij as pixel
of MRI image of ith rows and jth columns. Assume that
the number of rows equals to columns is K. We define
∇s , ∂SSIM(x,y)

∂wG
,∇f , ∂f(G(y′)i,G(y′)j)

∂wG
,∇g , ∂Gij

∂wG

and α, E αij .
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Theorem 1 Assume that the function f(G(y′)i, G(y′)j) is
bounded and has bounded gradients, |f(G(y′)i, G(y′)j)| ≤
M , ∥∇f∥2 ≤ F , ∥∇g∥2 ≤ G , ∥∇s∥2 ≤ S for all wG ∈
Rn, distance between any wG

t generative by GD-SSEL is
bounded, ∥wn

G − wm
G ∥2 ≤ D for any m,n ∈ {1, ..., T} and

pixel xij is bounded, |xij − xi′j′ | ≤ d for any i, j, i′, j′ ∈
{1, ...,K}. Let the learning rate ηt =

1√
t

and number of

patches is N . GD-SSEL achieves the following guarantee,
for T ≥ 1.

RGD−SSEL(T ) ≤
D2
√
T

2
+ (λ1MαN2F

+ λ2S + λ3dK
2G)2(4

√
T − 2)

(10)

Proof Sketch To prove the bound, we expand Lt
wG

in Tay-
lor’s series, and prove Lt

wG
−Lt

w∗
G
≤ (wt

G−wt
G
∗
)∇wD

Lt
wG

.
Then we use skill of inequation zoom for Eq.9 and prove

RGD−SSEL(T ) ≤ D2
√
T

2 +
∥∇wG

Lt
wG
∥2

2

T∑
t=1

ηt. Finally,

we decompose the
∇wG

Lt
wG

2 into three parts including
derivative of SPCR , derivative of SSIM and derivative of
MSE.

The main technique for proving this theorem is to utilize
the norm inequation zoom and the Taylor’s series, then we
can prove this theorem. �

Remark 3 Theorem 1 implies that when the function
f(G(y′)i, G(y′)j) is bounded and has bounded gradients,
the summation term is related to number of patches and ex-
pectation of random variable α. The regret bound suggests
reducing the number of patches can improve convergence.
Besides form Theorem 1, we can see that the bound gets
worse when T is large. The bound will be reduced to the
standard convergence rate O(

√
T ) as λ1, λ2, λ3 → 0. In

comparison to structure enhancing loss, stochastic selected
patches to training save time of accessing memory which is
suitable for dealing with big size of images.

Corollary2 Assume that the function f(G(y′)i, G(y′)j) is
bounded and has bounded gradients, |f(G(y′)i, G(y′)j)| ≤
M , ∥∇f∥2 ≤ F , ∥∇g∥2 ≤ G , ∥∇s∥2 ≤ S for all wG ∈
Rn, distance between any wG

t generative by GD-SSEL is
bounded, ∥wn

G − wm
G ∥2 ≤ D for any m,n ∈ {1, ..., T} and

pixel xij is bounded, |xij − xi′j′ | ≤ d for any i, j, i′, j′ ∈
{1, ...,K}. Let the learning rate ηt =

1√
t

and number of

patches is N . GD-SSEL achieves the following guarantee,
for T ≥ 1.

lim
T→∞

RGD−SSEL(T )

T
= 0 (11)

Proof. With Theorem 1, left side of Eq.(11) is thus rewritten
as,

0 ≤ lim
T→∞

RGD−SSEL(T )

T

≤ lim
T→∞

D2

2
√
T

+ (λ1MαN2F

+ λ2S + λ3dK
2G)2(

4√
T
− 2

T
) = 0

(12)

Evidently, Eq.(11) is established. �

Remark 4 From the Corollary 2, we can see that the av-
erage regret of GD-SSEL approaches zero when T → ∞.
With the increase of iterations GD-SSEL will converge grad-
ually.

Experiments
The previous section describes our method SEGAN and
gives some theoretical analysis. In this section we compare
our algorithm with several state-of-art methods on two as-
pects:

1) Reconstruction Performance: we will examine the perfor-
mance of SEGAN in CS-MRI reconstruction.

2) Testing Time: we will examine the time of generating an
image in CS-MRI reconstruction.

Dataset We use a MICCAI 2013 grand challenge dataset
and randomly split T1 weight MRI dataset, 16095 for train-
ing, 5033 for validation and 9854 for testing independently.
We test our algorithm under different underdampling masks,
gaussian masks with 10%, 20%, 30%, 40% sub-sampling
rates, which enables 10×, 5×, 3.3× and 2.5× accelerations.
In the experiment, we use zero-filling under-sampled images
as input.

Implementation Details Training and testing the algo-
rithm use tensorflow with the python environment on a
NVIDIA GeFore GTX TITAN X with 12GB GPU mem-
ory. We used ADAM with momentum for parameter opti-
mization and set the initial learning rate to be 0.0001, the
first-order momentum to be 0.9 and the second momentum
to be 0.999. The weight decays regularization parameter is
0.0001 and the batch size is 30. 30000 stochastic iterations
of training were required to train the SEGAN. For all exper-
iments we use three scales of convolutional filters that are
2×2, 4×4 and 6×6 in the generator and a standard CNN
architecture with 11 convolutional layers with 3 × 3 convo-
lutional filters in the discriminator which are also followed
by batch normalization and leaky ReLU layers.

We compared our SEGAN model with state-of-art mod-
els in the latest development including ADMM-Net (Yang
et al. 2017b), ReGAN (Quan, Nguyenduc, and Jeong 2018),
DAGAN (Yang et al. 2017a). The performance of other con-
ventional methods is much poorer than that of SEGAN, so
we did not show the results. For ADMM-Net method, we
performed 600 iterations for obtaining the reconstruction to
avoid the overfit. For DAGAN and ReGAN method, we use
the software provided by the authors on github and fine-
tuned parameter settings according to experiment results.

Training Specifications In summary, the SSEL of SU-
Net involves three portions which correspond different goals
for generating images containing rich structure information.
λ1, λ2 and λ3 are the trade-off parameters which help to bal-
ance the importance of each contribution. In the experiment,
We empirically set λ1 = 10, λ2 = 1 and λ3 = 100 to
maximize reconstruction performance. We select the poly-
nomial kernel function as correlation function. The number
of patches is fixed to 64 and α is set to 0.1.
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Table 1: Quantitive reconstruction performance on under-sampling MRI. Experiments are conducted on MRI with different
sampling rates, including 10%, 20%, 30%, 40%. The average performance as well as standard deviation of each testing set is
presented. Compared with other methods, if the performance of SEGAN is best among four methods, the corresponding entries
are then bolded.

(a) Sample Rate: 10% and 20%

Method 10% 20%

NMSE SSIM PSNR 20-LSSM 40-LSSM NMSE SSIM PSNR 20-LSSM 40-LSSM

Zero-Fill 0.33±0.05 0.68±0.05 25.07±3.52 0.75±0.05 0.75±0.06 0.19±0.04 0.85±0.02 29.53±4.25 0.88±0.03 0.88±0.03
ADMM-Net 0.24±0.04 0.70±0.04 30.70±3.54 0.78±0.06 0.79±0.06 0.16±0.03 0.88±0.04 37.31±5.25 0.93±0.01 0.92±0.02

ReGAN 0.17±0.04 0.83±0.02 33.54±3.56 0.83±0.05 0.82±0.05 0.09±0.03 0.92±0.04 39.02±5.24 0.93±0.02 0.92±0.02
DAGAN 0.19±0.03 0.82±0.04 32.84±2.56 0.82±0.04 0.81±0.04 0.10±0.02 0.95±0.03 38.88±3.26 0.93±0.02 0.92±0.02
SEGAN 0.17±0.04 0.84±0.01 34.60±3.52 0.84±0.03 0.83±0.03 0.08±0.01 0.96±0.01 40.80±2.68 0.96±0.01 0.95±0.01

(b) Sample Rate: 30% and 40%

Method 30% 40%

NMSE SSIM PSNR 20-LSSM 40-LSSM NMSE SSIM PSNR 20-LSSM 40-LSSM

Zero-Fill 0.18±0.02 0.86±0.01 30.80±3.40 0.90±0.03 0.90±0.03 0.15±0.03 0.90±0.02 32.63±4.50 0.92±0.02 0.92±0.02
ADMM-Net 0.15±0.01 0.91±0.02 37.36±4.55 0.94±0.03 0.93±0.03 0.10±0.02 0.95±0.01 42.36±3.62 0.96±0.02 0.96±0.02

ReGAN 0.09±0.01 0.96±0.02 39.93±3.68 0.95±0.01 0.96±0.01 0.06±0.02 0.98±0.01 43.43±3.75 0.97±0.01 0.97±0.01
DAGAN 0.09±0.02 0.96±0.01 39.53±4.08 0.94±0.02 0.93±0.02 0.06±0.01 0.96±0.02 43.28±3.62 0.95±0.01 0.95±0.01
SEGAN 0.07±0.01 0.97±0.01 41.50±4.52 0.97±0.01 0.96±0.01 0.05±0.01 0.98±0.01 44.15±3.55 0.98±0.01 0.97±0.01
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Figure 3: Illustration of image quality comparison on differ-
ent sample rates. Curves painted in different colors represent
images under distinct sample rates. The horizontal coordi-
nate denotes pixel positions of the yellow line drawn in the
original image, and the vertical coordinate is pixel intensity
of the corresponding pixel. Clearly, the better matching with
red curves means superior generation quality.

Evaluation Methods We use Normalized Mean Square
Error (NMSE), the Peak signal-to-noise Ratio (PSNR) and
SSIM to evaluate the performance of reconstructed images.
In order to further quantify the restored local correlation,
we introduce a measurement called N patches Local Struc-
ture Similary Mean (N-LSSM) that is the average of patch
structure similarly between generated images and ground
truth. Concretely, we randomly pick up N patches of recon-
structed images and calculate SSIM between patches that are
selected from generated image and ground truth. Obviously,
larger N-LSSM indicates better reconstructed quality. In the
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Figure 4: Illustration of testing time of different methods.
Shorter testing time makes reconstruction method more pos-
sible to be applied in clinical medicine.

experiment, we fix the number of patches to 20 and 40, the
size of each patch is 20× 20.

Reconstruction Performance
Compare with Different Sampling Rate It is observed
from numerical results that sampling rate plays the key role
in the quality of reconstruction. Specifically Figure 3 and Ta-
ble 1 show that the higher sampling rate comes with smaller
MSE, larger PSNR and SSIM. Apart from the former three
measures, what we want to emphasize is that N-LSSM in-
creases as higher sample rates as well. Note that, there is
a significant improvement of performance when sampling
rate increases from 10% to 20%. Conversely, the perfor-
mance improvement is not that significant when sample rate
increased from 20% to 40%.

Compare with Other Methods As shown in Table 1 and
Figure 5, the performance of SEGAN has been improved in
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Figure 5: Illustration of reconstruction image quality comparison between different methods at the two sample rates including
20% (top 2 rows) and 40% (bottom 2 rows). The second and forth row is error maps which zoom the error 10 times between
reconstruction and original image. Error map is showed with the help of color lumps, more blue lumps represents more similarity
compared with the original image.

terms of different criteria with respective to different sam-
pling rates. Additionally, our method SEGAN produced vi-
sually reconstructions that outperform the other algorithms.
From the perspective of structure information recovery, re-
constructed MRI image of SEGAN is the best both at local
and global scale.

Testing Time

Considering that computational resources in realistic med-
ical environment are limited, the testing time of recon-
struction directly determines the application scope of the
method. We test the reconstruction time of several main
stream models, specifically, we test those methods under
the environment of Intel Xeon CPU E5-1603 with 32GB
memory. The testing time is show in Figure 4. As shown
that, the inference time of several deep generative models is
shorter than ADMM-Net, the inference time of our method
is slightly higher than the minimal value 1.05s of DAGAN,
but SEGAN achieves much better performance than other
models.

Conclusion
In this paper, we propose a novel deep generative model
called SEGAN for CS-MRI reconstruction, that enable
the restoration of structure information contained in full-
sampled MRI images. SEGAN can uncover the local struc-
ture correlation consisting in different patches by the pro-
posed structure regularization PCR. To speed up the training
and reduce the requirement of memory size, we propose a
stochastic PCR in which patches are randomly selected from
integral patch partition. In addition, a novel deep architec-
ture of generator called SU-Net is designed for efficiently
extract local structure correlation at various scale.

Besides, we theoretically analyze convergence of stochas-
tic PCR under the condition of gradient descent based op-
timization. Moreover, the superior performance of recon-
structed MRI images generated by SEGAN is validated in
experimental parts with state-of-the-art methods. In the fu-
ture, it is interesting to propose new structure regularizations
that are derived from new pixel correlation measure methods
and easier to be optimized under the framework of deep ar-
chitecture.
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